图像传感器的制作方法

文档序号:15529606发布日期:2018-09-25 21:11阅读:195来源:国知局

本实用新型整体涉及成像设备,具体地讲,涉及包括具有不同转换增益的多个读出路径的光电二极管的成像设备,更具体地讲,涉及一种图像传感器。



背景技术:

图像传感器常在电子设备,诸如,移动电话、相机和计算机中用来捕获图像。在典型布置中,电子设备设置有被布置成像素行和像素列的图像像素阵列。每个图像像素包含光电二极管用于响应于入射光以产生电荷。在一些类型的像素(即,有源CMOS像素)中,图像像素所产生的电荷存储在耦接到光电二极管的浮动扩散节点处。通常将电路耦接到各个像素列以读出来自图像像素的图像信号。

常规图像像素具有将通过光电二极管所产生的电荷转移到浮动扩散节点的单个读出路径。在此类布置中,像素的转换增益由浮动扩散区的固定充电容量(即,电容)确定。通常,可针对高曝光或低曝光图像捕获任一者而非两者的性能对具有固定转换增益的图像像素进行优化。因此具有可调转换增益的图像像素是所需的。



技术实现要素:

本文所述的实施方案就是在这种背景下出现的。

根据一个方面,提供一种图像传感器,包括:光电二极管;以及耦接到所述光电二极管的第一图像信号读出路径和第二图像信号读出路径,其中所述第一图像信号读出路径和所述第二图像信号读出路径中的至少一者基于曝光水平来选择性地切换为使用状态。

在一个示例中,所述图像传感器还包括:插置在所述第一图像信号读出路径中的第一电荷转移栅极;以及插置在所述第二图像信号读出路径中的第二电荷转移栅极。

在一个示例中,所述图像传感器还包括:所述第一图像信号读出路径中的第一浮动扩散节点,其中所述第一浮动扩散节点具有第一电容;以及所述第二图像信号读出路径中的第二浮动扩散节点,其中所述第二浮动扩散节点具有等于所述第一电容的第二电容,其中在所述曝光水平较低时仅启用所述第一图像信号读出路径,并且其中在所述曝光水平较高时启用所述第一图像信号读出路径和所述第二图像信号读出路径两者。

在一个示例中,所述图像传感器还包括:所述第一图像信号读出路径中的第一浮动扩散节点,其中所述第一浮动扩散节点具有第一电容;以及所述第二图像信号读出路径中的第二浮动扩散节点,其中所述第二浮动扩散节点具有大于所述第一电容的第二电容,其中在所述曝光水平较低时仅启用所述第一图像信号读出路径,并且其中在所述曝光水平较高时仅启用所述第二图像信号读出路径。

在一个示例中,使用可调电源电压选择性地禁用所述第一图像信号读出路径。

在一个示例中,所述图像传感器还包括:多路复用器,所述多路复用器向所述第一图像信号读出路径提供所述可调电源电压。

根据另一方面,提供一种图像传感器,包括:多个图像传感器像素,所述多个图像传感器像素中的每个图像传感器像素包括:光电二极管;以及第一图像信号读出路径,其中所述多个图像传感器像素耦接到共享图像传感器读出路径,其中所述多个图像传感器像素在高曝光模式期间单独地使用所述第一图像信号读出路径来读出信号,并且其中所述多个图像传感器像素在低曝光模式期间使用所述共享图像传感器读出路径来读出信号。

在一个示例中,所述多个图像传感器像素全部与相同的颜色相关联。

在一个示例中,所述第一图像信号读出路径具有第一浮动扩散电容,其中所述共享图像传感器读出路径具有小于所述第一浮动扩散电容的第二浮动扩散电容,其中在第一管芯中形成所述多个图像传感器像素的第一部分,其中在堆叠于所述第一管芯的顶部上的第二管芯中形成所述多个图像传感器像素的第二部分,其中在所述第二管芯中形成所述多个图像传感器像素中的每个图像传感器像素的所述光电二极管,并且其中在所述第一管芯上形成所述第一浮动扩散电容和所述第二浮动扩散电容。

在一个示例中,所述多个图像传感器像素中的给定图像传感器像素具有两个源极跟随器晶体管,并且其中所述多个图像传感器像素中除所述给定图像传感器像素以外的每个图像传感器像素仅具有一个源极跟随器晶体管。

根据本实用新型的实施方案,能够提供具有可调转换增益的图像像素。

附图说明

图1是根据一个实施方案的示例性电子设备的示意图,该电子设备具有用于捕获图像的图像传感器和处理电路。

图2是根据一个实施方案的示例性像素阵列以及用于从该像素阵列读出图像信号的相关读出电路的示意图。

图3是根据一个实施方案的包括具有单独浮动扩散节点的多个信号读出路径的示例性图像像素的电路图。

图4A是根据一个实施方案的用于在每个读出路径中的浮动扩散节点的电容相等时操作图3的图像像素的示例性步骤的流程图。

图4B是根据一个实施方案的用于在一个读出路径中的浮动扩散节点的电容大于第二读出路径中的浮动扩散节点的电容时操作图3的图像像素的示例性步骤的流程图。

图5是在低曝光和合并模式两者下从图3的多转换增益像素读出的图像信号的信噪比随曝光时间变化的函数的示例性曲线图。

图6是根据一个实施方案的示例性像素阵列的示意图,其中红色、蓝色和绿色图像像素被布置成拜耳马赛克网格图案。

图7是根据一个实施方案的四个互连图像像素的示例性电路图,这四个互连图像像素具有使像素能够在合并模式和全分辨率模式两者下操作的多个读出路径。

具体实施方式

电子设备,诸如,数字相机、计算机、移动电话和其他电子设备可包括图像传感器,该图像传感器收集入射光以捕获图像。图像传感器可包括图像像素阵列。图像传感器中的像素可包括光敏元件,诸如,将入射光转换为图像信号的光电二极管。图像传感器可具有任何数量(如,数百或数千或更多)的像素。典型的图像传感器可例如具有数十万或数百万像素(即,数兆像素)。图像传感器可包括控制电路(诸如,用于操作图像像素的电路)和用于读出图像信号的读出电路,该图像信号与光敏元件所产生的电荷相对应。

图1为示例性成像系统,诸如,电子设备,的示意图,该成像系统使用图像传感器捕获图像。图1的电子设备10可为便捷式电子设备,诸如相机、移动电话、平板计算机、网络相机、摄像机、视频监控系统、汽车成像系统、具有成像能力的视频游戏系统或者捕获数字图像数据的任何其他所需成像系统或设备。相机模块12可用于将入射光转换成数字图像数据。相机模块12可包括一个或多个透镜14以及一个或多个对应的图像传感器16。透镜14可包括固定透镜和/或可调透镜,并且可包括形成于图像传感器16的成像表面上的微透镜。在图像捕获操作期间,可通过透镜14将来自场景的光聚焦到图像传感器16上。图像传感器16可包括用于将模拟像素数据转换成要提供给存储和处理电路18的对应数字图像数据的电路。如果需要,相机模块12可设置有透镜14的阵列和对应图像传感器16的阵列。

存储和处理电路18可包括一个或多个集成电路(如,图像处理电路、微处理器、诸如随机存取存储器和非易失性存储器的存储设备等),并且可使用与相机模块12分开和/或形成相机模块12的一部分的组件(如,形成包括图像传感器16的集成电路或者与图像传感器16相关的模块12内的集成电路的一部分的电路)来实施。可使用处理电路18处理和存储已被相机模块12捕获的图像数据(如,使用处理电路18上的图像处理引擎、使用处理电路18上的成像模式选择引擎等)。可根据需要使用耦接到处理电路18的有线和/或无线通信路径将经过处理的图像数据提供给外部设备(如,计算机、外部显示器或其他设备)。

如图2所示,图像传感器16可包括包含被布置成行和列的图像传感器像素22(有时在本文称为图像像素或像素)的像素阵列20以及控制和处理电路24。阵列20可包含例如几百或几千行以及几百或几千列图像传感器像素22。控制电路24可耦接到行控制电路26和图像读出电路28(有时称为列控制电路、读出电路、处理电路或列解码器电路)。行控制电路26可从控制电路24接收行地址,并且通过行控制路径30将对应的行控制信号,诸如重置控制信号、行选择控制信号、电荷转移控制信号、双转换增益控制信号和读出控制信号提供给像素22。可将一根或多根导线(诸如,列线32)耦接至阵列20中的像素22的每一列。列线32可用于从像素22读出图像信号以及用于将偏置信号(如,偏置电流或偏置电压)提供给像素22。如果需要,在像素读出操作期间,可使用行控制电路26选择阵列20中的像素行,并且可沿列线32读出由该像素行中的图像像素22产生的图像信号。

图像读出电路28可通过列线32接收图像信号(如,由像素22产生的模拟像素值)。图像读出电路28可包括用于对从阵列20读出的图像信号进行采样和暂时存储的采样保持电路、放大器电路、模拟-数字转换(ADC)电路、偏置电路、列存储器、用于选择性启用或禁用列电路的闩锁电路,或者耦接至阵列20中的一个或多个像素列以用于操作像素22以及用于从像素22读出图像信号的其他电路。读出电路28中的ADC电路可将从阵列20接收的模拟像素值转换成对应的数字像素值(有时称为数字图像数据或数字像素数据)。图像读出电路28可针对一个或多个像素列中的像素通过路径25将数字像素数据提供给控制和处理电路24和/或处理器18(图1)。

可用于像素阵列20中的示例性CMOS图像像素22的电路图。如图3所示,图像像素22可包括光敏区34(有时在本文中称为光电二极管)。光敏区34可为在暴露于入射光时连续产生电荷的硅二极管或类似部件。光电二极管34可连接到接地端子35。在图3的实施方案中,光电二极管34所产生的电荷可穿过两个不同信号路径36-1和36-2传递到像素电路。

在图像信号第一读出路径中,总线36-1可将光电二极管34连接到浮动扩散节点40-1,该浮动扩散节点可存储在曝光期间光电二极管34所聚积的电荷。一般来讲,第一浮动扩散节点40-1可为掺杂半导体材料的隔离区(例如,具有通过离子注入、杂质扩散或其他掺杂技术所添加的电荷载流子的硅区)或其他物理电容结构诸如MIM或PIP电容器。由于浮动扩散节点40-1可存储电荷,FD节点40-1可被认为具有本征电容CFD1。

在一些情况下,可能希望将浮动扩散节点40-1从光电二极管34电绝缘隔离,使得电荷由光电二极管产生,但不存储于节点40-1处。因此,电荷转移栅极晶体管38-1可连接在光电二极管34与浮动扩散节点40-1之间,以便选通(即,阻断或允许)电荷从光电二极管向FD节点的传输。控制电路26(图2中所示)可向转移晶体管38-1的栅极端子提供第一电荷转移控制信号TX1。当TX1生效(即,设定为逻辑“1”)时,转移栅极38-1可将光电二极管34所产生的电荷传递到浮动扩散节点40-1。

如果需要,可在与浮动扩散节点40-1和其他读出电路不同的图像传感器管芯中形成光电二极管34。在这种情况下,包含光电二极管的第一管芯可竖直地堆叠在第二管芯的顶部上,并且光电二极管可通过结48-1电耦接到浮动扩散节点40-1和其他读出电路。

类似地,第二总线36-2可将光电二极管34连接到第二读出路径中的第二浮动扩散节点40-2。第二浮动扩散节点40-2还可与浮动扩散节点40-1分开地存储光电二极管34所聚积的电荷。由于第二浮动扩散节点40-2也可存储电荷,第二FD节点可具有第二本征电容CFD2。在一个实施方案中,第二浮动扩散节点的电容CFD2可等于与第一浮动扩散节点40-1相关联的电容CFD1。在另一个实施方案中,第二浮动扩散电容CFD2可大于第一浮动扩散电容CFD1。与第一读出路径中一样,从光电二极管34向第二浮动扩散节点40-2的电荷转移可由第二转移栅极38-2选通。如果需要,第二读出路径结48-2可耦接在第二转移栅极38-2与第二浮动扩散节点40-2之间。如果需要,可在与浮动扩散节点40-2和其他读出电路不同的图像传感器管芯中形成光电二极管34。在这种情况下,包含光电二极管的第一管芯可竖直地堆叠在第二管芯的顶部上,并且光电二极管可通过结48-2电耦接到浮动扩散节点40-2和其他读出电路。

与第一读出路径类似,控制电路26可向转移栅极38-2的栅极端子提供第二电荷转移控制信号TX2。一般而言,第二电荷转移控制信号TX2和第一电荷转移控制信号TX1可独立地产生并且可不相同。因此,在曝光期间的给定时间,光电二极管34所产生的电荷可仅存储于第一FD节点40-1中(例如,通过使TX1生效并使TX2解除生效)。类似地,光电二极管34所产生的电荷可仅转移到并存储于第二FD节点40-2中(例如,通过使TX1解除生效并使TX2生效)。另选地,可能希望光电二极管34所产生的电荷存储于这两个浮动扩散节点(每个读出路径中的一个)中。在这种情况下,可同时使电荷转移控制信号TX1和TX2生效,以将这两个浮动扩散节点电耦接到光电二极管。一般来讲,转移栅极38-1和38-2可脉冲式变化一次以执行一次电荷转移操作,或可脉冲式变化多次以执行多次电荷转移操作。

如图3所示,第一图像信号读出路径中的浮动扩散节点40-1可连接到第一源极跟随器晶体管42-1和第一重置晶体管44-1。第一源极跟随器晶体管42-1的源极端子可连接到提供正供电电压VAA的电源线43。第一重置晶体管44-1的源极端子可连接到可变电源46-1。在图3的实施方案中,可变电源46-1可包括在正供电电压VAA或Vss之间选择的多路复用器,其中Vss足够低以禁用源极跟随器晶体管42-1,但又足够高而不引起电荷注入。VAA或Vss可基于控制信号CTRL1来选择,并输出所选信号VX1。例如,当CTRL1生效时,多路复用器46-1可将VAA传递到第一重置晶体管44-1的源极端子。然而,当CTRL1解除生效时,多路复用器46-1可将Vss传递到重置晶体管44-1的源极端子以完全断开第一图像信号读出路径(例如,以避免数据争用)。可通过诸如图2的控制电路26之类的电路提供控制信号CTRL1。

重置晶体管44-1的栅极端子可从诸如控制电路26的控制电路接收第一重置信号RST1。在第一读出路径中捕获图像信号之前,第一重置信号RST1可保持为高以便重置第一浮动扩散节点40-1(例如,通过接地端子41-1排出存储于FD节点40-1中的任何电荷)。

类似地,第二图像信号读出路径中的第二浮动扩散节点40-2可连接到第二源极跟随器晶体管42-1和第二重置晶体管44-2。第二源极跟随器晶体管42-1的源极端子也可连接到提供正供电电压VAA的电源线43。第二重置晶体管可耦接到第二可变电源电路46-2。第二可变电源46-2可包括第二多路复用器,该第二多路复用器在VAA与Vss之间选择并将第二所选信号VX2(例如,VAA或Vss)输出到重置晶体管44-2的源极端子。一般而言,第二读出路径中的所选信号VX2在任何给定曝光期间可不同于第一读出路径中的VX1。

重置晶体管44-1的栅极端子可从控制电路接收第二重置信号RST2,该第二重置信号可与第一重置信号RST1相同或不同。第二读出信号RST2可在第二信号路径中捕获图像信号之前生效以便重置第二浮动扩散节点40-2(例如,通过第二接地端子42-2排出存储于FD节点40-2中的任何电荷)。

当使用图像像素22捕获图像信号时,RST1和/或RST2可解除生效。例如,如果仅使用第一读出路径捕获图像数据,则第一重置信号RST1可在曝光之前立即解除生效。在这种情况下,可通过使电荷转移控制信号TX1(而非TX2)生效来开启转移栅极38-1,以允许光电二极管34所聚积的电荷存储于第一浮动扩散节点40-1中。所存储的电荷可增加FD节点40-1两端的电势差(即,电压)。然后可将源极跟随器晶体管42-1的栅极端子处的电压变化放大为成比例的图像信号,接着可将该图像信号传递到行选择晶体管50的源极端子。总的来说,使RST1解除生效并允许第一浮动扩散节点40-1存储来自光电二极管34的电荷的过程在本文中可称为“接通”或“启用”源极跟随器晶体管42-1。在这种情况下,向第二读出路径中的第二源极跟随器晶体管40-2提供的电压可固定为零(例如,通过使CTRL2解除生效以将Vss传递到第二重置晶体管44-2)以便最大程度减少数据争用。

类似地,如果仅使用第二读出路径捕获图像数据,则第二重置信号RST2可在曝光之前立即解除生效。然后可通过使第二电荷转移控制信号TX2生效来开启转移栅极38-2,从而允许光电二极管34所聚积的电荷存储于第二浮动扩散节点40-2中。所得的电压摆幅可启用源极跟随器晶体管42-2,该源极跟随器晶体管可将与所存储的电荷成比例的图像信号传递到行选择晶体管50的源极端子。

如果需要,可同时启用这两个读出路径。在这种情况下,可在曝光之前使RST1和RST2解除生效,并且可通过使电荷转移控制信号TX1和TX2两者同时生效来开启转移栅极38-1和38-2两者。然后可将光电二极管34所产生的电荷存储于第一浮动扩散节点40-1和第二浮动扩散节点40-2两者中。该电荷可引起FD节点40-1和40-2两端的电压变化(即,电压摆幅),从而启用源极跟随器晶体管42-1和源极跟随器晶体管42-2两者。然后可将每个读出路径中与所存储的电荷成比例的图像信号合并(即,累加在一起)并传递到行选择晶体管50的源极端子。

行选择晶体管50的栅极端子可从诸如控制电路26的控制电路接收行选择控制信号RowSel。当希望从包含图像像素22的像素阵列20的行读取图像信号时,可使RowSel生效以启用行选择晶体管50。当接通行选择晶体管50时,在像素22的输出路径上产生与浮动扩散节点40-1和/或浮动扩散节点40-2处存储的电荷成比例的图像信号VOUT。如图2所示,存在多行和多列像素,诸如像素阵列20中的图像像素22。因此,当在给定行中使行选择控制信号RS生效时,可在诸如列线32的路径上产生具有幅值VOUT的电压摆幅,该路径可用于将来自图像像素的信号路由到读出电路(例如,图2的图像读出电路28)。

图像像素22具有两个读出路径的图3的示例仅仅是示例性的,并非意在进行限制。在替代实施方式中,图像像素22可具有任何合适数量的读出路径,每个读出路径具有单独的浮动扩散节点、转移栅极、源极跟随器晶体管等。与图3的图像像素中一样,每个读出路径中的源极跟随器晶体管可在图像捕获操作之前和图像捕获操作期间通过各种控制信号来选择性地启用或禁用。应当理解,与每个读出路径相关联的浮动扩散电容可相同或不同。

一般来讲,像素阵列20可按所谓的“低曝光”模式和“高曝光”或“合并”模式进行操作。所使用的操作模式将至少部分地由图像像素22所经历的曝光水平(即,入射光的强度)确定。典型像素具有可产生准确信号的动态曝光范围。这些曝光水平在从噪声本底(低于该噪声本底时,信噪比不可接受地下降)一直到阱容或饱和容量(高于该容量时,即使入射光强度增加,像素也不产生附加电荷)的范围内。因此“低曝光”设置可以指低于预定阈值的强度,而“高曝光”可以指高于预定阈值的强度。

例如,低曝光可以指在噪声本底的一定百分比内的曝光水平。在这种情况下,高曝光将指低曝光水平以上的任何曝光水平。在一个实施方案中,可将曝光阈值设定为等于噪声本底以上的总动态范围的10%的值。在另一个实施方案中,可将曝光阈值设定为噪声本底以上的动态范围的20%的值。在又一个实施方案中,可将曝光阈值设定为噪声本底以上的动态范围的50%的值。

另选地,可将高曝光定义为阱容特定百分比以上的曝光水平。在这种情况下,低曝光将指阱容百分比以下的任何曝光水平。在一个实施方案中,可将曝光阈值设定为阱容(即,饱和)的25%。在另一个实施方案中,可将曝光阈值设定为阱容的50%。在又一个实施方案中,可将曝光阈值设定为阱容的75%。应当理解,上述曝光阈值仅仅是示例性的。一般而言,可使用任何合适的曝光阈值区分高曝光和低曝光情形。

在低曝光情形中,入射到像素阵列上的光的强度较低。因此,光电二极管(诸如给定图像像素22中的光电二极管34)将在典型低曝光图像捕获操作期间产生相对较少量的电荷。在这种情况下,希望像素中的有源读出路径的总电容相对较低,使得即使在浮动扩散区中存储少量的电荷,也可产生大电压摆幅(即,强图像信号)。这样,图像像素22可在低曝光模式下操作时实现高转换增益。由于图像信号中的噪声量大致与浮动扩散电容成比例,因此低曝光图像信号通常具有相对较高的最大信噪比(SNR)。

对于图3的图像像素,可通过以下方式实现低浮动扩散电容:在图像捕获期间保持读出路径之一中的电荷转移栅极断开,从而仅启用两个浮动扩散节点之一。

在高曝光情形下,入射到像素阵列上的光的强度明显更高。由于给定图像像素22中的光电二极管将在高曝光下捕获图像数据时产生大量电荷,因此一般希望图像像素中的有源读出路径的总电容更高,以便存储所产生的电荷,而在源极跟随器晶体管处没有过大电压摆幅。与像素在低曝光模式下操作时相比,在高曝光模式下操作时,图像像素22可具有更低的转换增益。

参见图3,如果第一读出路径的浮动扩散电容(CFD1)等于第二读出路径的浮动扩散电容(CFD2),则转移栅极38-1和38-2两者可接通以将电荷存储于这两个FD节点。以这种方式启用这两个浮动扩散节点可有效地使图像像素的电荷处理能力加倍,并增加像素的总电容。然后可通过源极跟随器晶体管42-1和42-2对与每个节点处存储的电荷相对应的图像信号进行合并(即,累加)。通常,具有较高FD电容的图像像素可产生比低CFD像素更高的信噪比的图像信号。然而,以这种方式对来自每个读出路径的图像信号进行合并可以在列线上产生相同电压摆幅(即,VOUT),同时明显降低SNR(参见图5)。

另选地,如果这两个FD节点的浮动扩散电容不相等,则可选择性地启用较高电容读出路径,以在高曝光模式下操作像素。这些操作图像像素(诸如图3所示的像素22)的方法更详细地描述于图4A和4B中。

图4A是使用多个读出路径操作图像像素的方法中的示例性步骤的流程图,每个读出路径具有带相同电容的浮动扩散节点。例如,如果CFD1等于CFD2,则可使用图4A的方法操作图3所示的图像像素22。在步骤402处,可确定包含图像像素的像素阵列是否被设定为在低曝光模式下操作。如果启用低曝光模式,则可在步骤403处禁用一个或多个源极跟随器。这可通过阻断向一个或多个读出路径的一个或多个浮动扩散节点的电荷转移来实现。在图3的示例中,电荷转移控制信号TX2可解除生效以在图像捕获操作期间闭合转移栅极38-2,从而有效地从电路移除浮动扩散节点40-2及其相关联的源极跟随器。另外在步骤403处,未使用的浮动扩散节点40-2可被重置为零电势(例如,通过使重置信号RST2生效和/或使用可变电源46-2向重置晶体管46-2提供Vss)。由于移除了并联电容CFD2,因此禁用第二读出路径会减少图像像素的总电容。因此,步骤403将图像像素22设定为以高转换增益进行操作。

在禁用一个或多个读出路径之后,可在步骤405处使用高转换增益像素使之响应于入射光产生图像信号。具体地讲,可使用光电二极管,诸如图像像素22中的光电二极管34,使之响应于特定波长的光产生电荷。

在步骤407处,可通过使用中的浮动扩散节点(即,在步骤403中未禁用的读出路径的FD节点)来存储电荷,从而产生图像信号,然后在步骤410处从图像像素读出该图像信号。例如,可通过在行选择晶体管的栅极端子处使行选择信号(例如,RowSel)生效来执行读出。

另选地,如果启用高曝光(即,合并)模式,则在步骤404处同时启用所有读出路径。这可通过以下方式完成:在图像捕获操作之前不久使每个读出路径的重置信号(例如,RST1和RST2)解除生效并使电荷转移控制信号(例如,TX1和TX2)生效。通过启用并联布置的多个浮动扩散节点,使得启用所有读出路径会增加图像像素的总电容,从而将像素设定为在较低转换增益下操作。

在步骤406处,图像像素中的光电二极管(例如,图像像素22的光电二极管34)可响应于入射光产生电荷。

然后可将所产生的电荷的一部分存储于每个读出路径的浮动扩散节点(例如,FD节点40-1和40-2)中,从而在步骤408处在每个对应源极跟随器晶体管的栅极端子处产生电压摆幅。然后可在步骤410处将来自每个使用中的源极跟随器的图像信号合并(即,累加)并从图像像素读出。例如,可通过在行选择晶体管(诸如图3所示的读出晶体管50)的栅极端子处使行选择信号(例如,RowSel)生效来执行读出。该合并图像信号在幅值上可类似于在低曝光模式下操作时图像像素所产生的“低曝光”图像信号,但可具有比常规低转换增益像素所产生的图像信号更高的信噪比。

另选地,可通过执行步骤403、405和407,之后执行步骤404、406和408,从而顺序地进行低增益读出和高增益读出两者。随后,可基于曝光阈值来做出使用哪个图像信号的确定。

在另一个实施方案中,图3所示图像像素的一个读出路径中的浮动扩散节点的电容可明显高于另一读出路径中的浮动扩散节点的电容。例如,CFD2可大于CFD1。图4B的流程图中示出了用于操作此类图像像素的方法中的示例性步骤。

如果在步骤412处确定像素阵列被设定为在低曝光模式下操作,则可在步骤413处选择性地启用具有较低浮动扩散电容的读出路径。例如,可通过使对应的电荷转移控制信号(例如,TX1)生效来开启低电容(即,高增益)读出路径中的转移栅极,向高电容读出路径中的转移栅极提供的电荷转移控制信号保持解除生效。

在步骤415处,可使用图像像素中的光电二极管(例如,光电二极管34)使之响应于给定颜色的入射光而聚积电荷。所聚积的电荷可转移到并存储于低电容读出路径的浮动扩散节点(例如,第一浮动扩散节点40-1)中。在低电容读出路径中的源极跟随器处的所得电压摆幅在步骤417处产生图像信号,然后可在步骤420处通过启用像素的行选择晶体管(例如,通过使读出信号RowSel生效来启用行选择晶体管50)来读出该图像信号。在曝光和读出期间,可通过向对应重置晶体管提供Vss和/或使对应重置信号RST1生效,来将未使用的高电容浮动扩散节点的电势重置为零。

另选地,如果像素阵列被设定为在高曝光模式下操作,则可在步骤414处选择性地启用具有较高浮动扩散电容的读出路径。在图3的实施方案中,可通过使对应电荷转移控制信号(例如,TX2)生效来开启高电容读出路径中的转移栅极。同时,可通过使对应电荷转移控制信号(TX1)解除生效来禁用低电容读出路径中的转移栅极。

一旦启用高电容(即,低增益)读出路径,就可在步骤416处使图像像素中的光电二极管暴露于入射光,从而响应于特定范围的波长产生电荷。所聚积的电荷随后可转移到并存储于高电容浮动扩散节点中。在高电容浮动扩散节点中的源极跟随器处的电压摆幅在步骤418处产生图像信号,可在步骤420处通过启用像素的行选择晶体管(例如,通过使读出信号RowSel生效来启用行选择晶体管50)来读出该图像信号。

另选地,可通过执行步骤413、415和417,之后执行步骤414、416和418,从而顺序地进行低增益读出和高增益读出两者。随后,可基于曝光阈值来做出使用哪个图像信号的确定。

以这种方式配置时,相同图像像素可在低转换增益模式下(在高曝光水平下捕获图像时)或在高转换增益模式下(在低曝光水平下捕获图像时)操作。应当理解,上文结合图4A和图4B所述的步骤仅仅是示例性的,并且在一些情况下,已省略本领域熟知的操作图像像素的次要细节,以免不必要地使得本实用新型的特征晦涩难懂。

一般而言,图像像素所产生的图像信号的信噪比(SNR)可取决于光电二极管暴露于入射光的时间量(有时称为曝光时间或积聚时间)。典型的光电二极管在暴露于光较长时间段时产生较大量的净电荷。因此,给定像素所产生的图像信号的SNR在长积聚时间内可明显更高。因此,两个不同图像像素之间的SNR比较必须考虑每个像素在多种积聚时间时的性能。

图5是示出在低曝光和合并模式下从图3的多转换增益像素读出的图像信号的信噪比随曝光时间变化的函数的示例性曲线图。具体地讲,使用图4A的合并方法产生的图像信号的信噪比可仅略低于(且在一些曝光时间时等于)低曝光模式下的SNR。通常,常规像素在高曝光下捕获的图像信号具有比在低曝光情形下捕获的图像信号明显更高的信噪比。因此,图3的图像像素可通过以下方式表现出与常规低增益图像像素相比在高曝光情形下改善的信噪比:将光电二极管所产生的电荷分布到多个读出路径中的单独浮动扩散节点,并且将所得电压摆幅累加为合并图像信号。

一般来讲,可优化传感器中的图像像素以检测特定波长的可见光。例如,像素阵列20中的每个图像像素22可包括仅透射窄范围波长的光的滤色器。在一个实施方案中,像素22的滤色器元件可为红色滤色器元件(例如,透射红光同时将其他颜色的光反射和/或吸收的光阻材料)、蓝色滤色器元件(例如,透射蓝光同时将其他颜色的光反射和/或吸收的光阻材料)和/或绿色滤色器元件(例如,透射绿光同时将其他颜色的光反射和/或吸收的光阻材料)。具有红色滤色器元件的图像像素可在本文中称为红色图像像素。同样,具有蓝色和绿色滤色器元件的图像像素可分别在本文中称为蓝色像素和绿色像素。

典型图像像素阵列可包括穿插在一起的红色、蓝色和绿色像素,以便有效地捕获整个可见光谱中的光。例如,诸如阵列20中的图像像素的图像传感器像素可设置有滤色器阵列,该滤色器阵列允许单个图像传感器使用被布置成拜耳马赛克图案的红色、绿色和蓝色图像传感器像素对对应的红光、绿光和蓝光(RGB)进行采样。拜耳马赛克图案由重复的2×2个图像像素的单元格组成,其中两个绿色图像像素沿对角线彼此相对,并且邻近与蓝色图像像素沿对角线相对的红色图像像素。图6中示出了典型的拜耳马赛克图案。网格中的每个正方形可表示特定颜色的图像像素。具体而言,阵列20中的图像像素22的每个2×2正方形可包含彼此沿对角线相对的两个绿色图像像素22G以及与蓝色图像像素22B沿对角线相对的红色图像像素22R。

在图6所示的拜耳马赛克图案中,图像像素的每个3×3正方形的拐角可为相同颜色的像素。例如,左下角3×3像素布置的拐角可为红色像素22W、22X、22Y和22Z。总的来说,像素22W、22X、22Y和22Z可在本文中称为相同颜色平面。应当理解,相同颜色平面也可针对一组蓝色像素22B或一组绿色像素22G来定义。因此,像素22W、22X、22Y和22Z为红色像素的图6的示例仅仅是示例性的。

在低曝光情形下,当入射到像素阵列上的光的强度相对较低时,可能希望将来自相同颜色平面的相邻像素的图像信号组合成较大幅值的单个合并信号。以这种方式合并相同颜色平面可减少去马赛克伪影并提供改善的对浮动扩散溢出的处理。然而,将来自空间上分开的图像像素的图像信号合并成组合输出可降低图像传感器的分辨率。因此,还可能希望在不需要合并的情形(即,高曝光图像捕获)下单独地从每个像素读出图像信号。

图7是可在低曝光模式(其中在单个路径上合并和读出来自每个像素的图像信号)和全分辨率模式(其中通过单独路径读出来自每个像素的图像信号)两者下操作的相同颜色的四个图像像素的电路图。四个像素22W、22X、22Y和22Z可例如对应于图6的拜耳马赛克图案中所示的四个红色像素22W、22X、22Y和22Z。

该组中的四个图像像素之一(例如,左上图像像素22W)可具有与图3的图像像素22类似的两个读出路径。具体地讲,第一读出路径可包括具有电容CFD1的第一浮动扩散节点40W-1。接收第一电荷转移控制信号TX1的第一电荷转移栅极38W-1可耦接在浮动扩散节点与光电二极管34W之间。第一重置晶体管也可连接到浮动扩散节点40W-1。第一重置晶体管的栅极端子可接收第一重置信号,而源极端子可接收可变电源信号VW1。第一读出路径还可包括耦接到浮动扩散节点40W-1的源极跟随器晶体管,从而将与所存储的电荷成比例的图像信号传递到像素22W的行选择晶体管。

类似地,像素22W的第二读出路径可包括具有电容CFD2的第二浮动扩散节点40W-2。第二FD节点的电容CFD2可大于第一FD节点的电容CFD1。第二转移栅极38W-2可耦接在光电二极管34W与第二浮动扩散节点40W-2之间。第二源极跟随器晶体管可耦接到第二FD节点40W-2,从而将与所存储的电荷成比例的图像信号传递到行选择晶体管。与第一读出路径中一样,像素22W中的第二读出路径可包括耦接到浮动扩散节点40W-2的第二重置晶体管,该第二重置晶体管接收第二重置信号RST2和可变电源信号VW1。

如图7所示,其他三个图像像素22X、22Y和22Z可具有第二读出路径,这些第二读出路径在结构上与图像像素22W的第二读出路径几乎相同。具体地讲,像素22X、22Y和22Z中的每个第二读出路径可包括具有电容CFD2的浮动扩散节点(即,浮动扩散节点40X、40Y和40Z)。从每个图像像素中的光电二极管34X、34Y和34Z向每个相应浮动扩散节点的电荷转移可由接收电荷转移控制信号TX2的转移晶体管(例如,转移栅极38X-2、38Y-2和38Z-2)选通。浮动扩散节点40X、40Y和40Z可各自耦接到单个源极跟随器晶体管,该源极跟随器晶体管将与所存储的电荷成比例的图像信号分别输出到像素22X、22Y和22Z的行选择晶体管。

然而,与图3的图像像素不同,像素22X、22Y和22Z的第一读出路径可不包括浮动扩散节点。因此,像素22X、22Y和22Z可各自包含仅一个源极跟随器。相反,像素22X、22Y和22Z的第一读出路径可连接到共享光电二极管互连线70(例如,共享图像信号读出路径)。如图7所示,共享光电二极管互连线70可连接到结48W-1,该结在图像像素22W的第一读出路径中耦接到浮动扩散节点40W-1。从光电二极管34X、34Y和34Z到共享光电二极管互连线70上的电荷转移可分别由第一转移栅极38X-1、38Y-1和38Z-1选通。因此,当电荷转移控制信号TX1生效时,光电二极管34X、34Y和34Z所产生的电荷可传递到光电二极管互连线70上并且合并(即,添加和存储)于第一浮动扩散节点38W-1中。这样,节点38W-1可充当所有四个图像像素22W、22X、22Y和22Z的共享浮动扩散节点。耦接到共享浮动扩散节点38W-1的源极跟随器晶体管可将与合并电荷成比例的合并图像信号输出到像素22W的行选择晶体管以便读出。

应当理解,可在与浮动扩散节点和读出电路分开的图像传感器管芯中形成光电二极管34W、34X、34Y和34Z。具体地讲,可在第一图像传感器管芯中形成光电二极管34W、34X、34Y和34Z,该第一图像传感器管芯堆叠在第二管芯的顶部上,该第二管芯包括浮动扩散节点和相关联的读出电路。在这种情况下,图像像素22W、22X、22Y和22Z中的第一读出路径还可包括结48W-1、48X-1、48Y-1、48Z-1、48W-2、48X-2、48Y-2和48Z-2,这些结可将信号线从光电二极管电耦接到其相应读出电路。

在高曝光情形(即,全分辨率模式)下,可根据图4B的方法操作每个图像像素22W、22X、22Y和22Z。具体地讲,可在曝光之前使电荷转移控制信号TX1解除生效,以禁用穿过每个像素中的第一低电容读出路径的电荷转移。在图7的实施方案中,禁用转移栅极38X-1、38Y-1和38Z-1可防止从光电二极管34X、34Y或34Z到共享光电二极管互连线70上的电荷转移。因此,存储于共享浮动扩散节点40W-1中的电荷在全分辨率模式下可为零(即,未执行合并)。另一方面,可使电荷转移控制信号TX2生效以启用每个图像像素的第二高电容读出路径中的转移栅极38W-2、38X-2、38Y-2和38Z-2,从而允许向每个相应浮动扩散节点(例如,浮动扩散节点40W-2、40X-2、40Y-2和40Z-2)的电荷转移。然后每个读出路径中的源极跟随器可将与存储于每个浮动扩散节点中的电荷成比例的单独图像信号输出到像素22W、22X、22Y和22Z中的读出晶体管。这样,可由像素22W、22X、22Y和22Z在高曝光模式下产生不同的图像信号,并且在单独的列线上读出这些图像信号。因此,所有四个像素22W、22X、22Y和22Z如图3的图像像素那样在低转换增益模式下操作。

然而,在低曝光情形下,可在图像捕获操作之前使向高电容读出路径中的转移栅极38W-2、38X-2、38Y-2和38Z-2提供的电荷转移控制信号TX2解除生效。相反,可使电荷转移控制信号TX1生效,以将光电二极管34X、34Y和34Z所产生的电荷传递到共享光电二极管互连线70上。然后可在共享浮动扩散节点40W-1处将共享PD互连70上的电荷与光电二极管34W所产生的电荷合并。之后可在耦接到像素22的单个列线上读出与存储于共享浮动扩散节点40W-1的总电荷成比例的合并图像信号。

因此,图7的布置可允许在低曝光情形(即,低分辨率模式)下合并来自相同颜色平面中的相邻像素的图像信号,同时还允许在高曝光情形(即,全分辨率模式)下通过每个单独的像素产生和读出图像信号。应当理解,虽然图7示出了由共享信号路径连接的四个图像像素,但可将任何合适数量的像素以这种方式连接在一起,以允许对低曝光水平进行图像信号合并。

根据一个实施方案,图像传感器包括光电二极管以及耦接到光电二极管的第一图像信号读出路径和第二图像信号读出路径。第一图像信号读出路径和第二图像信号读出路径中的至少一者基于曝光水平来选择性地切换为使用状态。

根据另一个实施方案,图像传感器还可包括插置在第一图像信号读出路径中的第一电荷转移栅极和插置在第二图像信号读出路径中的第二电荷转移栅极。

根据另一个实施方案,图像传感器还可包括第一图像信号读出路径中的第一浮动扩散节点,其中第一浮动扩散节点具有第一电容;以及第二图像信号读出路径中的第二浮动扩散节点,其中第二浮动扩散节点具有等于第一电容的第二电容。

根据另一个实施方案,在曝光水平较低时可仅启用第一图像信号读出路径。

根据另一个实施方案,在曝光水平较高时可启用第一图像信号读出路径和第二图像信号读出路径两者。

根据另一个实施方案,图像传感器还可包括第一图像信号读出路径中的第一浮动扩散节点,其中第一浮动扩散节点具有第一电容;以及第二图像信号读出路径中的第二浮动扩散节点,其中第二浮动扩散节点具有大于第一电容的第二电容。

根据另一个实施方案,在曝光水平较低时可仅启用第一图像信号读出路径。

根据另一个实施方案,在曝光水平较高时可仅启用第二图像信号读出路径。

根据另一个实施方案,可使用可调电源电压选择性地禁用第一图像信号读出路径。

根据另一个实施方案,图像传感器还可包括向第一图像信号读出路径提供可调电源电压的多路复用器。

根据一个实施方案,提供了操作图像传感器的方法,该方法包括确定曝光水平;使用图像传感器中的光电二极管聚积电荷,其中该光电二极管耦接到第一图像信号读出路径和第二图像信号读出路径;以及基于该曝光水平来选择性地启用第一图像信号读出路径和第二图像信号读出路径中的至少一者。

根据另一个实施方案,该方法还可包括禁用第一图像信号读出路径和第二图像信号读出路径中的至少一者,同时启用所选择的图像信号读出路径。

根据另一个实施方案,其中基于该曝光水平来选择性地启用第一图像信号读出路径和第二图像信号读出路径中的至少一者任选地包括:响应于确定该曝光水平小于预定阈值,选择性地仅启用第一图像信号读出路径,以及响应于确定该曝光水平大于预定阈值,同时启用第一图像信号读出路径和第二图像信号读出路径。

根据另一个实施方案,其中基于该曝光水平来选择性地启用第一图像信号读出路径和第二图像信号读出路径中的至少一者任选地包括:响应于确定该曝光水平小于预定阈值,选择性地仅启用第一图像信号读出路径,以及响应于确定该曝光水平大于预定阈值,选择性地仅启用第二图像信号读出路径。

根据一个实施方案,提供了包括多个图像传感器像素的图像传感器,每个图像传感器像素包括光电二极管和第一图像信号读出路径。该多个图像传感器像素耦接到共享图像传感器读出路径。该多个图像传感器像素在高曝光模式期间单独地使用第一图像信号读取路径来读出信号,并且该多个图像传感器像素在低曝光模式期间使用共享图像传感器读出路径来读出信号。

根据另一个实施方案,该多个图像传感器像素可全部与相同颜色相关联。

根据另一个实施方案,第一图像信号读取输出路径可具有第一浮动扩散电容,并且共享图像传感器读出路径可具有小于第一浮动扩散电容的第二浮动扩散电容。

根据另一个实施方案,可在第一管芯中形成该多个图像传感器像素的第一部分,并且可在堆叠在第一管芯顶部上的第二管芯中形成该多个图像传感器像素的第二部分。

根据另一个实施方案,可在第二管芯中形成该多个图像传感器像素的每个图像传感器像素的光电二极管,并且可在第一管芯上形成第一浮动扩散电容和第二浮动扩散电容。

根据另一个实施方案,该多个图像传感器像素中的给定图像传感器像素可具有两个源极跟随器晶体管,并且该多个图像传感器像素中除给定图像传感器像素以外的每个图像传感器像素可仅具有一个源极跟随器晶体管。

前述内容仅是对本实用新型原理的示例性说明,因此本领域技术人员可以在不脱离本实用新型的实质和范围的前提下进行多种修改。上述实施方案可单独地或以任意组合方式实施。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1