接口电路的制作方法

文档序号:7804244阅读:202来源:国知局
接口电路的制作方法
【专利摘要】视频信号和声音信号从源装置TMDS发送到同步装置。经由保留线和HPD线双向传输以太网(注册商标)信号,所述保留线和HPD线在TMDS传输线外设置,同时将SPDIF信号从同步装置发送到源装置。在以太网(注册商标)接收和发送电路之间双向传输的以太网(注册商标)信号是通过放大器差分地发送和通过放大器接收的。同时,来自SPDIF发送电路的SPDIF信号是通过加法器同相发送和通过加法器接收的,以便提供到SPDIF接收电路。
【专利说明】接口电路
[0001]本申请是申请日为2008年11月13日、申请号为200880016886.1、发明名称为“接口电路”的发明专利申请的分案申请。
【技术领域】
[0002]本发明涉及接口电路,并且更具体地涉及用于在各设备之间发送数字信号(如音频信号和视频信号)的接口电路。
【背景技术】
[0003]近年来,由于使用数字信号(如音频信号或视频信号)的音频/视频(AV)设备变得普遍,已经提出多种类型的接口作为用于在这些AV设备之间传输数字信号的接口。例如,作为这种接口,电气和电子工程师协会(IEEE) 1394标准、高清晰度多媒体接口(HDMI)标准(HDMI是注册商标)等是公知的(例如,见JP-A-2007-267116(图1))。
[0004]此外,对于相对大规模的系统,已经提出用于通过使用以太网"来分发数字信号的接 口 (例如,见 JP-A-2003-523653 (图 6A 和 6B))。

【发明内容】

[0005]本发明要解决的问题
[0006]当以太网?用于AV设备之间的连接时,因为执行根据因特网协议(IP)的双向通信,所以出现软件处理费时因而缺乏实时特性的问题。为了克服该问题,需要在AV设备之间执行同步,因此需要用于调整速度的大缓冲器。此外,需要从发送机侧发送时间戳并且在接收机侧重新生成作为参考的时钟的处理,这可能导致抖动(jitter)(不稳定的时钟)和
信号延迟。
[0007]本发明已经鉴于该情况完成,并且其目的是提供差分地(differentially)发送的以太网?信号的实时特性。
[0008]用于解决问题的手段
[0009]已经完成本发明来解决上述问题,并且其第一方面是一种接口电路,包括:第一发送部分,用于通过传输线发送作为差分信号的第一信号到外部设备;以及第二发送部分,用于发送复用到所述传输线的、作为共模信号的第二信号到所述外部设备。从而,实现差分地发送的第一信号和共模发送的第二信号相互复用并且通过同一传输线发送的效果。
[0010]此外,根据第一方面,所述第二信号可以是包括时钟分量的信号。从而,实现将时钟分量发送到外部设备的效果。这里,作为示例,所述第二信号可以包括双相标记调制信号(biphase-mark modulated signal)。
[0011]此外,第一方面还可以包括接收部分,用于通过从所述传输线上的差分信号移除所述第一信号来接收第三信号。从而,实现双向发送差分信号的效果。这里,作为示例,所述第一发送部分和所述接收部分可以根据因特网协议(IP)执行双向通信。此外,所述传输线可以使用形成HDMI电缆的热插拔检测线和保留线。[0012]此外,本发明的第二方面是一种接口电路,包括:第一接收部分,用于从通过传输线从外部设备接收的差分信号提取第一信号;以及第二接收部分,用于从通过所述传输线从所述外部设备接收的共模信号提取第二信号。从而,实现通过同一传输线接收差分发送的第一信号和共模发送的第二信号的效果。
[0013]此外,根据第二方面,所述第二信号可以是包括时钟分量的信号。从而,实现从外部设备接收时钟分量的效果。这里,作为示例,所述第二信号可以包括双相标记调制信号。
[0014]此外,第二方面还可以包括发送部分,用于通过所述传输线发送作为差分信号的第三信号到所述外部设备,其中所述第一接收部分可以通过从所述传输线上的差分信号移除所述第三信号来提取所述第一信号。从而,实现双向发送差分信号的效果。这里,作为示例,所述第一接收部分和所述发送部分可以根据因特网协议(IP)执行双向通信。此外,所述传输线可以使用形成HDMI电缆的热插拔检测线和保留线。
[0015]已经完成本发明来解决上述问题,并且其第一方面是一种接口电路,包括:第一发送部分,用于通过传输线发送作为差分信号的第一信号到外部设备;以及第二发送部分,用于发送复用到所述传输线的、作为共模信号的第二信号到所述外部设备。从而,实现差分发送的第一信号和共模发送的第二信号相互复用并且通过同一传输线发送的效果。
[0016]此外,根据第一方面,所述第二信号可以是包括时钟分量的信号。从而,实现将时钟分量发送到外部设备的效果。这里,作为示例,所述第二信号可以包括双相标记调制信号。
[0017]此外,第一方面还可以包括接收部分,用于通过从所述传输线上的差分信号移除所述第一信号来接收第三信号。从而,实现双向发送差分信号的效果。这里,作为示例,所述第一发送部分和所述接收部分可以根据因特网协议(IP)执行双向通信。此外,所述传输线可以使用形成HDMI电缆的热插拔检测线和保留线。
[0018]此外,本发明的第二方面是一种接口电路,包括:第一接收部分,用于从通过传输线从外部设备接收的差分信号提取第一信号;以及第二接收部分,用于从通过所述传输线从所述外部设备接收的共模信号提取第二信号。从而,实现通过同一传输线接收差分发送的第一信号和共模发送的第二信号的效果。
[0019]此外,根据第二方面,所述第二信号可以是包括时钟分量的信号。从而,实现从外部设备接收时钟分量的效果。这里,作为示例,所述第二信号可以包括双相标记调制信号。
[0020]此外,第二方面还可以包括发送部分,用于通过所述传输线发送作为差分信号的第三信号到所述外部设备,其中所述第一接收部分可以通过从所述传输线上的差分信号移除所述第三信号来提取所述第一信号。从而,实现双向发送差分信号的效果。这里,作为示例,所述第一接收部分和所述发送部分可以根据因特网协议(IP)执行双向通信。此外,所述传输线可以使用形成HDMI电缆的热插拔检测线和保留线。
[0021]本发明的效果
[0022]根据本发明,可以实现能够提供差分发送的以太网?信号的实时特性的突出效
果O
【专利附图】

【附图说明】
[0023]图1是根据HDMI标准的接口的示意图;[0024]图2是示出根据HDMI标准的连接器的管脚安排的示例的图;
[0025]图3是示出根据本发明实施例的源设备100和宿(sink)设备200的内部配置示例的图;
[0026]图4A是示出根据本发明实施例的源侧发送机/接收机电路140和宿侧发送机/接收机电路250的配置示例的图;
[0027]图4B是示出根据本发明实施例的源侧发送机/接收机电路140和宿侧发送机/接收机电路250的配置示例的图;
[0028]图5是示出根据本发明实施例的操作的示意图的图;
[0029]图6A是示出根据本发明实施例的宿类型检测电路110和源类型检测电路210的配置示例的图;
[0030]图6B是示出根据本发明实施例的宿类型检测电路110和源类型检测电路210的配置示例的图;
[0031]图7A是示出根据本发明实施例的插拔连接(plug connection)检测电路120和插拔连接传送电路220的配置示例的图;
[0032]图7B是示出根据本发明实施例的插拔连接检测电路120和插拔连接传送电路220的配置示例的图; [0033]图8是示出根据SroiF标准的帧配置的图;
[0034]图9是示出根据SroiF标准的子帧配置的图;
[0035]图?ο是示出根据sroiF标准的信号调制方案的图;
[0036]图11是示出用于根据SPDIF标准的前同步码的信道编码的图;以及
[0037]图12是示出根据本发明实施例的系统配置示例的图。
[0038]参考标号的说明
[0039]100源设备
[0040]110宿类型检测电路
[0041]120插拔连接检测电路
[0042]140源侧发送机/接收机电路
[0043]160以太网?发送机/接收机电路
[0044]170STOIF接收机电路
[0045]200宿设备
[0046]210源类型检测电路
[0047]220插拔连接传送电路
[0048]250宿侧发送机/接收机电路
[0049]260以太网?发送机/接收机电路
[0050]270SPDIF发送机电路
[0051]300HDMI 电缆
[0052]310、320、330TMDS 信道
[0053]340TMDS 时钟信道
[0054]350显示数据信道(DDC)
[0055]361CEC 线[0056]362保留线
[0057]363HPD 线
[0058]410、420、430、450 放大器
[0059]441反相器
[0060]442、460 加法器
[0061]510、520、530、550 放大器
[0062]541反相器
[0063]542、571、572 加法器
[0064]710播放器
[0065]711内部时钟生成电路
[0066]712时钟分量重新配置电路
[0067]713时钟开关
[0068]714微控制器
[0069]715记录介质访问部分
[0070]716解码器
[0071]717记录介质
[0072]720AV 放大器
[0073]730扬声器
[0074]740电视接收机
【具体实施方式】
[0075]以下,将参照附图详细说明本发明的优选实施例。注意,在说明书和附图中,具有基本相同功能和结构的结构元件用相同的参考标号表示,并且省略这些结构元件的重复说明。
[0076]这里,假设根据HDMI标准的接口的示例,其中添加了差分发送的以太网?信号,将对于用于提供以太网"*信号的实时特性的实施例给出说明。
[0077]图1是根据HDMI标准的接口的示意图。对于HDMI标准,高速传输线的基本传输方向设为单向,并且在发送机侧的设备称为源设备(发送部分的示例),而在接收机侧的设备称为宿设备(接收部分的示例)。在该示例中,源设备100和宿设备200通过HDMI电缆300连接。用于执行发送操作的发送机101包括在源设备100中,而用于执行接收操作的接收机201包括在宿设备200中。
[0078]称为转换最小差分信号传输(TransitionMinimized Differential Signaling,TMDS)的串行传输系统用于发送机101和接收机201之间的传输。对于HDMI标准,视频信号和音频信号通过使用三个TMDS信道310到330发送。具体地,在有效图像时段期间,该时段是从垂直同步信号和下一个垂直同步信号之间的时段排除水平消隐时段和垂直消隐时段的时段,通过TMDS信道310到330,将对应于用于一个未压缩屏幕的图像的像素数据的差分信号向宿设备200单向发送。此外,在水平消隐时段或垂直消隐时段期间,通过TMDS信道310到330,将对应于音频数据、控制数据、其他辅助数据等的差分信号向宿设备200单向发送。[0079]此外,对于HDMI标准,通过TMDS时钟信道340发送时钟信号。TMDS信道310到330的每个可以在通过TMDS信道340发送一个时钟期间发送10位的像素数据。
[0080]此外,对于HDMI标准,提供显示数据信道(DDC) 350。显示数据信道350被源设备采用来读取宿设备200中的增强的扩展显示识别数据(E-EDID)信息。在宿设备200是显示设备的情况下,E-EDID信息指示与设置或性能(如类型、分辨率、颜色特性或定时)有关的信息。E-EDID信息保持在宿设备200的EDID R0M202中。注意到,尽管未示出,像宿设备200 一样,源设备100也可以存储E-EDID信息,并且当需要时将E-EDID信息发送到宿设备200。
[0081]此外,对于HDMI标准,提供消费电子控制(CEC)线361、保留线362、热插拔检测(HPD)线363等。CEC线361是用于设备控制信号的双向通信的线。而显示数据信道350以一对一方式连接各设备,CEC线直接连接所有连接到HDMI的设备。
[0082]保留线362是未在HDMI标准中使用的线。此外,HPD线363是用于检测通过HDMI电缆到另一设备的连接(热插拔)的线。本发明的实施例假设通过使用保留线362和HPD线363发送以太网?信号,此外,提出提供以太网?信号的实时特性的机制。
[0083]图2是示出根据HDMI标准的连接器的管脚安排的图。在此情况下,示出根据称为类型A的管脚安排的管脚号301和信号名称302之间的对应关系。
[0084]TMDS信道310到330和TMDS时钟信道340的每个通过三个管脚配置:正、屏蔽和负。分别地,管脚I到3对应于TMDS信道330,管脚4到6对应于TMDS信道320,管脚7到9对应于TMDS信道310,并且管脚10到12对应于TMDS时钟信道340。
[0085]此外,分别地,管脚13对应于CEC线361,管脚14对应于保留线362,并且管脚19对应于HPD线363。此外,显示数据信道351由三个管脚配置,即分别对应于管脚15到17的串行时钟(SCL)、串行数据(SDA)和地。注意到,用于显示数据信道350的地(管脚17)与用于CEC线361的地相同。管脚18对应于电源线(+5V)。
[0086]图3是示出根据本发明实施例的源设备100和宿设备200的内部配置示例的图。在此情况下,示出了作为本发明实施例中主要部分的保留线362和HPD线363的配置。源设备100包括宿类型检测电路110、插拔连接检测电路120、源侧发送机/接收机电路140、索尼(Sony)/飞利浦(Philips)数字接口(SPDIF)接收机电路170和以太网?发送机/接收机电路160。此外,宿设备200包括源类型检测电路210、插拔连接传送电路220、宿侧发送机/接收机电路250、SPDIF发送机电路270和以太网?发送机/接收机电路260。
[0087]如上所述,保留线362是在HDMI标准中未使用的线。然而,在本情况下,为了管脚的有效使用,保留线362用来检测连接的设备类型。具体地,源设备100的宿类型检测电路110经由保留线362检测宿设备200的类型。此外,宿设备200的源类型检测电路210经由保留线362检测源设备100的类型。这里的类型可以假设为扩展HDMI标准以允许通过保留线362和HPD线363的以太网"*信号的双向传输的类型(以下,称为“HDMI扩展类型”)。
[0088]如上所述,HPD363是用于检测通过HDMI电缆到另一设备的连接的线。宿设备200的插拔连接传送电路220通过将连接到HPD线363的端子偏置到预定电压,通知连接了宿设备200。源设备100的插拔连接检测电路120通过将连接到HPD线363的端子的电势与参考电势比较,检测宿设备200的连接。
[0089]在本发明的实施例中,源侧发送机/接收机电路140和宿侧发送机/接收机电路250连接到具有这种功能的保留线362和HPD线363。也就是说,源设备100的源侧发送机/接收机电路140经由电容器131和132以及电阻器133连接到保留线362和HPD线363。此外,宿设备200的宿侧发送机/接收机电路250经由电容器231和232以及电阻器233连接到保留线362和HPD线363。
[0090]源侧发送机/接收机电路140将通过使用保留线362和HPD线363双向发送的以太网?信号连接到以太网?发送机/接收机电路160,并且将通过使用保留线362和HPD线363发送到源设备100的SPDIF信号连接到SPDIF接收机电路170。
[0091]宿侧发送机/接收机电路250将通过使用保留线362和HPD线363双向发送的以太网?信号连接到以太网?发送机/接收机电路260,并且将通过使用保留线362和HPD线363从源设备100发送的SPDIF信号连接到SPDIF接收机电路270。
[0092]以太网?发送机/接收机电路160和260是用于发送/接收以太网?信号的电路,并且执行根据例如因特网协议(IP)的双向通信。在此情况下,传输控制协议(TCP)或用户数据报协议(UDP)可以用作因特网协议(IP)的上层。这些以太网?发送机/接收机电路160和260可以通过传统技术实现。
[0093]SroiF接收机电路170和SPDIF发送机电路270执行根据SPDIF的单向通信。这里,SroiF标准是用于实时发送数字音频信号的接口标准,并且由国际电子技术委员会(IEC)标准化为“ IEC60958”。如随后所述,要根据SroiF标准发送的SPDIF信号是双相标记调制的,因此在信号中包括时钟分量。顺便提及,SroiF接收机电路170和SroiF发送机电路270通过传统技术实现。
[0094]图4A和4B是示出根据本发明实施例的源侧发送机/接收机电路140和宿侧发送机/接收机电路250的配置示例的图。
[0095]如图4A所示,宿侧发送机/接收机电路250包括放大器510、520、530和550、反相器541和加法器542,571和572。
[0096]放大器510是用于放大通过信号线511和512从以太网?发送机/接收机电路260提供的信号的放大器。信号线511和512的信号是差分信号,并且放大器510通过差分输入操作。
[0097]放大器520是用于放大放大器510的输出的放大器。放大器520的输出是差分信号,并且分别将正电极的信号提供到加法器571而将负电极的信号提供到加法器572。
[0098]放大器530是用于放大来自保留线362和HPD线363的信号的放大器。保留线362和HPD线363的信号是差分信号,并且放大器530通过差分信号操作。
[0099]反相器541是用于反向放大器510的输出的电路。加法器542是用于将反相器541的输出和放大器530的输出相加的电路。也就是说,在从其移除宿设备200的输出信号的情况下,反相器541和加法器542将来自保留线362和HPD线363的信号输入放大器550。
[0100]放大器550是用于放大加法器542的输出的放大器。放大器550的输出是差分信号,并且分别将正电极的信号提供到信号线558而将负电极的信号提供到信号线559。以太网?发送机/接收机电路260连接到信号线558和559,并且在从其移除宿设备200的输出信号的情况下,将作为来自保留线362和HPD线363的信号的信号提供到以太网?发送机/接收机电路260。
[0101]加法器571是用于将通过信号线561从STOIF发送机电路270提供的信号与放大器520的正电极输出相加的电路。加法器572是用于将通过信号线561从SPDIF发送机电路270提供的信号与放大器520的负电极输出相加的电路。
[0102]也就是说,尽管从放大器550输出的以太网?信号是差分信号,但是通过加法器571和572复用的SPDIF信号是共模信号。因此,以太网?信号和SPDIF信号两者可以通过同一对信号线(保留线362和HPD线363)发送。
[0103]如图4B所示,源侧发送机/接收机电路140包括放大器410、420、430和450、反相器441和加法器442和460。
[0104]放大器410是用于放大通过信号线411和412从以太网?发送机/接收机电路160提供的信号的放大器。信号线411和412的信号是差分信号,并且放大器410通过差分输入操作。
[0105]放大器420是用于放大放大器410的输出的放大器。放大器420的输出是差分信号,并且分别将正电极的信号提供到保留线362而将负电极的信号提供到HPD线363。
[0106]放大器430是用于放大来自保留线362和HPD线363的信号的放大器。保留线362和HPD线363的信号是差分信号,并且放大器430通过差分输入操作。
[0107]放大器450是用于放大加法器442的输出的放大器。放大器450的输出是差分信号,并且分别将正电极的信号提供到信号线458而将负电极的信号提供到信号线459。以太网?发送机/接收机电路160连接到信号线458和459,并且在从其移除源设备100的输出信号的情况下,将作为来自保留线362和HPD线363的信号的信号提供到以太网?发送机/接收机电路160。
[0108]反相器441是用于反向放大器410的输出的电路。加法器442是用于将反相器441的输出和放大器430的输出相加的电路。也就是说,在从其移除源设备100的输出信号的情况下,反相器441和加法器442将来自保留线362和HPD线363的信号输入放大器450。
[0109]加法器460是用于将作为放大器420的输出的正电极的信号和负电极的信号相加的电路。
[0110]也就是说,在由保留线362和HPD线363发送的信号中,由放大器430提取的差分信号作为以太网?信号,而由加法器460提取的共模信号作为SPDIF信号。
[0111]图5是示出根据本发明实施例的操作的示意性视图的图。本发明的实施例假设这样的情况,其中通过使用保留线362发送作为差分信号的以太网?信号,此外通过使用同一线发送作为共模信号的SPDIF信号,以提供以太网?信号的实时特性。
[0112]在图5中概述根据本发明实施例的操作。如上所述,管脚14对应于保留线362,而管脚19对应于HPD线363。当既不发送以太网?信号又不发送STOIF信号时,根据传统的HDMI标准进行操作。当发送以太网"^信号时,以太网》信号的正电极信号复用到管脚14,而以太网号的负电极信号复用到管脚19。此外,当发送SPDIF信号时,SroiF信号的正电极信号复用到管脚14和管脚19。此外,当发送以太网?信号和sroiF信号两者时,以太网?信号的正电极信号和SPDIF信号的正电极信号复用到管脚14,而以太网?信号的负电极信号和SPDIF信号的正电极信号复用到管脚19。
[0113]因此,以太网?信号和SroiF信号可以独立地在保留线362和HPD线363上发送,并且接收机端(源侧发送机/接收机电路140)不需要特别的机制,不管是发送两个信号还是只发送一个信号。[0114]图6A和6B是示出根据本发明实施例的宿类型检测电路110和源类型检测电路210的配置示例的图。
[0115]如图6A所示,宿类型检测电路110包括电阻器111和112、电容器113和比较器116。电阻器111将保留线362上拉到+5V。只有当源设备100是特定类型(例如,HDMI扩展类型)时才包括电阻器111,而当源设备100不是特定类型时,不执行上拉。电阻器112和电容器113形成低通滤波器。低通滤波器的输出提供到信号线114。比较器116比较从低通滤波器提供到信号线114的DC电势和提供到信号线115的参考电势。
[0116]此外,如图6B所示,源类型检测电路210包括电阻器211和212、电容器213和比较器216。电阻器211将保留线362下拉到地电势。只有当宿设备200是特定类型时才包括电阻器211,而当宿设备200不是特定类型时,不执行下拉。电阻器212和电容器213形成低通滤波器。低通滤波器的输出提供到信号线215。比较器216比较从低通滤波器提供到信号线215的DC电势和提供到信号线214的参考电势。
[0117]当宿设备200是特定类型时,通过电阻器211执行下拉,并且保留线362的电势变为2.5V,而当宿设备200不是特定类型时,释放电势并且变为5V。因此,例如当信号线115的参考电势是3.75V时,可以基于信号线117的输出在源设备100中识别宿设备200的类型。
[0118]类似地,当宿设备100是特定类型时,通过电阻器111执行上拉,并且保留线362的电势变为2.5V,而当源设备100不是特定类型时,电势变为0V。因此,例如当信号线214的参考电势是1.25V时,可以基于信号线217的输出在宿设备200中识别源设备100的类型。
[0119]用于类型检测的信号以DC偏置电势传送,因此不影响作为AC信号传送的以太网?信号和sroiF信号。
[0120]图7A和7B是示出根据本发明实施例的插拔连接检测电路120和插拔连接传送检测电路220的配置示例的图。
[0121]如图7A所示,插拔连接传送电路220包括扼流圈211 ;以及电阻器222和223。扼流圈221和电阻器222和223将HPD线363偏置到例如大约4V。
[0122]此外,如图7B所示,插拔连接检测电路120包括电阻器121和122 ;电容器123 ;以及比较器126。电阻器121将HPD线363下拉到地电势。电阻器122和电容器123形成低通滤波器。低通滤波器的输出提供到信号线124。比较器126比较从低通滤波器提供到信号线124的DC电势和提供到信号线125的参考电势。
[0123]种类,例如提供1.4V作为信号线125的参考电势。如果源设备100没有连接到HPD线363,则由于输入电势由电阻器121下拉,所以信号线124的电势变为低于信号线125的参考电势。另一方面,如果源设备100连接到HPD线363,则因为HPD线偏置为大约4V,所以信号线124的电势变为高于信号线125的参考电势。因此,可以基于信号线127的输出在源设备100中检测宿设备200的连接的存在或不存在。
[0124]用于插拔连接检测的信号以DC偏置电势传送,因此不影响作为AC信号传送的以太网?信号和SPDIF信号。
[0125]接下来,将参照附图描述SPDIF标准。
[0126]图8是示出根据SroiF标准的帧配置的图。根据SPDIF配置,每个帧从两个子帧配置。在2-信道立体声音频的情况下,左信道信号包括在第一子帧中,而右信道信号包括在第二子帧中。
[0127]如下所述,在子帧的开头提供前同步码,并且“M”加到左信道信号作为前同步码,而“W”加到右信道信号作为前同步码。注意到,指示块的开始的“B”加到处于每192帧开始的前同步码。也就是说,由192帧配置一个块。该块是配置随后描述的信道状态的单元。
[0128]图9是示出根据SPDIF标准的子帧配置的图。由总共32时隙(即,从第O到第31)配置子中贞。
[0129]时隙O到3表示前同步码(同步前同步码)。如上所述,前同步码指示“M”、“W”和“B”的任何,以便在左或右信道之间区分,或指示块的开始位置。
[0130]时隙4到27是主数据字段,并且当采用24位代码范围时,整个主数据字段表示音频数据。此外,当采用20位代码范围时,时隙8到27表示音频数据(音频采样字)。在后面的情况下,时隙4到7可以用作辅助信息(辅助采样位)。
[0131]时隙28是主数据字段中的有效性标记。
[0132]时隙29表示用户数据的一位。可以通过在各个帧上累积时隙29来配置数据系列。用8位信息单元(IU)将用户数据消息配置为一个单元,并且3到129个信息单元包括在一个消息中。O到8位的“O”可以出现在信息单元之间。信息单元的开始通过开始位“I”识另O。保留消息中的前七个消息单元,并且用户可以在第八或随后的信息单元中设置任意信息。通过8个或更多位的“O”将各消息相互划分。
[0133]时隙30表示信道状态的一位。可以通过在各个帧上累积各个块的时隙30来配置一系列信道状态。顺便提及,块的开始位置由如上所述的前同步码(时隙O到3)指示。
[0134]时隙31是奇偶位。添加奇偶位,使得包括在时隙4到31中的“O”和“I”的数目是偶数。
[0135]图10是示出根据SPDIF标准的信号调制方案的图。根据STOIF标准,作为从其排除前同步码的子帧的时隙4到31是双相标记调制的。
[0136]在双相标记调制时,使用其速度是原始信号(源编码)的两倍的时钟。将原始信号的时钟周期分为第一半和第二半,双相标记调制的输出在时钟周期的第一半的边缘总是(invariably)反相。此外,当原始信号在时钟周期的第一半的边缘指示“I”时,并且当原始信号在时钟周期的第二半的边缘指示“O”时,输出不反相。从而,可以从双相标记调制的信号提取原始信号的时钟分量。
[0137]图11是示出用于根据SroiF标准的前同步码的信道编码的图。如上所述,子帧中的时隙4到31是双相标记调制的。另一方面,前同步码(具体地,时隙O到3)不是以通常方式双相标记调制的,而是处理为与两倍速时钟同步的位模式。也就是说,通过分配2位到时隙O到3的每一个,获得如图11所示的8位模式。
[0138]如果紧接在前状态是“0”,则分别是“11101000”分配到前同步码“B”,“11100010”分配到“M”,并且“11100100”分配到“W”。另一方面,如果紧接在前状态是“1”,则分别是“00010111”分配到前同步码“B”,“00011101”分配到“M”,并且“00011011”分配到“W”。
[0139]如上所述,根据本发明的实施例,可以发送复用到以太网?信号并且与以太网?信号共模的SroiF信号,所述以太网》信号通过保留线362和HPD线363差分发送。因为SroiF信号包括时钟分量,所以宿设备可以从SPDIF信号本身提取时钟分量,并且使用该时钟分量。如果宿设备是音频设备,则提起的时钟分量可以利用和用于音频再现。当在传输线中出现错误时,通过静音该部分并且从随后数据再现,可以确保实时特性。
[0140]以太网号是分组信号,并且当在传输线中出现错误时,通过如传输控制协议(TCP)的机制自动重传信号,因此实现高度可靠的传输。应该注意,在需要如对于音频信号传输所要求的实时特性的情况下,在重传期间停止音频再现。此外,在正常情况下,通过软件执行信号处理,因此,当与其中硬件执行处理的SPDIF相比,延迟(等待时间)增加。此夕卜,根据运动画面专家组(MPEG)-传输流(TS)或实时传输协议的时间戳用于重建音频时钟,并且在许多情况下,也可以通过软件实现如这些的处理。
[0141]通过组合使用具有如上所述的不同特性的以太网?信号和SPDIF信号,可以同时实现实时音频传输和可靠的分组信息传输。以下,将描述应用本发明的应用示例。
[0142]图12是示出根据本发明实施例的系统配置示例的图。这里,AV系统假设包括播放器710、AV放大器720、扬声器730和电视接收机740。
[0143]播放器710和AV放大器720是相互HDMI连接的,并且其中播放器710是源设备,AV放大器720是宿设备。也就是说,信号线719执行从播放器710到AV放大器720的单向TMDS传输。AV放大器720和电视接收机740以类似方式相互HDMI连接,并且其中AV放大器720是源设备,电视接收机740是宿设备。也就是说,信号线729执行从AV放大器720到电视接收机740的单向TMDS传输。执行TMDS传输的信号线719和729对应于图1中的TMDS 信道 310 到 330。
[0144]此外,AV放大器720和扬声器730相互模拟连接,并且将通过AV放大器720再现的音频信号经由信号线726输出到扬声器730。
[0145]播放器710包括内部时钟生成电路711、时钟分量重新配置电路712、时钟开关713、微控制器714、记录介质访问部分715和解码器716。
[0146]内部时钟生成电路711是用于生成播放器710内部的时钟信号的电路。内部时钟生成电路711通过使用来自振荡器(如晶体振荡器(晶体))的振幅电压生成时钟信号。
[0147]时钟分量重新配置电路712是用于基于通过信号线727从AV放大器720提供的SroiF信号重新配置时钟分量的电路。信号线727对应于图3中的保留线362和HPD线363。
[0148]时钟开关713是用于通过选择在内部时钟生成电路711中生成的时钟和在时钟分量重新配置电路712中重新配置的时钟的任一,切换要输出的时钟的电路。
[0149]微控制器714是用于控制播放器710的操作的微处理器。在检测时钟分量重新配置电路712中时钟分量的重新配置时,微控制器714指令时钟开关713选择来自时钟分量重新配置电路712的时钟。
[0150]记录介质访问部分715是用于根据从时钟开关713输出的时钟,从记录介质717读出视频信号和音频信号的电路。
[0151]解码器716根据从时钟开关713输出的时钟,解码由记录介质访问部分715读出的视频信号和音频信号。将由编码器716编码的信号通过信号线719TMDS发送到AV放大器 720。
[0152]AV放大器720通过信号线719接收从播放器710发送的信号,并且放大接收信号的音频信号,并且通过信号线726输出声音到扬声器730。此外,AV放大器720通过信号线729发送接收信号的视频信号到电视接收机740。
[0153]以太网?信号通过分别对应于信号线727的保留线362和HPD线363差分发送,并且SroiF信号以共模复用到保留线362和HPD线363。因此,使用作为STOIF信号的接收机的播放器710,通过取保留线362和HPD线363的各个信号的和,移除差分发送的以太网?信号,并且获得SPDIF信号。SroiF信号包括在AV放大器720内生成的时钟分量。因为发送双相标记调制的SPDIF信号,所以即使信号例如是静音信号,时钟分量也从AV放大器720发送到播放器710。也就是说,根据该示例的SPDIF信号不需要包括有效音频信号。
[0154]根据应用示例,在AV放大器720中生成的时钟信号发送到播放器710,并且根据发送的时钟信号可以将视频信号和音频信号从播放器710发送到AV放大器720。以此,播放器710可以使用AV放大器720的时钟作为主时钟操作,并且可以实现所谓的无抖动再现。从而,可以从AV放大器720略去用于速度调整的缓冲器。此外,通常当聚焦于在每个设备中生成的时钟的精度时,AV放大器的时钟通常比播放器的时钟更精确。因此,通过播放器710使用AV放大器720的时钟作为主时钟操作,可以提高音频信号的再现质量。
[0155]如上所述,通过发送SPDIF信号,可以容易地执行在只使用以太网?信号的情况下是困难的发送机侧和接收机侧的频率同步,以此有益于用于视频信号或音频信号的再现的应用,该应用要求实时特性。顺便提及,在上述应用示例中,已经描述无抖动再现的示例。通过使用sroiF信号中的用户数据或信道状态,可以实时发送来自宿设备的信息。例如,通过在用户数据中包括AV放大器720的视频信号的再现帧、音频信号等的再现时间,并且将其发送到播放器710,可以精确同步播放器710和AV放大器720。
[0156]至此,已经参照【专利附图】
附图
【附图说明】了本发明的优选实施例。然而,不用说本发明不限于这样的示例。显而易见的是本领域的技术人员在权利要求的范围内可以实现各种修改和替换,并且理解它们自然在权利要求的范围内。
[0157]顺便提及,本发明的实施例是用于本发明的实现的示例,并且存在与权利要求的每个主体的对应关系。然而,本发明不限于这些,并且可以实现各种修改,只要不背离本发明的范围。
[0158]也就是说,在权利要求1中,第一发送部分例如对应于放大器520。此外,第二发送部分例如对应于加法器571和572。
[0159]此外,在权利要求4中,接收部分例如对应于放大器530、反相器541和加法器542。
[0160]此外,在权利要求6和12中,保留线例如对应于保留线362。此外,热插拔检测线例如对应于HPD线363。
[0161]此外,在权利要求7中,第一接收部分例如对应于放大器430、反相器441和加法器442。此外,第二接收部分例如对应于加法器460。
[0162]此外,在权利要求10中,发送部分例如对应于放大器420。
[0163]顺便提及,在本发明实施例中描述的过程可以假设为包括一系列过程的方法,或可以假设为用于使得计算机执行这一系列过程的程序,以及存储该程序的记录介质。
【权利要求】
1.一种接口电路,包括: 第一发送部分,用于通过传输线发送作为差分信号的第一信号到外部设备; 第二发送部分,用于发送复用到所述传输线的、作为共模信号的第二信号到所述外部设备;以及 接收部分,用于通过从所述传输线上的差分信号移除所述第一信号来接收第三信号,其中 所述传输线是形成HDMI电缆的热插拔检测线和保留线,所述第一信号是以太网信号。
2.如权利要求1所述的接口电路,其中所述第二信号是包括时钟分量的信号。
3.如权利要求1所述的接口电路,所述第二信号包括双相标记调制信号。
4.如权利要求1所述的接口电路,其中所述第一发送部分和所述接收部分根据因特网协议(IP)执行双向通信。
5.一种接口电路,包括: 第一接收部分,用于从通过传输线从外部设备接收的差分信号提取第一信号; 第二接收部分,用于从通过所述传输线从所述外部设备接收的共模信号提取第二信号;以及 发送部分,用于通过所述传输线发送作为差分信号的第三信号到所述外部设备,其中 所述第一接收部分通过从所述传输线上的差分信号移除所述第三信号来提取所述第一信号,其中 所述传输线是形成HDMI电缆的热插拔检测线和保留线,所述第一信号是以太网信号。
6.如权利要求5所述的接口电路,其中所述第二信号是包括时钟分量的信号。
7.如权利要求5所述的接口电路,其中所述第二信号包括双相标记调制信号。
8.如权利要求5所述的接口电路,其中所述第一接收部分和所述发送部分根据因特网协议(IP)执行双向通信。
9.如权利要求1所述的接口电路,其中所述第二信号是SroiF信号。
10.如权利要求5所述的接口电路,其中所述第二信号是SroiF信号。
【文档编号】H04N21/643GK103957449SQ201410215064
【公开日】2014年7月30日 申请日期:2008年11月13日 优先权日:2007年11月22日
【发明者】市村元, 菊池秀和, 中嶋康久 申请人:索尼株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1