用于多载波设备的载波测量的制作方法

文档序号:13618146阅读:206来源:国知局



背景技术:

无线移动通信技术使用各种标准和协议来在节点(例如,传输站)和无线设备(例如,移动设备)之间传输数据。一些无线设备在下行链路(dl)传输中使用正交频分多址(ofdma)并且在上行链路(ul)传输中使用单载波频分多址(sc-fdma)来进行通信。使用正交频分复用(ofdm)用于信号传输的标准和协议包括:第三代合作伙伴计划(3gpp)长期演进(lte)、电气和电子工程师协会(ieee)802.16标准(例如,802.16e、802.16m)(业界通常称为全球微波接入互操作性(wimax))、以及ieee802.11标准(业界通常称为wifi)。

在3gpp无线电接入网(ran)lte系统中,节点可以是演进通用地面无线电接入网络(e-utran)节点b(还通常被表示为演进节点b、增强型节点b、enodeb、或enb)和与无线设备(称为用户设备(ue))进行通信的无线电网络控制器(rnc)的组合。下行链路(dl)传输可以是从节点(例如,enodeb)到无线设备(例如,ue)的通信,并且上行链路(ul)传输可以是从无线设备到节点的通信。

在同构网络中,节点(还称为宏节点)可以为小区中的无线设备提供基本的无线覆盖。小区可以是其中无线设备可操作来与宏节点进行通信的区域。可以使用异构网络(hetnet)来处理宏节点上由于无线设备的使用和功能增加而增加的流量负载。hetnet可以包括覆盖有较低功率节点(小enb、微enb、微微enb、毫微微enb、或家庭enb[henb])的层的一层规划的高功率宏节点(或宏enb),这些较低功率节点可以以未良好规划或甚至完全不协调的方式被部署在宏节点的覆盖区域(小区)内。较低功率节点(lpn)通常可被称为“低功率节点”、小节点、或小小区。

在lte中,可以经由物理下行链路共享信道(pdsch)将数据从enodeb发送到ue。可以使用物理上行链路控制信道(pucch)来确认接收到数据。下行链路和上行链路信道或传输可以使用时分双工(tdd)或频分双工(fdd)。

附图说明

根据以下结合附图的详细描述,本公开的特征和优势将是明显的,这些附图通过示例的方式一起示出了本公开的特征;并且,其中:

图1是描绘根据示例的使得用户设备(ue)能够在无线网络中执行载波测量的ue和网络元件之间的信令的流程图;

图2示出了根据示例的测量值的表格,这些测量值可以从用户设备(ue)被传送到网络元件以指示ue针对其开始或停止执行载波测量的所选择的载波;

图3示出了根据示例的可以由用户设备(ue)用来向网络元件传送切换通知的物理上行链路控制信道(pucch)格式的表格;

图4示出了根据示例的用于用户设备(ue)的载波测量和数据接收模式;

图5示出了根据示例的用于被配置用于载波聚合(ca)的用户设备(ue)的多载波测量和数据接收模式;

图6示出了根据示例的用于被配置用于载波聚合(ca)的用户设备(ue)的多载波测量和数据接收模式;

图7描绘了根据示例的可操作来在无线网络中执行载波测量的用户设备(ue)的功能;

图8描绘了根据示例的可操作来辅助用户设备(ue)在无线网络中执行载波测量的无线电基站的功能;

图9描绘了根据示例的至少一个非暂态机器可读存储介质的流程图,在其上体现有用于在用户设备(ue)处执行载波测量的指令;以及

图10示出了根据示例的无线设备(例如,ue)的图示。

现在将参考所示出的示例性实施例,并且本文将使用特定语言来描述相同的示例性实施例。然而,将理解的是,不意图以此来限制本技术的范围。

具体实施方式

在公开和描述本技术之前,应理解的是,该技术不限于本文公开的特定结构或材料,而被扩展到如相关领域普通技术人员将认识到的其等同物。还应理解的是,本文采用的术语仅用于描述特定示例的目的,而不意图是限制性的。不同图示中的相同的附图标记表示相同的元件。流程图和过程中提供的编号是为了清楚地示出动作和操作而提供的,并且不一定指示特定顺序或序列。

示例实施例

下面提供技术实施例的初始概览,然后稍后更详细地描述具体技术实施例。该初始概览旨在帮助读者更快地理解本技术,但不意图标识本技术的关键特征或基本特征,也不意图限制所要求保护的主题的范围。

描述了用于使得用户设备(ue)能够在无线网络中执行载波测量的技术。ue可被配置用于载波聚合(ca)并从一个或多个载波同时接收数据。换句话说,ue可以支持多个射频(rf)链或接收(rx)链,即ue可以同时接收多个频率上的数据。根据所定义的周期性,ue可以停止接收一个载波或多于一个的载波上的数据,而是针对多个不同的载波(例如,具有不同频率的小区)执行载波测量。载波测量可以包括载波间测量或载波内测量。在ue完成执行载波测量之后,ue可以继续接收该一个载波上的数据。

ue可以从网络元件接收指示ue的可能的切换时机的一个或多个切换参数。可能的切换时机可以指示这样的子帧,在该子帧期间,ue能够将射频(rf)切换到另一载波频率(或频率),以使得ue可以开始执行载波测量和/或停止执行载波测量。ue可以选择即将到来的切换时机中的一个,并且向网络元件发送指示该即将到来的切换被ue选择的切换通知。若下一切换时机由ue选择,则切换通知可以是“1”。切换通知可以与测量值一起被传送,该测量值指示ue针对其将在切换时机发生之后开始执行载波测量的所选择的载波和/或ue针对其将在切换时机发生之后停止执行载波测量的所选择的载波。因此,当切换时机发生时,ue可以切换到另一载波(例如,rf链或接收路径)或可以激活当前未被使用的载波以便执行载波测量。

呈现了对用于具有多载波能力的设备的载波测量的一般描述。具有多载波能力的设备可以是被配置用于载波聚合(ca)的用户设备(ue)。为了支持移动性场景,ue可以执行载波测量,其可以包括频率内测量和频率间测量。在3gpplte版本10中引入的载波聚合引入了可以潜在地用于改善载波测量性能的自由度,尽管这样的潜力尚未被使用。另一方面,载波聚合引入了其他特征,这些特征需要增加将由ue测量的小区的列表,这可能增加将在ue处进行的测量的数目。

可以用于改善性能的一个特征是lte无间隔测量,而不管将在被配置用于载波聚合的ue处进行的测量的数目增加。lte无间隔测量在3gpplte版本8中作为可选特征被引入。基于从ue到网络的能力信令,ue可以用信号通知网络ue是否需要测量间隔以在特定频带上执行测量。ue可以用信号通知网络是否可以在某个频带组合中无间隔地执行测量。换句话说,通过无间隔测量,即使在执行测量时,ue也可以继续接收数据。理论上,由于不需要测量间隔,网络可以不配置用于由ue指示的频带组合的任何测量间隔。通过不配置测量间隔,ue可以灵活地处理测量请求,并且可以提高吞吐量。

然而,迄今为止市场上没有商用的相关设备能够在没有对特定频带或频带组合的限制的情况下执行lte无间隔测量,因为无间隔测量在单个设备内将需要两个独立的调制解调器(例如,基带和rf)。因此,在大多数情况下,网络被强制为配置至少最小量的测量间隔。即使调制解调器中的可用接收路径支持一些无间隔测量,将这些可用接收路径切换到期望的中心频率也会导致对主服务小区的干扰(例如,pcell中断)。这些中断对于网络可能是未知的,因为当这些中断发生时,设备未用信号通知网络。此外,由于受干扰的传输时间间隔(tti)以及一些混合自动重传请求(harq)过程的损失,这些中断可能会降低网络性能。若中断是不可避免的,则网络有兴趣知道这些干扰将何时发生,以使得网络能够调整其调度。

在过去的解决方案中,ue可以根据测量间隔模式来执行载波测量,该测量间隔模式可以指示预定义时间段内的一组连续子帧,在该预定义时间段期间,ue针对所选择的小区执行载波测量。载波测量可以包括频率间和无线电接入技术(rat)间测量。所选择的小区可以在一组小区内,其中,该组中的每个小区在单独的频率层处操作,并且使用特定的测量间隔模式来测量。在一个示例中,可以测量同一频率上的多于一个的小区,在这种情况下,可以在这些间隔期间记录测量样本,然后可以利用针对小区的若干假设来离线处理测量样本。用于所选择的小区的载波测量可以是参考信号接收功率(rsrp)测量或参考信号接收质量(rsrq)测量。因此,ue可以根据测量间隔模式来针对该组小区内的所选择的小区(各自在不同的频率层处操作)执行载波测量。ue针对其执行载波测量的该组小区可以用于载波聚合或数据卸载。

在过去的解决方案中,用于利用测量间隔来执行lte测量的设备的测量处理是以网络为中心的。换句话说,ue在根据内部系统状态或功耗考虑来决定何时进行测量或测量多长时间时具有最小的灵活性。在其期间ue针对所选择的小区执行载波测量的所定义的时间段可被称为测量间隔重复时间段(mgrp)。mgrp可以是40毫秒(ms)或80ms。一个子帧可以对应于1ms,因此40ms对应于40个子帧并且80ms对应于80个子帧。因此,ue可以周期性地每40或80毫秒针对所选择的小区执行载波测量,如网络所指示的。mgrp可以基于载波测量的目的而变化。例如,若目的是为了小区标识,则ue可以每40个子帧针对第一小区执行载波测量。ue执行载波测量的时间段可以由网络确定。另一方面,若目的是为了小区测量,则ue可以每80个子帧针对第二小区执行载波测量。该组小区内的所选择的小区可以包括宏小区、微小区、微微小区、或毫微微小区。

在一个示例中,ue可以每40ms切换到不同的频率(即不同于服务小区频率的频率)6ms以执行载波测量。换句话说,ue可以每40ms中花费6ms在不同的频率(例如,频率1)处。替代地,ue可以每80ms花费6ms在另一频率中以便执行载波测量。当ue测量lte载波(例如,频率1)时,ue可以在6ms长的间隔中捕获主同步信号(pss)和辅助同步信号(sss),因为pss和sss每5ms重复一次。此外,6ms长的测量间隔包括用于信道估计的足够的小区特定参考符号。6ms长的测量间隔包括用于ue调谐到不同的lte载波(例如,频率1)并回到服务lte载波(例如,频率0)的余量。

作为示例,ue可以由在所定义的频率(例如,频率0)处操作的小区服务,但ue可以周期性地监测在其他频率层处操作的其他小区的信道质量。当ue监测另一小区的信道质量时,ue切换其频率以匹配针对其执行载波测量的小区(即ue可以将其接收器或振荡器调谐到不同的载波频率)。例如,为了针对在频率1处操作的另一小区执行载波测量,ue必须临时地将其自己的默认频率(例如,频率0)切换为频率1。当ue完成针对其他小区的载波测量时,ue可以回到默认频率(例如,频率0),或切换到与另一小区相关联的又一频率(例如,频率2)以便执行另外的载波测量。在一个示例中,其他小区可以邻近ue和/或在某些情况下由ue使用(例如,用于数据卸载)。由ue测量的信道质量可以包括参考信号接收功率(rsrp)测量和/或参考信号接收质量(rsrq)测量。rsrp和rsrq测量可以指示来自在其他频率层处操作的其他小区的信号强度。

可以通过在至少一个载波上的上行链路和下行链路数据传输中配置一些暂停,并允许ue在暂停时间段期间在该至少一个载波上执行载波测量,来促进载波测量。这类传输中的暂停时间段或间隔被称为测量间隔。在测量间隔期间,ue不在用于执行载波测量的载波上发送任何数据,ue也不发送探测参考信号(srs)、cqi/pmi/ri和harq反馈。

在过去的解决方案中,不管用于有ca能力ue的两个或更多个接收链的可用性如何,ue都不被提供确定何时以及多长时间地执行载波测量的灵活性,这可能危害性能和功耗。在一个示例中,由于对更高阶载波聚合(例如,3下行链路(dl)ca)的信令支持不足,该潜力仍未被使用。若ue被配置用于3dlca,则ue可以同时具有三个接收路径。第一接收路径可以被映射到主小区(pcell)、第二接收路径可以被映射到第一辅助小区(scell1)、以及第三接收路径可以被映射到第二辅助小区(scell2)。

在主小区(pcell)和第一辅助小区(scell1)活跃的情况下,ue可以用信号通知可以使用第三接收链来并行地测量一定量的频带。取决于scell1是否已经在同一组件或替代组件上被激活,使用第三接收链的“无间隔”测量可能或可能不会导致不希望有的pcell中断。为了避免不希望有的pcell中断,所有接收链可以保持活跃。然而,这仅在预先知道要测量的频带时才可能,并且该配置还导致功耗的不可容忍的增加。

无间隔频率间(或rat间)测量的机会可能相对较小。给定某一频带组合,若待测量的单个频带未被包括在准备好进行无间隔测量的频带的列表中,则需要测量间隔,即实际无间隔测量机会的数量可能相对较小。此外,当在某些载波组合条件下仅部分频带可以被无间隔地测量时,不存在信令支持。若ca与lte-lte双卡双通(dsda)或lte-lte双卡双待(dsds)相结合,则网络能够支持无间隔测量,但相关的接收链可能正在使用,从而可能是不可用的。如下面进一步详细解释的,若测量间隔处理是以设备为中心的而不是以网络为中心的,则可以减轻这些问题。

本文描述的技术在有多载波能力的ue中提供了关于测量间隔的以设备为中心的配置和实现方式。不同于网络确定用于ue的某一测量时间段和间隔长度(例如,每80ms中的6ms),网络可以经由从网络到ue的信令来向ue提供切换机会。例如,网络可以向ue指示切换机会每隔四个子帧地发生。换句话说,ue可以决定(与网络相对比)ue是否应该利用切换机会来开始或停止执行载波测量。ue可以经由从ue到网络的信令来向网络通知ue计划使用哪些切换机会。此外,ue可以向网络通知在切换机会出现之后将由ue测量的特定项,其中,接收链可以被映射到pcell或一个或多个scell。替代地,ue可以决定不利用切换机会,在这种情况下,ue不向网络发送任何信令。

本文描述的技术提供了执行载波测量的以设备为中心的方法,其可以允许ue最优地管理其可用资源并确定测量和吞吐量性能之间的理想平衡。以网络为中心的方法可以利用有ca能力的设备的灵活性。具体地,当用于ue的活跃载波的数目小于可用接收路径的数目时,这些可用接收路径可以用于执行测量而不是保持空闲。例如,若ue具有三个rf链,并且两个rf链正在接收数据(从pcell和scell)而第三rf链空闲,则第三rf链可以用于针对一个或多个小区来执行测量。由于对切换机会的明智使用以及ue和网络之间新定义的通信协议,可以将对pcell的影响最小化。此外,网络可以被通知可能的中断,并且能够在这些中断周围进行调度。

关于性能,本文描述的新颖的信令使得ue能够确定使用哪个切换机会,或者是否不应该使用特定切换机会。基于ue的选择使用哪些切换机会的能力,ue可以利用期望的测量频率来自由地配置所需的测量间隔。因此,可以满足与更异构的网络结构(即hetnet、小小区、家庭enodeb)相关联的性能标准。

在示例性部署场景中,必须确保宏覆盖,并且同时,需要‘测量’多个小小区以在可能的情况下实现卸载。对于覆盖和卸载的测量要求通常相当不同。对于小小区发现,与基于覆盖的切换相比将相对经常地执行测量,并且这些测量可以被认为是一种背景活动。此外,与用于宏覆盖的测量相比,对小区卸载的延迟要求可以更加放松。

本文描述的技术具有灵活性来为小小区发现提供足够的间隔,并且同时,在ue到达覆盖的边缘时实现用于切换的延迟敏感的覆盖层测量。

作为示例,将监测给定层(例如,小小区层)或3到4个小区的频率。可以存在两个pss/sss检测尝试和六个测量间隔(或采样机会),这产生总共八个6ms的间隔用于适当的性能精度。在过去的解决方案中,对于单个频率,该测量过程可以在7×40+6ms=286ms或者7×80+6ms=566ms之后准备好。若每载波/层的载波或小区的数目增加,则这些间隔变得甚至更大,引入载波聚合和部署异构网络通常就是这样。

相反,本文描述的技术可以允许将测量分布在更多rf链上并且并行地进行测量,这可以将上述间隔减小到8×6ms=48ms+2个1ms的短间隔,以在该具体示例中实现pcell接收的受控中断为每层/频率总共50ms,这产生大约83%的速度提升。取决于ue是2caue还是3caue,以及是仅pcell活跃还是scell也被接收,具有性能改善的另外的配置是可能的(具有不同的所得到的持续时间)。在该解决方案中,6ms测量间隔可以被1ms的短间隔代替(若期望lte后向兼容性)。替代地,基于具有减少的延迟的5g帧结构,6ms的测量间隔可以被甚至低于1ms的短间隔代替。短间隔可用于接通/关闭其他可用接收路径,而针对某一频率层的测量在两个短间隔之间的时间间隔内正在进行,其中,间隔的持续时间可以取决于待监测的小区的数目。

图1是描绘使得用户设备(ue)110能够在无线网络中执行载波测量的ue110和网络元件120之间的信令的流程。网络元件120可以包括:无线电基站、演进节点b(enb)、移动性管理实体(mme)、远程无线电头部(rrh)、中继节点、毫微微基站(或毫微微节点)、微微基站(或微微节点)、或无线网络中的其它适当的节点。ue110可以被配置为支持载波聚合(ca)。在载波聚合中,ue110可以同时从多个频带或小区接收信号。可以使用载波聚合来增加带宽,从而增加比特率。换句话说,ue110可以支持连续带内ca配置或带间ca配置中的两个或更多个载波的同时接收(即ue110可以在不同的rf频率处接收数据)。

为了覆盖或卸载的目的,ue110可以在无线网络中针对所选择的小区执行载波测量。每个所选择的小区可以在不同的频率层处操作。载波测量可以在不同的频带上或在同一频带中。若它们在同一频带上并且待测量的两个不同的载波相距不太远(例如,限制在20mhz内),则可以在不重新调谐的情况下测量两个载波。当ue110将其本地振荡器调谐到不同的频率时,可以执行频率间测量,并且ue110测量不同的频率。例如,ue110可以接收频率1(f1)上的数据,并然后测量频率2(f2),其中,f2与f1不同。当ue110停留在同一频率上时,可以执行频率内测量。例如,ue110可以在同一频率上但针对具有不同id的小区来执行频率内测量。

在一个示例中,ue110可以对可用于切换目的的潜在小区执行载波测量。基于由载波测量指示的小区的各种参数(例如,小区的信噪比(snr)),ue110可以决定哪个小区应该是切换期间的目标小区。另一小区可以在不同的频率或频带上操作。ue110可以基于在ue110处从较高层接收到的频率和频带的列表来执行测量。为了执行载波测量,ue110可以将其振荡器调谐到不同的频率并测量该特定频率。

在一个示例中,在ue110处执行的载波测量可以是移动性测量或辅小区测量。载波测量可以包括rat内测量,这可以在ue110搜索全球移动通信系统(gsm)或3g/4g/5g小区时发生,因为ue110的lte覆盖结束。此外,载波测量可以用于5g网络中的其他测量目的。例如,载波测量可以用于检测自主网、设备到设备(d2d)网络中的干扰、检测对频谱的共享接入的违反等。

由于ue110被配置用于载波聚合,因此ue针对其执行载波测量的载波可以包括主小区和多个辅助小区(例如,四个辅助小区)。作为非限制性示例,ue110可以通过载波聚合连接到主小区(pcell)、第一辅助小区(scell1)和第二辅助小区(scell2)。ue110可以在pcell和scell1上接收数据,并且使用scell2来执行载波测量。作为另一示例,ue110可以在pcell上接收数据,并且在scell1和scell2上执行载波测量。

网络元件120可以向ue110发送一个或多个切换参数。切换参数可以指示用于ue110的可能的切换时机,其中,可能的切换时机可以是子帧,在该子帧期间,ue110能够切换到一个或多个载波以便开始执行载波测量或停止执行载波测量。作为对子帧的替代,切换时机可以在某些帧或时隙处发生。换句话说,在切换时机处,ue100可以切换rf链或接收路径以便执行载波测量。例如,在特定切换时机期间,ue110可以针对pcell、scell1和/或scell2上的所选择的(一个或多个)小区开始执行载波测量。在另一切换时机处,ue110可以针对pcell、scell1和/或scell2上的所选择的(一个或多个)小区停止执行载波测量。因此,ue110可以最终决定何时执行载波测量以及执行载波测量的频率,与如先前的解决方案中网络元件120指示ue110何时执行载波测量以及ue110执行载波测量的频率相反。基于该灵活性,ue110可以确定使用特定切换时机还是不使用特定切换时机,以便优化ue110处的性能和功耗。

为了通知ue110可能的切换时机,网络元件120可以将切换参数发送到ue110。切换参数可以指示相对于系统帧编号的时间段和偏移,从而指示可能的切换时机何时发生。从网络元件120被发送到ue110的切换参数可以包括测量间隔时间段,其可以指示可能的切换时机发生的周期或频率。测量间隔时间段的范围可以是从4个子帧到127个子帧。从网络元件120被发送到ue110的切换参数可以包括测量间隔偏移,其可以指示相对于系统帧编号的偏移。测量间隔偏移的范围可以是从0个子帧到126个子帧。基于测量间隔时间段和测量间隔偏移,网络元件120可以通知ue110切换通知在何处发生以及它们重复的频率。作为非限制性示例,网络元件120可以通知ue110切换通知从帧1的子帧编号1开始每隔四个子帧地发生。

在一个示例中,从网络元件120被发送到ue110的切换参数可以包括测量提前(measurementadvance),其可以指示ue110在使用特定切换时机之前提前多少个子帧来通知网络元件120。基于多个原因,测量提前的范围可以是从8个子帧到80个子帧。例如,若存在所涉及到的具有保证服务质量(qos)的比特率的较大下游或上游,则网络调度器度量可能需要额外的时间来补偿增加的负载。在这种情况下,网络元件120可以将ue110正在使用的一个或多个载波设置为“未准备好调度”。调度是网络元件120通过其来决定哪些ue应该被给予资源以发送或接收数据的过程。因此,在下一切换时机之前至少8ms的预通知或测量提前是期望的,以使得网络元件120有机会拒绝ue的指示的切换时机(至少暂时地),直到调度拥塞已经被缓解为止。在另一示例中,测量提前可以在8个子帧和80个子帧之间,以便在存在lte语音(volte)不连续接收(drx)和/或半持续调度(sps)模式的情况下允许面向服务和/或面向配置的通知范围。切换时机和通知范围都适用于drx和/或sps模式。在这种情况下,可能期望具有每20ms或40ms的切换时机,以及高达80ms的预警或测量提前。

在一个配置中,切换参数(即测量间隔时间段、测量间隔偏移和测量提前)可以以半静态方式来编程。例如,当ue110进入无线网络中的小区的覆盖区域时,切换参数可以被定义并传送给ue110。在一个示例中,网络元件120可以经由无线电资源控制(rrc)信令将指示可能的切换时机的一个或多个切换参数发送到ue110。基于切换参数,ue110可以知道切换时机何时可用。

在一个示例中,ue110可以使用切换时机来切换到当前未用于数据接收的接收路径,以便使用该接收路径来针对一个或多个载波执行载波测量。即使ue110可以被配置用于载波聚合,ue110可能也不会总是在多个接收链上接收数据。可能存在ue110在单个载波(或单个接收路径)上接收数据的时间,使得其他载波或接收路径未使用或空闲。因此,ue110可以使用未使用的(一个或多个)接收路径来执行载波测量。通常,针对非常特定的频带组合,在同一时间可能仅使用由ue110支持的三个或四个不同的载波。

作为非限制性示例,ue110可以连接到主小区(pcell)和辅助小区(scell1)。ue110可以在pcell上接收数据,但不能在scell1上接收数据。换句话说,与scell1相关联的接收路径当前未用于数据接收。因此,为了卸载目的,ue110可以使用scell1来针对多个其他小区执行载波测量。例如,当ue110正在pcell上接收数据时,ue110可以使用将与scell1相关联的另一接收路径来针对f2、f3和f4执行载波测量(例如,频率测量)。

在一个配置中,ue110可以向网络元件120发送切换通知,该切换通知指示由ue选择的即将到来的切换时机。换句话说,ue110可以向网络元件120通知ue110计划使用下一切换时机以执行载波测量。例如,切换通知可以是“1”以指示ue110计划使用下一切换时机。如前所述,ue110可以在所选择的切换时机发生之前大约8个子帧处发送切换通知。在一个配置中,ue110可以经由无线电资源控制(rrc)信令来将切换通知发送到网络元件120。在替代配置中,ue110可以在上行链路中使用介质访问控制(mac)控制元件(ce)、或通过在phy层上发送切换通知来将切换通知发送到网络元件120。

在一个配置中,从ue110被传送到网络元件120的切换通知可以结合测量值来发送,该测量值指示ue针对其将在切换时机发生之后开始执行载波测量的所选择的载波。此外,该测量值可以指示ue针对其将在切换时机发生之后停止执行载波测量的所选择的载波。该测量值还可被称为测量位图。基于测量值,网络元件120可以了解ue110正在如何使用切换时机(即在切换时机发生之后,ue计划测量或停止测量哪些(一个或多个)小区)。图2提供了测量值的具体示例。

在一个配置中,切换通知可以经由rrc信令从ue110被发送到网络元件120。在这种情况下,测量提前可能由于rrc重新配置延迟而大于8ms。在替代配置中,ue110可以经由介质访问控制(mac)控制元件(ce)来将切换通知发送到网络元件120。若使用macce来发送切换通知,则不需要允许rrc重新配置延迟,并且网络元件120可以在4ms的最小ue到enb通信延迟内作出反应。因此,在这种情况下,测量提前可以小于8ms。

在一个配置中,为了使ue110通知网络元件120关于各个切换时机的使用(即经由测量值),ue110可以向网络元件120发送一组nca位,其中,这些nca位包括描述ue对下一切换时机的使用的测量值。在一个示例中,nca可以指ue110所支持的载波的数目。例如,若ue110支持3-ca,则nca可以等于3。此外,基于测量值,每个位可被设置为“1”或“0”。图2提供了nca位和相应的测量值的具体示例。若下一切换时机将不被ue110使用,则ue110不需要用信号通知网络元件120关于切换时机的任何内容。

在一个示例中,从ue110到网络元件120的切换通知的信令不是半静态的,而是由ue110动态地决定。因此,若上行链路(ul)授权可用,则ue110可以经由物理上行链路控制信道(pucch)或物理上行链路共享信道(pusch)来用信令发送切换通知。具体地,可以使用新定义的pucch格式或使用pusch来发送与测量值相结合发送的切换通知。

在一个示例中,若ul授权可用,则可以在pusch上而不是pucch上从ue110发送所有控制ul信息。类似地,包括测量值的附加nca位(例如,5个nca位)可以被映射到pusch,并且在上行链路中进行发送。若测量值在pusch上被发送到网络元件120,则需要一个附加有效位来指示在pusch中保留的nca=5个位是有效的。替代地,包括测量值的nca位可以使用新定义的pucch格式被发送到网络元件120。在一个示例中,新定义的pucch格式或pusch中的有效位仅在ue110向网络元件120发送测量值时被设置,并且仅在对应于网络元件120所指示的切换时机的那些子帧中进行设置。

在一个配置中,ue110可以向网络元件120发送切换通知,并且作为响应,网络元件120可以向ue110发送拒绝消息。换句话说,网络元件120可以禁止ue110使用所指示的切换时机来切换载波以便开始或停止执行载波测量。换句话说,拒绝消息可以指示,ue110由于调度拥塞而被禁止在所指示的切换时机发生时切换载波。网络元件120可能由于无线网络中的调度拥塞(或其他类型的拥塞)而向ue110发送拒绝消息。网络元件120可以经由介质访问控制(mac)控制元件(ce)、或通过在phy层上发送切换通知来将拒绝消息发送到ue110。

在一段时间之后,网络元件120可以检测网络拥塞何时已经减少。网络元件120可以向ue110发送通知,其指示网络拥塞已经减少,并且ue110现在被允许向网络元件120发送切换通知。网络元件120可以使用额外的macce、或通过在phy层上发送通知、或通过rrc信令来发送通知。基于ue110从网络元件120接收到通知,ue110可以向网络元件120发送额外的切换通知。换句话说,仅在ue110接收到指示ue110被允许再次重新开始切换时机的通知之后,ue110才可以向网络元件120发送另一切换通知。

图2示出了测量值的示例性表格,这些测量值可以从用户设备(ue)被传送到网络元件,以指示ue针对其将在切换时机发生之后开始或停止执行载波测量的所选择的载波。测量值可以与切换通知相组合,并且可以从ue被发送到enb。ue可以计划执行对应于所指示的切换时机(例如,在ue将切换通知发送到网络元件之后8个子帧)的测量值中所指示的载波测量。测量值还可被称为测量位图。在一个配置中,ue可以是3caue,这表示ue被配置用于载波聚合(ca)并且可以同时连接到多达三个载波。例如,ue可以连接到主小区(pcell)、第一辅助小区(scell1)和第二辅助小区(scell2)。替代地,ue可以同时连接到少于三个的载波;在带内连续载波聚合的特定情况下,ue还可以连接到多于三个的载波。

如图2所示,测量值0可以指示停止针对scell2、scell1和pcell的任何活跃路径上的测量。测量值0可以使用“0”、“0”和“0”的三个nca位来传送。测量值1可以指示仅开始pcell上的测量。测量值1可以使用“0”、“0”和“1”的三个nca位来传送。测量值2可以指示仅开始scell1上的测量,并且停止scell2上的测量(若活跃)。测量值2可以使用“0”、“1”和“0”的三个nca位来传送。测量值4可以指示仅开始scell2上的测量,并且停止scell1上的测量(若活跃)。测量值4可以使用“1”、“0”和“0”的三个nca位来传送。测量值6可以指示开始scell1和scell2上的测量。测量值6可以使用“1”、“1”和“0”的三个nca位来传送。测量值7可以指示开始pcell、scel1l和scell2上的测量。测量值7可以使用“1”、“1”和“1”的三个nca位来传送。

图3示出了物理上行链路控制信道(pucch)格式的示例性表格,这些pucch格式可以由用户设备(ue)用来向诸如演进节点b(enb)之类的网络元件传送切换通知。切换通知可以与测量值相组合,该测量值指示ue针对其将在切换时机发生之后开始执行载波测量的所选择的载波和/或ue针对其将在切换时机发生之后停止执行载波测量的所选择的载波。在一个示例中,测量值可以是五个位(即nca=5),这指示ue支持经由载波聚合同时连接到五个单独的载波(例如,主小区和多达四个辅助小区)。

在一个示例中,ue可以使用pucch格式1c来将测量值发送到网络元件。pucch格式lc可以是总共7个位。除了混合自动重传请求(harq)确认(ack)和调度请求之外,pucch格式1c还可用于发送测量值(或测量位图)。在另一示例中,ue可以使用pucch格式2c来将测量值发送到网络元件。pucch格式2c可以是总共27个位。除了信道状态信息(csi)和harq-ack之外,pucch格式2c还可用于发送测量值(或者测量位图)。在又一示例中,ue可以使用pucch格式3a来将测量值发送到网络元件。pucch格式3a可以是总共53个位。除了csi、harq-ack和调度请求之外,pucch格式3a还可用于发送测量值(或测量位图)。

图4示出了用于用户设备(ue)的示例性载波测量和数据接收模式。网络可以以短间隔的形式向ue提供切换时机。作为示例,无线电基站或演进节点b(enb)可以向ue提供切换通知。切换时机可以每x个子帧地发生并且具有y毫秒的持续时间,其中,x和y是整数。这些短间隔使ue能够接通或关闭某些接收路径(或rf链)。尽管在切换时机期间可能发生干扰,但网络可以提前知道干扰并进行相应地调度。在一个示例中,网络可以经由无线电资源控制(rrc)信令来配置切换时机。如前所述,网络可以通过向ue发送各种参数(例如,测量间隔时间段、测量间隔偏移和测量提前)来配置切换时机。

在图4所示的示例中,ue可以是1-caue。换句话说,ue可以具有单个接收路径(即rx路径1)。ue可以连接到单个载波,例如,主小区(pcell),并且从该单个载波接收数据。切换时机可以每四个子帧(或4ms)地发生并且具有1个子帧(或1ms)的持续时间。因此,网络可以配置4个子帧的重复时间段。此外,网络可以配置1个子帧的偏移,因为第一切换子帧在帧#0的子帧#1中发生。只要这些切换时机未被ue使用,就可以保持连续的pcell接收(即在传输中不存在间隔)。

若ue期望执行rf切换(即切换到不同的载波或rf链)以便执行载波测量,则ue可以向网络发送切换通知,该切换通知指示ue计划用于执行载波测量的即将到来的切换时机。ue可以根据先前从网络接收到的测量提前来提前通知网络切换时机何时发生。换句话说,ue可以向网络发送指示ue所选择的切换时机的预警。网络先前可能已经基于网络调度器的约束配置了测量提前(例如,8个子帧)。作为示例,若ue向网络发送切换通知,则ue可以计划使用与用于发送切换通知的子帧相比在时间上大约8个子帧之后发生的切换时机。在ue正在切换载波或rf链的子帧期间(即在切换时机处),网络不调度到ue的任何下行链路(dl)流量。

在一个示例中,测量提前或者预警时间足够大以允许网络提前若干子帧来停止调度ue,这可以避免在切换子帧周围的混合自动重传请求(harq)过程的损坏。如图4所示,其中由于harq过程损坏而没有dl流量可以被调度的dl子帧可能在切换时机之间发生(例如,大约每8个子帧)。在一个示例中,若ue被调度为在子帧n中接收dl数据,则ue可以在子帧(n+4)中的上行链路中发送ack或nack,以使得基站知道ue已经正确地解码dl数据。如图4所示,若网络知道ue将使用帧#0、子帧#9中的切换时机,则ue不能在该子帧中的上行链路中发送ack/nack信息。因此,在帧#0、子帧#5中,网络可以不将dl数据调度到ue,因为ack/nack信息不能被发送到网络。

在一个示例中,ue具有可用的单个接收路径(即映射到pcell的单个接收路径),因此在执行载波测量时,ue将不得不中断接收路径上的任何dl业务。ue可以坚持8个子帧的测量提前时间(或预警时间)。换句话说,ue将在执行切换活动之前的至少8个子帧处向网络指示任何切换活动。除了指示ue使用哪些切换机会之外,ue还可以通知网络ue计划如何使用切换时机。例如,ue可以向网络发送测量值或测量位图,其指示将在切换时机发生之后执行哪些载波测量。该指示允许网络确定是否在测量时间段期间中断特定接收路径上的ue的dl数据,因为ue(而不是网络)决定ue在多少内部接收链上执行测量,以及测量将执行多长时间。这与先前的解决方案相反,在先前的解决方案中,网络指定在ue处执行的载波测量。

如图4所示,ue可以在接收路径(例如,映射到pcell的接收路径)上接收数据。在帧#0的子帧#1中,ue可以向网络发送切换通知连同测量值1。测量值1可以指示ue在下一可能的切换时机将开始在接收路径上执行测量。下一可能的切换时机与测量提前一致,因此在这种情况下,切换时机在8个子帧之后发生。在切换时机(即帧#0的子帧#9)处,ue切换到另一载波频率,此时,ue可以以第一频率(f1)开始执行频率间测量。例如,f1可以与第一小区相关联。ue在切换时机期间不接收数据。ue可以使用pcell接收链来执行测量。基于8个子帧的测量提前,ue可以在ue开始将rf切换到第一频率(f1)之前的8个子帧处将测量值发送到网络。

ue可以花费4个子帧来执行针对f1的测量。ue可以在完成针对f1的测量之后测量第二频率(f2)。f2可以与第二小区相关联。在这种情况下,ue可以在不切换rf的情况下执行针对f2的测量。因此,ue不向网络指示任何切换活动。ue可以花费4个子帧来执行针对f2的测量。

在针对f1的测量完成时,ue可以向网络发送另一切换通知连同测量值1。测量值1可以指示,在8个子帧中,ue计划使用即将到来的切换时机以便在pcell上开始测量。该测量可以对应于第三频率(f3)。f3可以与第三小区相关联。在该示例中,为了测量f3,ue需要在切换时处切换rf,因此在执行针对f3的测量之前向网络指示该切换活动。在ue测量f3之后,在ue处不调度另外的测量任务。ue可以发送另一切换通知连同测量值0,其指示ue希望在任意活跃路径上停止执行测量。此时,网络可以继续在接收路径上调度用于ue的dl数据。然而,ue可能必须等待一段时间直到下一可用切换时机为止(在此期间不执行测量活动),以便继续在接收路径上接收dl数据。ue可以在将测量值0发送到网络之后的大约8个子帧处切换回在接收路径上接收dl数据。

图5示出了用于被配置用于载波聚合(ca)的用户设备(ue)的示例性载波测量和数据接收模式。在该示例中,ue可以是3-caue。换句话说,ue可以连接到第一接收路径(即rx路径1)、第二接收路径(即rx路径2)和第三接收路径(即rx路径3)。在一个示例中,第一接收路径可以被映射到主小区(pcell)、第二接收路径可以被映射到第一辅助小区(scell1)、以及第三接收路径可以被映射到第二辅助小区(scell2)。ue可以在第一接收路径(其被映射到pcell)上接收数据并执行scell1和scell2辅助小区测量。切换时机可以每四个子帧(或4ms)地发生并具有1个子帧(或1ms)的持续时间。

ue可以确定第一接收路径上的dl数据是否被中断了在第二接收路径和第三接收路径上所执行的测量的持续时间。在这种情况下,ue可以确定在第二接收路径和第三接收路径上执行测量,而在测量期间不中断第一接收路径数据接收(即pcell数据接收)。因此,除了与harq过程损坏一致的切换时机和子帧之外,ue可以在pcell上连续地接收dl数据。

ue可以向网络(例如,无线电基站)发送切换通知连同测量值6,其指示ue计划在第二接收路径(对应于scell1)和第三接收路径(对应于scell2)上并行地开始执行测量。ue可以在发送切换通知之后的8个子帧后开始执行测量。ue可以并行地执行针对第一频率(f1)和第三频率(f3)的测量,其中,f1与第一小区相关联并且f3与第三小区相关联。ue可以在第二接收路径(对应于scell1)上测量f1,并且ue可以在第三接收路径(对应于scell2)上测量f3。在测量f1和f3之后,ue可以切换rf以在第二接收路径(对应于scell1)上测量第二频率(f2),其中,f2与第二小区相关联。在测量f2之前,ue可以发送测量值2,其指示ue计划开始在第二接收路径(对应于scell1)上执行f2测量,并且ue计划停止在第二接收路径(对应于scell1)(若该路径活跃)上执行f1测量。

在该示例中,假设由于前端限制而不能与f2并行地测量第四频率(f4)。f4可以与第四小区相关联。因此,在第二接收路径(其对应于scell1)上测量f2之后,ue切换其rf,以使得ue能够在第三接收路径(其对应于scell2)上测量f4。在测量f4之前,ue可以发送测量值4,其指示ue计划开始针对f4在第三接收路径上执行测量(即ue计划开始测量f4),并且ue计划停止针对f2(若活跃)在第二路径上执行测量(即ue计划停止测量f2)。在ue测量f4之后,ue可以发送测量值0(在下一切换时机之前8ms)以指示ue已经完成执行测量(即ue计划停止在任意活跃路径上执行测量)。

图6示出了用于被配置用于载波聚合(ca)的用户设备(ue)的示例性载波测量和数据接收模式。在该示例中,ue可以是3-caue。换句话说,ue可以连接到第一接收路径(即rx路径1)、第二接收路径(即rx路径2)和第三接收路径(即rx路径3)。在一个示例中,第一接收路径可以被映射到主小区(pcell)、第二接收路径可以被映射到第一辅助小区(scell1)、以及第三接收路径可以被映射到第二辅助小区(scell2)。因此,ue可以连接到pcell和scell1,而第三接收路径是“空闲的”并且未连接到任何scell。或者,ue被连接到pcell和两个辅助小区,但在绑定到scell2的接收路径上当前不存在数据接收。在这两种情况下,“空闲的”(一个或多个)接收路径可以用于执行载波测量。切换时机可以每四个子帧(或4ms)地发生并具有1个子帧(或1ms)的持续时间。

在该示例中,ue可以在第一接收路径(对应于pcell)和第二接收路径(对应于scell1)上接收dl数据。ue可以向网络发送切换通知连同测量值4,其指示ue计划开始在第三接收路径(或scell2)上执行测量,并且停止在第二接收路径(或scell1)(若活跃)上执行测量。然而,在这种情况下,用于scell1的接收路径在切换通知被发送到网络时未执行测量。因此,ue可以针对第一频率(f1)执行测量。在f1被测量之后,ue可以在下一可能的切换时机切换rf,并然后针对第二频率(f2)执行测量。在f2被测量之后,ue可以在下一可能的切换时机切换rf,并然后针对第三频率(f3)执行测量。f1、f2和f3可以分别与第一小区、第二小区和第三小区相关联。ue可以在绑定用于scell2的接收路径上执行针对f1、f2和f3的所有测量。ue还可以在开始针对f2和f3的测量之前向网络发送测量值4。

在该示例中,与第四小区相关联的第四频率(f4)不能与scell1上的数据接收相结合来进行测量(例如,由于前端限制)。因此,ue需要在用于scell1的接收路径上测量f4。在ue针对f4执行测量之前,ue可以用信号通知网络在帧#2期间中断第二接收路径(或scell1)上的数据接收。例如,ue可以发送测量值2,其指示ue计划开始在当前绑定到scell1的接收路径上执行测量(即ue计划开始测量f4),并且ue计划停止在当前绑定到scell2(若活跃)的接收路径上执行测量(即ue计划停止测量f3)。ue可以在用于scell1的接收路径上执行针对f4的测量,并然后通过向网络发送测量值0来用信号通知网络继续在绑定到scell1的接收路径上的dl流量。

如先前解释的,测量值可以由n位组成,其中,n是整数。每个位可以是“1”或“0”,其中,“1”指示特定分量载波(例如,pcell或scellx)用于测量,并且“0”指示特定分量载波未用于测量。若第n个位被设置为0,则网络可以或可以不在该特定dl载波上调度dl流量。在一个示例中,测量值可以结合切换通知在ul中被传送到网络。切换通知可以是“0”或“1”以指示下一可能的切换时机是否将被ue使用。在一些情况下,ue可以仅发送切换通知“1”。换句话说,若ue未计划使用即将到来的切换时机,则ue不必向网络发送消息。

另一示例提供了可操作来在无线网络中执行载波测量的用户设备(ue)的功能700,如图7中的流程图所示。功能可被实现为方法,或功能可以作为机器上的指令来执行,其中,指令被包括在至少一个计算机可读介质或一个非暂态机器可读存储介质上。ue可以包括被配置为从网络元件接收一个或多个切换参数的一个或多个处理器,该一个或多个切换参数指示用于ue的可能的切换时机,其中,ue被配置为在可能的切换时机期间将射频(rf)切换到另一载波频率,以便开始执行载波测量或停止执行载波测量,如框710。ue可以包括被配置为向网络元件发送切换通知的一个或多个处理器,该切换通知指示即将到来的切换时机被ue选择,其中,切换通知与测量值相结合被发送,该测量值指示下列项中的一项或多项:ue针对其将在切换时机发生之后开始执行载波测量的所选择的载波、或ue针对其将在切换时机发生之后停止执行载波测量的所选择的载波,如框720。

在一个示例中,从网络元件接收到的一个或多个切换参数包括测量间隔时间段、测量间隔偏移、或测量提前参数。在一个示例中,该一个或多个处理器被配置为经由无线电资源控制(rrc)信令来从网络元件接收指示可能的切换时机的一个或多个切换参数。在一个示例中,该一个或多个处理器被配置为在ue进入无线网络中的小区的覆盖区域时,从网络元件接收指示可能的切换时机的一个或多个切换参数。

在一个示例中,该一个或多个处理器被配置为在上行链路中使用介质访问控制(mac)控制元件(ce)来将切换通知从ue发送到网络元件。在一个示例中,该一个或多个处理器被配置为经由无线电资源控制(rrc)信令来将切换通知从ue发送到网络元件。在一个示例中,该一个或多个处理器被配置为使用所定义的物理上行链路控制信道(pucch)格式或物理上行链路共享信道(pusch)来在上行链路中将切换通知从ue发送到网络元件。

在一个示例中,载波测量包括载波间测量或载波内测量。在一个示例中,ue被配置用于载波聚合,并且ue在至少一个并且可能多个接收路径上针对载波执行载波测量。在一个示例中,ue使用切换时机来切换到当前未用于数据接收的接收路径,以便使用该接收路径来针对一个或多个载波执行载波测量。

在一个示例中,该一个或多个处理器还被配置为:响应于从ue被发送到网络元件的切换通知,经由介质访问控制(mac)控制元件(ce)从网络元件接收拒绝消息,其中,该拒绝消息禁止ue使用切换通知中所指示的切换时机,其中,该拒绝消息在网络元件处的调度拥塞期间在ue处被接收。在一个示例中,该一个或多个处理器还被配置为:在调度拥塞已经减少之后从网络元件接收通知,该通知指示ue被允许选择切换时机;以及向网络元件发送额外的切换通知。

另一示例提供了可操作来辅助用户设备(ue)在无线网络中执行载波测量的无线电基站的功能800,如图8中的流程图所示。功能可被实现为方法,或功能可以作为机器上的指令来执行,其中,指令被包括在至少一个计算机可读介质或一个非暂态机器可读存储介质上。无线电基站可以包括被配置为向ue发送一个或多个切换参数的一个或多个处理器,该一个或多个切换参数指示用于ue的可能的切换时机,其中,ue被配置为在可能的切换时机期间将射频(rf)切换到另一载波频率,以便开始执行载波测量或停止执行载波测量,如框810。无线电基站可以包括被配置为从ue接收切换通知的一个或多个处理器,该切换通知指示即将到来的切换时机被ue选择,其中,切换通知与测量值相结合地被接收,该测量值指示下列项中的一项或多项:ue针对其将在切换时机发生之后开始执行载波测量的所选择的载波、或ue针对其将在切换时机发生之后停止执行载波测量的所选择的载波,如框820。

在一个示例中,该一个或多个处理器还被配置为:向ue发送拒绝消息,该拒绝消息指示ue由于调度拥塞而被禁止在切换时机发生时在载波之间进行切换,其中,该拒绝消息经由介质访问控制(mac)控制元件(ce)被发送到ue;以及在网络拥塞已经减少并且ue现在被允许向无线电基站发送切换通知时,经由额外的macce向ue发送额外的消息。

在一个示例中,该一个或多个处理器被配置为经由无线电资源控制(rrc)信令向ue发送指示可能的切换时机的一个或多个切换参数。在一个示例中,该一个或多个处理器被配置为在ue进入无线网络中的小区的覆盖区域时,将指示可能的切换时机的一个或多个切换参数发送到ue。

在一个示例中,该一个或多个处理器被配置为经由介质访问控制(mac)控制元件(ce)来从ue接收切换通知。在一个示例中,该一个或多个处理器被配置为经由无线电资源控制(rrc)信令来从ue接收切换通知。在一个示例中,该一个或多个处理器被配置为经由物理上行链路控制信道(pucch)或物理上行链路共享信道(pusch)来从ue接收切换通知。

另一示例提供了至少一个非暂态机器可读存储介质的功能900,该至少一个非暂态机器可读存储介质具有体现在其上的用于在用户设备(ue)处执行载波测量的指令。当被执行时,这些指令可以使得ue执行使用ue的至少一个处理器来从网络元件接收一个或多个切换参数,该一个或多个切换参数指示用于ue的可能的切换时机,其中,ue被配置为在可能的切换时机期间将射频(rf)切换到另一载波频率,以便开始执行载波测量或停止执行载波测量,如框910。当被执行时,这些指令可以使得ue执行使用ue的至少一个处理器来向网络元件发送切换通知,该切换通知指示即将到来的切换时机被ue选择,其中,切换通知与测量值相结合地被发送,该测量值指示下列项中的一项或多项:ue针对其将在切换时机发生之后开始执行载波测量的所选择的载波、或ue针对其将在切换时机发生之后停止执行载波测量的所选择的载波,如框920。

在一个配置中,该至少一个非暂态机器可读存储介质可以包括指令,该指令当由ue的至少一个处理器执行时,执行以下操作:经由无线电资源控制(rrc)信令从网络元件接收一个或多个切换参数,该一个或多个切换参数指示可能的切换时机,其中,该一个或多个切换参数包括测量间隔时间段、测量间隔偏移、或测量提前参数。

在一个配置中,该至少一个非暂态机器可读存储介质可以包括指令,该指令当由ue的至少一个处理器执行时,执行以下操作:使用介质访问控制(mac)控制元件(ce)或经由无线电资源控制(rrc)信令向网络元件发送切换通知。在一个示例中,ue使用切换时机来切换到当前未用于数据接收的接收路径,以便使用该接收路径来针对一个或多个载波执行载波测量。

图10提供了无线设备的示例图示,例如,用户设备(ue)、移动站(ms)、移动无线设备、移动通信设备、平板电脑、手机、或其他类型的无线设备。无线设备可以包括被配置为与下列项进行通信的一个或多个天线:节点、宏节点、低功率节点(lpn)、或诸如基站(bs)之类的传输站、演进节点b(enb)、基带单元(bbu)、远程无线电头部(rrh)、远程无线电设备(rre)、中继站(rs)、无线电设备(re)、或其他类型的无线广域网(wwan)接入点。无线设备可以被配置为使用至少一个无线通信标准来进行通信,包括3gplte、wimax、高速分组接入(hspa)、蓝牙和wifi。无线设备可以使用用于每个无线通信标准的单独的天线或用于多个无线通信标准的共享天线来进行通信。无线设备可以在无线局域网(wlan)、无线个域网(wpan)、和/或wwan中进行通信。

图10还提供了可用于来自无线设备的音频输入和输出的麦克风和一个或多个扬声器的图示。显示屏可以是液晶显示器(lcd)屏或其他类型的显示屏,例如,有机发光二极管(oled)显示器。显示屏可被配置为触摸屏。触摸屏可以使用电容式、电阻式、或其他类型的触摸屏技术。应用处理器和图形处理器可被耦合到内部存储器以提供处理和显示能力。还可以使用非易失性存储器端口来向用户提供数据输入/输出选项。还可以使用非易失性存储器端口来于扩展无线设备的存储能力。键盘可以与无线设备相集成、或无线地连接到无线设备以提供额外的用户输入。还可以使用触摸屏来提供虚拟键盘。

各种技术或其一些方面或部分可以采取体现在有形介质中的程序代码(即指令)的形式,有形介质例如软盘、cd-rom、硬盘驱动器、非暂态计算机可读存储介质、或任意其他机器可读存储介质,其中,当程序代码被加载到机器(例如,计算机)中并且由机器执行时,机器变成用于实施各个技术的装置。电路可以包括硬件、固件、程序代码、可执行代码、计算机指令、和/或软件。非暂态计算机可读存储介质可以是不包括信号的计算机可读存储介质。在程序代码在可编程计算机上执行的情况下,计算设备可以包括处理器、可以由处理器读取的存储介质(包括易失性和非易失性存储器和/或存储元件)、至少一个输入设备、以及至少一个输出设备。易失性和非易失性存储器和/或存储元件可以是ram、eprom、闪存驱动器、光驱动器、磁硬盘驱动器、固态驱动器、或用于存储电子数据的其他介质。节点和无线设备还可以包括收发器模块、计数器模块、处理模块、和/或时钟模块或定时器模块。可以实现或利用本文描述的各个技术的一个或多个程序可以使用应用编程接口(api)、可重用控件等。可以在高级程序或面向对象编程语言中实现这类程序,以与计算机系统进行通信。然而,若需要,则可以用汇编或机器语言实现(一个或多个)程序。在任何情况下,语言都可以是经编译或解析的语言,并且与硬件实现方式相结合。

如本文使用的,术语处理器可以包括通用处理器、专用处理器(例如,vlsi、fpga、或其他类型的专用处理器)、以及在收发器中用于发送、接收和处理无线通信的基带处理器。

应理解的是,本说明书中描述的许多功能单元已经被标记为模块,以便更具体地特别强调它们的实现方式独立性。例如,模块可被实现为包括定制vlsi电路或门阵列、诸如逻辑芯片之类的现成半导体、晶体管、或其他离散组件的硬件电路。模块还可以在诸如现场可编程门阵列、可编程阵列逻辑、可编程逻辑器件等之类的可编程硬件设备中实现。

在一个示例中,可以使用多个硬件电路或多个处理器来实现本说明书中描述的功能单元。例如,可以使用第一硬件电路或第一处理器来执行处理操作,并且可以使用第二硬件电路或第二处理器(例如,收发器或基带处理器)来与其他实体进行通信。第一硬件电路和第二硬件电路可被集成为单个硬件电路,或替代地,第一硬件电路和第二硬件电路可以是单独的硬件电路。

模块还可以在软件中实现以供各种类型的处理器执行。所标识的可执行代码模块例如可以包括计算机指令的一个或多个物理或逻辑块,例如,它们可被组织为对象、过程、或功能。然而,所标识模块的可执行文件不需要物理地位于一起,而是可以包括存储在不同位置中的不同的指令,当被逻辑地连接在一起时,这些指令包括模块并实现模块的所述目的。

实际上,可执行代码的模块可以是单个指令或许多指令,并且甚至可以分布在若干不同的代码段上、不同的程序中、以及跨若干存储器设备。类似地,操作数据在本文可以在模块中标识和示出,并且可以以任意适当的形式来体现或被组织在任意适当类型的数据结构中。操作数据可被收集为单个数据集、或者可以分布在包括不同的存储设备的不同位置上,并且可以至少部分地仅作为系统或网络上的电子信号而存在。模块可以是无源的或有源的,包括可操作来执行所需功能的代理。

本说明书通篇对“示例”的引用表示结合该示例所描述的特定特征、结构、或特性被包括在本技术的至少一个实施例中。因此,短语“在实施例中”在本说明书通篇各个位置的出现不一定都指代同一实施例。

如本文使用的,为了方便,多个项、结构要素、组成要素、和/或材料可被呈现在公共列表中。然而,这些列表应该被理解为列表中的每个成员都被单独地标识为单独且唯一的成员。因此,没有该列表中的单独成员仅基于它们在公共组中的出现且没有相反的指示,而应被理解为同一列表中的任意其他成员的实际上的等同物。此外,本技术的各个实施例和示例在本文可以与其各个组件的替代方式一起被引用。理解的是,这类实施例、示例和替代方式不被理解为彼此的实际上的等同物,而将被视为本技术的单独且自主的表示。

此外,所描述的特征、结构或特性可以以任意适当的方式组合在一个或多个实施例中。在以下描述中,提供了许多具体细节(例如,布局、距离、网络示例等的示例)以提供对本技术的实施例的透彻理解。然而,相关领域技术人员将认识到,可以在没有这些具体细节中的一项或多项的情况下或者利用其他方法、组件、布局等来实施本技术。在其他情况下,未详细示出或描述公知的结构、材料或操作以避免模糊本技术的方面。

尽管上述示例是本技术的原理在一个或多个特定应用中的说明,但对于本领域普通技术人员将明显的是,可以在不发挥创造性能力并且不脱离本技术的原理和概念的情况下,在形式、使用和实现方式的细节上做出许多修改。因此,除了如下面阐述的权利要求,本技术不旨在被限制。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1