一种无线回程波束对齐方法与流程

文档序号:15978585发布日期:2018-11-17 00:03阅读:896来源:国知局

本发明涉及无线通信技术领域。更具体地,涉及一种无线回程波束对齐方法。

背景技术

面对日益增长的移动多媒体数据需求,使用增加地理频谱可重用性的技术,如多层小区部署(即超密集异构网络,包括微微小区和毫微微小区)来提高频谱效率成为未来网络发展的必然趋势。超密集异构网络通常部署在城市中心、办公楼、商场、火车站、体育场等场所以支持小型、高吞吐量区域覆盖的需求。然而,部署异构小型网络的主要障碍是如何获得低成本,高可靠和高可扩展性的回程网络。

超密集异构网络中微微基站和毫微微基站的密集部署,给有线回程带来了诸多挑战,高额的工程施工与设计成本以及网络运营与支撑成本使得光纤等基站间的有线回程变得不现实。使用现有频谱资源来进行基站间的无线回程同样面临的严峻的考验。毫米波在30ghz到300ghz频段有丰富的频谱资源,相关研究人员已经证实毫米波在高速率数据传输方面存在巨大前景。毫米波的应用将为解决超密集异构蜂窝网络中微微小区基站无线回程和接入问题提供一种可能的方案。同时,毫米波技术可以很好的与在基站侧配置为几百或者上千根天线的大规模mimo技术结合,有效地降低了大规模天线阵列的天线尺寸和制作难度降低,这就为大规模mimo技术在超密集异构蜂窝网络中基站间的无线回程提供可能。此外,大规模天线的应用能够有效地提高信号连接的成功率,并能补偿毫米波段存在的路径损耗问题。

与传统微波多天线技术相比,毫米波大规模mimo技术存在巨大优势。毫米波大规模mimo技术不仅能够改善回程链路的可靠性,而且能为回程网络提供一个更为灵活有效的拓扑结构。

随着微微小区基站的大规模部署,一个更加接近实际的信道模型变得迫切。目前的无线回程信道模型较为单一,仅考虑了天气状况良好(近似自由空间传播)的信道模型,并没有考虑在风、雨等存在的天气条件下信道模型,并不能很好的匹配传播信道状态。待改进点有以下三个方面:

(1)充分考虑所有天气环境下的信道模型,使其更加接近实际;

(2)更加贴合毫米波大规模mimo信道,使其有效提高无线回程链路质量;

(3)针对不同天气条件对无线回程波束对齐带来的影响,提出一种波束对齐方案来提高波束对齐概率。



技术实现要素:

本发明将在毫米波大规模mimo技术的基础上研究不同天气条件下5g异构网络微微基站的无线回程问题,并提出一种基于毫米波大规模mimo信道统一模型的无线回程波束对齐技术以应对不同天气条件下因天线抖动带来的波束中断问题。

为了实现上述目的,本发明采用以下技术方案:

一种无线回程波束对齐方法,所述方法基于毫米波大规模mimo信道统一模型,所述模型为:

其中,mmbs和msap分别为宏蜂窝基站和微微蜂窝基站天线数目;

ρ=pl(d)+aγr,

a为降雨系数,降雨时为1,不降雨时为0;γr为毫米波在雨中的衰减;

其中λ为子载波波长,d为基站与基站间的距离;

ambs(θl)和asap(φl)为天线阵列响应向量;

θl和φl为第l路径的方位角,当天线的相对角度超过最大容忍值θl,max时,即发生波束中断;

所述方法包括:

获得初始化天线偏移角度集:

根据最大容忍值,将宏基站天线偏移角度集选为:θm,set=2αθmbs,微微蜂窝基站天线偏移角度集选为:θs,set=2αθsap;

选定波束对齐步进参数β:

根据已获得的基站天线偏移角度集,获取一个步进参数β∈[βm,βs],该参数可以将基站天线偏移角度集平均划分为若干个子集,每个子集的大小可以表示为:其中,θsubset=∈[θm,subset,θs,subset],θset=∈[θm,set+θs,set];

自适应调整步进参数β:

当发生中断的概率大时,就将步进参数选择的小一些;当发生的概率小时,将步进参数选择的大一些。

优选地,所述天线角度域偏移的最大容忍值θl,max=α(θmbs+θsap);其中θmbs=2sin-1(0.891/mmbs),θsap=2sin-1(0.891/msap),α=0.3578,mmbs和msap分别表示宏基站天线数目和微微基站天线数目。

优选地,如果天线波束域偏移角度超过最大容忍值θl,max,就发生中断,则系统的波束中断高绿可以表示为:pout=pr{|θl(t)|>θl,max}。

优选地,毫米波在雨中的衰减γr=krv(db/km);

其中r为降雨速度,单位为mm/h;与频率相关系数k,v可以表示为

其中θ是路径斜角,是相对水平位置的极化斜角,在频率范围20<f≤400ghz内,

优选地,所述模型建立的基础为:网络中包含2层独立随机分布基站,包括宏蜂窝小区基站和微微小区基站,基站为ppp分布。

本发明的有益效果如下:

本发明针对目前无线回程信道模型,充分挖掘毫米波通信技术、大规模mimo技术的优势,首先提出基于毫米波大规模mimo技术的无线回程统一信道模型,然后在此基础上,提出一种应对不同天气条件的波束对齐方案来切实提高超密集异构网络下微微基站的无线回程可靠性。本发明可以应用于宏蜂窝基站覆盖下的微微蜂窝小区基站与宏基站间的无线回程环境中,具有将强的实用性。

附图说明

下面结合附图对本发明的具体实施方式作进一步详细的说明。

图1为2层异构网络ppp模型。

图2为风引起抖动转化为杆响应框图。

图3为由风引起的天线波束发生的角度偏移。

图4为由风引起的天线波束中断概率。

具体实施方式

为了更清楚地说明本发明,下面结合优选实施例对本发明做进一步的说明。本领域技术人员应当理解,下面所具体描述的内容是说明性的而非限制性的,不应以此限制本发明的保护范围。

本方法紧密结合国内外该领域内的研究动态与成果。采用信号传输的一般模型进行研究,保证了算法的普遍性。采用了理论分析、可行性论证和计算机仿真结合的方法,从理论和实践方面验证了所提出的方案。

本发明采用信号传输一般模型,设定网络中包含2层独立随机分布基站(包括宏蜂窝小区基站和微微小区基站),基站为ppp分布,如图1所示。本发明主要有两点:一是不同天气条件下微微小区基站间los无线信道建模,包含三种天气条件:

(1)只考虑路径损耗(天气条件较好,近似于自由空间传播);

(2)考虑路径损耗和风引起的天线间抖动;

(3)考虑路径损耗,雨衰以及风引起的天线间抖动。

二是无线回程波束对齐技术:在毫米波大规模mimo信道建模的基础上,提出一种应对不同天气条件的无线回程波束对齐技术,来降低因路径损耗、雨衰、风等影响而造成的大规模天线阵列间的波束中断的影响。

1、不同天气条件下大规模mimo统一信道模型

(1)路径损耗

自由空间传播路径损耗可以表示为:

其中λ为子载波波长,d为基站与基站间的距离。

(2)天线间抖动

在城市环境下,微微小区基站常常被安装在路灯杆上,随风而发生抖动。天线与天线间的距离d=λ/2。抖动模型如图2所示。由风引起的抖动可以表示为零均值、非相干随机过程,其功率谱密度为

其中f为抖动频率,u为风的速率,u*=u/2.5ln(10/z0)为杆高度z=10m时的剪切速度。

由风引起的对杆造成的时变拉力f(t)的功率谱密度可以表示为:

sf(f)=|ha|2su(f)=(2ku)2su(f)(3)

其中,为空气密度,cd为拉力系数,ae为风作用的有效区域。

路灯杆可以被建模为一种简单的弹簧质量阻尼系统,其特征在于阻尼系数ζ和固有频率fn。机械传递函数可以表示为

那么,天线抖动的功率谱密度函数可以表示为

δlmbs(t)为宏蜂窝基站天线发生抖动时的相对位置偏移,δlsap(t)为微微小区基站天线发生抖动时的相对位置偏移。如图3所示,最坏情况下的天线偏移角度可以表示为:

我们假设天线角度域偏移的最大容忍值为θl,max,

θl,max=α(θmbs+θsap)(7)

其中θmbs=2sin-1(0.891/mmbs),θsap=2sin-1(0.891/msap),α=0.3575,mmbs和msap分别表示宏基站天线数目和微微基站天线数目。

如果天线波束域偏移角度超过最大容忍值θl,max,就发生中断,那么系统的波束中断高绿可以表示为:

pout=pr{|θl(t)|>θl,max}(8)

(3)雨衰

毫米波在雨中的衰减随着雨的大小而变化,可以表示为

γb=krv(db/km)(9)

其中r(mm/h)为降雨速度,与频率相关系数k,v可以表示为

其中θ是路径斜角,是相对水平位置的极化斜角,在频率范围20<f≤400ghz内,

(4)统一信道模型

假设基站天线为线性天线阵列,那么在不同天气条件下基于毫米波大规模mimo的5g无线回程信道模型可以表示为:

其中,mmbs和msap分别为宏蜂窝基站和微微蜂窝基站天线数目,ambs(θl)和asap(φl)为天线阵列响应向量,θl和φl为第l路径的方位角,ρ=pl(d)+aγr(a为降雨系数,降雨时为1,不降雨时为0)。当它们的相对角度超过最大容忍值为θl,max,即发生波束中断。

2、无线回程波束对齐技术

为了提高不同条件下基于毫米波大规模mimo技术的无线回程的可靠性,我们提出一种基于抖动角度集的波束自适应对齐方案,具体方法如下:

(1)获得初始化天线偏移角度集:

已经假设天线角度域偏移的最大容忍值为θl,max=α(θmbs+θsap),一旦超过该容忍值,就会发生传输中断。为了更好的实现波束匹配,根据最大容忍值,我们把宏基站天线偏移角度集选为:θm,set=2αθmbs,微微蜂窝基站天线偏移角度集选为:θs,set=2αθsap。

(2)选定波束对齐步进参数β:

根据已获得的基站天线偏移角度集,我们获取一个步进参数β∈[βm,βs],该参数可以将基站天线偏移角度集平均划分为若干个子集,每个子集的大小可以表示为:

其中,θsubset=∈[θm,subset,θs,subset],θset=[θm,set,θs,set]。

(3)自适应调整步进参数β:

步进参数的调整是根据天线发生中断概率的大小进行调整,当发生中断的概率大时,就将步进参数选择的小一些,这样子集的长度会变小;当发生的概率小时,将步进参数选择的大一些。

图4为不同基站天线数目下,波束中断概率与平均风速的关系。从图中可以看出,随着平均风速的不断增加,无线回程波束发生中断的概率也在逐渐上升。同时,还可以看出,基站天线数目越多,有发生中断的平均风速越小。这充分说明,在大规模mimo系统中引入波束对齐方案的重要性。

显然,本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定,对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动,这里无法对所有的实施方式予以穷举,凡是属于本发明的技术方案所引伸出的显而易见的变化或变动仍处于本发明的保护范围之列。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1