阵列天线发射链路的校准设备及方法

文档序号:72500阅读:354来源:国知局
专利名称:阵列天线发射链路的校准设备及方法
技术领域
本发明涉及无线通信技术领域
的阵列天线校准技术,具体地说,涉及校准阵列天
线发射链路的装置和方法,不仅适用于相控阵雷达系统的发射链路的幅度相位一致性校 准,而且适用于无线通信系统中采用阵列天线的智能天线基站发射链路的在线校准。
技术背景
在蜂窝式无线通信系统中,随着用户数量的增加,频谱的拥塞和同信道干扰越来 越严重,为了解决这些问题,希望通过使用智能天线技术及阵列信号处理技术来改善蜂窝 式无线通信系统的通信质量,扩大基站的覆盖范围,提高系统容量。
对于无线通信网络中的一个基站而言,其接收到的上行信号中既有本小区移动台 发出的信号,还有其他小区移动台发出的同频信号。当无线通信网络中的小区越多时,同频 干扰就越严重,因此同频干扰会直接影响基站和移动台的接收效果,使得基站的有效覆盖 半径降低,通信质量变差。为了解决同频干扰所带来的问题,基站需能够对上行信号实现选 择接收来抑制干扰,对下行信号实现定向发送,即下行波束的主瓣指向期望的用户,而在其 他用户方向形成零点或强度较低的波束旁瓣,这样可以减少小区之间的同信道干扰,扩大 小区覆盖范围并改善通信质量。
实现基站的定向接收和发送可以采用传统的波束形成技术,例如自适应波束形成 技术。采用自适应波束形成技术时,波束的主瓣可以始终指向期望移动用户的方向,且可以 跟随用户的移动。在时分双工(TDD)模式下,上行下行信号在空中的传播路径是对称的,即 上行信号和下行信号的传播路径相同,只是传播方向相反,因此可将通过自适应算法计算 出的波束权值直接应用于下行方向,即可实现定向发送。但是,由于接收通道间以及发射链 路间存在幅相误差,直接应用上行波束权值会影响下行的指向精度,因此需要对上下行通 道和馈线进行校正以补偿幅相误差。在频分双工(FDD)模式下,由于上下行的频点不同,因 此上下行的信道也不同,上行权值也就不能直接应用于下行。但是通过上行可以估计出信 号的来波方向D0A, DOA信息可以应用于下行指导发送,但是要形成给定指向的波束,也必 须对发射链路和馈线进行校正。
除了自适应波束形成方法,还可以采用相对简单的固定多波束方法来实现定向接 收和发送。固定多波束形成是用几个固定指向的上行波束和下行波束覆盖整个扇区的接收 和发送,固定多波束形成的波束权值可以通过仿真的方法确定,但是由于仿真时无法确定 实际系统的上行下行通道的幅相特性,因此只能认为上下行通道的幅相特性是一致的,和 自适应波束形成方法类似,需要对下行波束进行准确地赋形,必须对发射链路和馈线进行 校正。
在无线通信系统中,下行公共信道是广播发送的,如果采用数字波束形成,可以通 过仿真计算获得一组全向波束权值进行全向广播覆盖,或计算获得一个宽波束权值进行 下行扇区广播覆盖。如果采用巴特勒(Butler)矩阵进行波束形成,需要事先计算或测量 Butler矩阵的等效波束权值,然后在基带进行二次波束形成以解决下行公共信道的发送问题。同理,要对上述方法形成的宽波束进行准确地赋形,也必须对发射链路和馈线进行校 正。
现有的阵列天线及发射链路的校正方法很多,下面给出几种常用的方法。
(1)美国专禾U 4, 488, 155 "Method and apparatus for self-calibration and
phasingof array antenna"和中国专利申请01800020. 7 "阵列天线无线通信装置和校准
方法"给出了一类校准阵列天线和发射链路的方法,这种方法是在工程现场用仪器测量各
个发射链路的增益和相位,然后用测量结果来校准阵列,这种方法最大的缺点是采用离线
校准的方式,无法对时变的阵列误差进行校准,不利于工程使用和维护,特别不适合已经投
入运营的通信系统。
(2)美国专利6, 615, 024"Method and apparatus for determining signatures forcalibrating a comm皿ication station having an antenna array,,、中国专利申请 00815528. 3 "用于校准智能天线阵列的方法与装置"和中国专利申请02142694. 5 "用于校 准阵列天线的装置和方法"也给出了一类校准阵列天线的方法。在这些技术方案中,需在 天线阵的远场区域或近场区域放置一个信标天线以及相应的校准信号收发信机。在进行上 行校准时,由信标天线发送校准信号,基站接收校准信号;在进行下行校准时,由基站发送 校准信号,信标天线接收校准信号,然后计算出基站上下行链路的校准权值。这种校准方法 的优点是可以对整个收发链路的幅度相位的一致性进行校准,但由于需要校准信号收发信 机、信标天线等设备,因此增加了基站实现的复杂程度和成本,另外信标天线放置在远场区 域时会产生比较严重的多径信号影响,而放置在近场区域时校准信号到达天线阵时是非平 面波,因此导致校准权值的计算很复杂。
(3)美国专禾U 6, 600, 445"Method and device for calibrating smart ante皿a array,,、6, 236, 839 "Method and apparatus for calibrating a smart antenna array,,、6, 157, 340 "Adaptive antenna array subsystem calibration,,、中国专利申请 01112987. 5 "智能天线通道阵列校正方法及装置"、01122536.X "—种闭环校正的双极化智 能天线阵系统"、01809947. 5 "阵列天线接收装置的校正系统"和03102791. 1 "阵列天线校 准装置和阵列天线校准方法"都给出了一类阵列天线的校准方法。在这一类方法中,认为各 天线单元和相应的天馈线的增益和相位的不一致性误差是非时变的,首先用仪器测量这部 分的增益和相位,并保存该测量结果,然后在每个链路的射频前端设计一个耦合器以及与 该耦合器相连接的校准信号收发信机,校准方法与第(2)类校准方法基本类似,由于计算 获得的校准权值不是整个链路的校准权值,因此需要用测量结果进行修正。这种方法相比 于第(2)类方法,其优点在于不使用信标天线和相应的天馈线,但仍然需要校准信号收发 信机,对天线单元和天馈线的幅度相位特性需要测量,导致校准装置复杂,成本较高。

发明内容
本发明所要解决的技术问题在于提供一种阵列天线发射链路的校准设备及方法,
克服现有阵列校准技术中校准装置复杂、需要专用的校准信号收发装置、天馈线的幅度相
位特性需要测量以及工程实用困难等缺点,简化系统的复杂度和实现难度。
本发明所述阵列天线发射链路的校准设备,所述阵列天线发射链路包括阵列发信
机、n个功率放大器、n个上下行信号分离装置和n个天线单元,阵列发信机、n个功率放大器和n个上下行信号分离装置位于基站中,基带信号处理模块的输出进入阵列发信机中, 由阵列发信机发出n路信号,经过功率放大器和上下行信号分离装置后,从天线单元发送 出去;
所述校准设备包括功率检测信号分离装置、功率检测信号馈电装置、功率检测装 置、信号合成装置和阵列校准装置;
所述功率检测信号分离装置,接收来自上下行信号分离装置的信号,滤除射频信 号中的直流信号,并将高频的射频信号发送给所述功率检测信号馈电装置;同时,从所述功 率检测信号馈电装置发送的信号中提取功率信号,进行校准权值调整,将调整后的校准权 值发送给所述阵列校准装置;
所述功率检测信号馈电装置,一方面将所述功率检测信号分离装置输出的高频射 频信号发送给所述信号合成装置, 一方面将所述功率检测装置输出的功率信号与高频射频 信号合路,并将混合信号发送到所述功率检测信号分离装置;
所述功率检测装置,用于对来自所述信号合成装置的射频信号进行功率检测,并 输出功率信号给所述功率检测信号馈电装置;
所述信号合成装置与n个天线单元相连,用于合成射频信号,输出给所述功率检 测装置;
所述阵列校准装置,位于基带信号处理模块与阵列发信机之间,用于根据调整后 的校准权值对阵列天线发射链路进行校准。
在本发明校准设备中,所述信号合成装置、功率检测装置和功率检测信号馈电装
置可与n个天线单元组成一个室外单元,通过一组射频电缆与基站相连。
本发明所述阵列天线发射链路的校准方法,包括以下步骤首先获取发射链路的
增益校准权值初始值和相位校准权值初始值;然后计算发射链路的增益校准权值和相位校
准权值;使用上述计算出的校准权值对阵列发射链路的增益和相位进行校准。
本发明所述设备及方法与现有阵列校准技术相比,不使用专门用于阵列天线校准
的校准信号收发装置和信标天线,而采用信号功率检测的方法来计算发射增益校准权值和
发射相位校准权值,算法简单,其收敛速度较快,收敛精度也比较高;另外在进行校准时无
需专用的校准信号引入系统,不影响系统正常通信。本发明还大大简化了系统的复杂度,便
于工程应用。


图1是本发明校准设备的结构示意图;
图2是第一实施例中信号合成装置1、功率检测装置2和功率检测信号馈电装置3 的示意图;
图3是第一实施例中功率检测信号分离装置4的示意图;
图4是第二实施例中信号合成装置1、功率检测装置2和功率检测信号馈电装置3 的示意图;
图5是第二实施例中功率检测信号分离装置4的示意图;
图6是本发明的发射链路增益校准的流程示意图;
图7是适用于第一实施例所示校准设备的发射链路相位校准流程示意图;[0029]
图8是适用于第二实施例所示校准设备的发射链路相位校准流程示意图。
具体实施方式
下面结合附图和实施例,对本发明的技术方案做进一步的详细描述。
本发明技术方案的核心思想在于通过检测发射信号功率值来计算发射链路的校
准权值,实现对阵列天线的发射链路的校准。
如图1所示,本发明提供的校准设备包括位于室外单元100中的信号合成装置1、 信号功率检测装置2和功率检测信号馈电装置3,以及位于基站300中的功率检测信号分离 装置4和阵列校准装置5,室外单元100与基站300之间通过射频电缆200通信。而阵列天 线发射链路一般可由基带信号处理模块、阵列发信机6、 n个功率放大器7、 n个上下行信号 分离装置8和n个天线单元构成,除天线单元位于室外单元100以外,其余装置均处于基站 300中。
当对阵列天线的发射链路进行校准时,阵列发信机6发出一路或多路下行信号, 经过各自链路的功率放大器7放大功率后,再通过上下行信号分离装置8后到达功率检测 信号分离装置4。在功率检测信号分离装置4中,滤除射频信号中的直流信号,高频的射频 信号可以直接通过,并通过射频电缆200发送到室外单元100中的功率检测信号馈电装置 3。高频的射频信号通过功率检测信号馈电装置3到达信号合成装置l,一部分射频信号在 信号合成装置1中被分离出来,剩余的射频信号通过n个天线单元发射出去。分离出来的 射频信号被发送给功率检测装置2进行功率检测,然后由功率检测装置2将功率信号输出 给功率检测信号馈电装置3。功率检测信号馈电装置3将功率信号与高频的射频信号合路, 并将混合信号通过射频电缆200发送到功率检测信号分离装置4。然后功率检测信号分离 装置4从混合信号中提取出功率信号,并调整校准权值,再将调整后的校准权值发送给阵 列校准装置5。阵列校准装置5位于基带信号处理模块与阵列发信机6之间,收到调整后的 校准权值后,对阵列天线的发射链路进行校准,控制阵列发信机6的输出。 图2给出了信号合成装置1、功率检测装置2和功率检测信号馈电装置3的一个实 施例,适用于基站的下行(射频)波束采用巴特勒矩阵形成的情况。
在本实施例中,信号合成装置1包括巴特勒矩阵、(n-l)个耦合器9、 (n-l)个滤波 器10和(n-l)个可调衰减器11,其中耦合器9、滤波器10和可调衰减器11只在前(n-l)个 发射链路上有。高频的射频信号直接从功率检测信号馈电装置3通过后到达信号合成装置 1中,在信号合成装置1中进行射频波束形成,波束形成后的每一路射频信号中有少部分射 频信号通过耦合器9分离出来,分离射频信号时,对源射频信号造成的衰减应不大于ldB, 例如可选择分离出的射频信号的功率是源信号功率的1/1000。剩余的大部分射频信号通过 天线单元发射出去。分离出来的射频信号经过滤波器10的滤波和可调衰减器11的衰减后 进入信号功率检测装置2中。
由于巴特勒矩阵的下行波束形成链路可以等效为一个功分器和一些移相器组成 的网络,当只有一个发射链路发射信号时,巴特勒矩阵与每个天线单元的接口都有信号输 出,而且每个端口输出的信号功率相同,只是信号的相位不同,可以等效成一个功分器;当 所有的下行链路发射信号时,巴特勒矩阵与每个天线单元的接口都有信号输出,取其中任 意一个输出端口的信号来看,其特性是所有下行发射链路发射的信号的合成,等效为一个信号合路器。因此在进行发射链路校准时,可以直接应用巴特勒矩阵的信号合成和信号功 分特性,不需要专用的信号合路器,信号合成直接在主链路上完成。为了不影响高频射频信 号接收和发射,在进行功率检测前必须用耦合器9耦合一部分信号用于功率检测。 信号功率检测装置2包括(n-l)个检波器12和(n_l)个放大器13,对应第1发射 链路至第(n-l)发射链路,第n发射链路只用于传输电源信号,向室外单元100供电。信号 合成装置1输出的信号经过检波和放大处理后,形成功率信号,输出到功率检测信号馈电 装置3。由于采用巴特勒矩阵作为信号合成装置l,当只有第n发射链路发射信号时,该发 射链路的信号功率可以从巴特勒矩阵的其他天线单元输出口检测到,因此该发射链路上的 检波器和放大器等装置可以省略。
功率检测信号馈电装置3包括n个信号馈电单元,分别对应n个发射链路,每个信 号馈电单元都包括感性电路L、容性电路C1和容性电路C2。对于第1发射链路至第(n-l) 发射链路上的信号馈电单元,其中感性电路L用于将信号功率检测装置2输出的功率信号 中的低频信号与高频的射频信号合路,容性电路C2用于滤除功率信号中的高频分量,容性 电路C1则用于防止功率检测信号中的低频信号发送到天线单元;而第n发射链路上的感性 电路L是用于将电源信号从高频的射频信号中分离出来,容性电路C2用于滤除电源信号中 的高频分量,容性电路C1可以防止电源信号发送到天线单元。前(n-l)路功率信号的低频 信号通过感性电路L和容性电路C2与高频的射频信号合路,合路后的混合信号通过相应的 射频电缆200传输到功率检测信号分离装置4。
如图3所示,功率检测信号分离装置4包括n个感性电路L、 n个容性电路C3、 n 个容性电路C4、 (n-l)个A/D转换器和校准权值计算装置14,其中第n发射链路没有A/D转 换器。对于第l至第(n-l)发射链路,感性电路L用于把功率信号从合路信号中分离出来, 容性电路C4用于滤除功率信号中的高频分量,容性电路C3则防止功率信号发送给对应发 射链路的上下行信号分离装置8 ;而对于第n发射链路,感性电路L用于把电源信号与高频 的射频信号合路,容性电路C4用于滤除电源信号中的高频分量,容性电路C3则防止电源信 号发送到第n上下行信号分离装置8。混合信号输入后,通过第1至第(n-l)发射链路的 感性电路L和容性电路C4提取出低频的功率信号,并通过容性电路C3从混合信号中滤除 功率信号。然后低频的功率信号经过A/D转换器进行A/D变换,变换后的功率信号发送到 校准权值计算装置14中,校准权值计算装置14根据收到的功率信号的大小调整校准权值。 调整后的校准权值发送到阵列校准装置5中,用于校准各个发射链路。 通过图2和图3所示的装置,可以对阵列天线的发射链路不断进行校准,直到发射 链路满足一致性要求为止。
图4给出了信号合成装置1、功率检测装置2和功率检测信号馈电装置3的另一个 实施例,适用于在基站的基带进行下行波束形成的情况。
在本实施例中,信号合成装置1由n个耦合器15、 n个滤波器16和一个n路信号 合路器17组成。高频的射频信号直接从功率检测信号馈电装置3通过后到达信号合成装 置1中。每一路射频信号中有少部分的射频信号被耦合器15分离出来,剩余大部分射频信 号通过n个天线单元发射出去。被分离出来的射频信号经过滤波器16的处理后送入合路 器17中,然后将合路后的射频信号输出给功率检测装置2。
功率检测装置2由检波器18和放大器19组成。合路后的射频信号经过检波器18和放大器19的处理后形成功率信号,送入功率检测信号馈电装置3中。[0044] 功率检测信号馈电装置3包括在第1发射链路和第n发射链路上的感性电路L、容性电路C1和容性电路C2,其中第1发射链路上的感性电路L用于把功率信号中的低频信号与高频的射频信号合路,容性电路C2用于滤除功率信号中的高频分量,容性电路C1则防止功率信号中的低频信号发送到天线单元;第n发射链路上的感性电路L用于把电源信号从高频的射频信号中分离出来,容性电路C2用于滤除电源信号中的高频分量,容性电路Cl则防止电源信号发送到天线单元。功率信号被第1发射链路的容性电路C2滤波后通过感性电路L与第1发射链路的高频射频信号合路。由于只有一路功率信号,实质上该路功率信号可以和任意一条链路的高频信号合路后传送到基站,只需在相应的链路上设置感性电路L、容性电路C1和容性电路C2。在本实施例中,选择了与第l发射链路的高频信号合路。[0045] 合路后的混合信号通过相应的射频电缆200传输到基站300中的功率检测信号分离装置4。
如图5所示,功率检测信号分离装置4包括在第1发射链路和第n发射链路上的感性电路L、容性电路C3和容性电路C4,还包括了 A/D转换器和校准权值计算装置20 ;其中第1发射链路上的感性电路L是用于把功率信号从合路信号中分离出来,容性电路C4是用于滤除功率信号中的高频分量,容性电路C3则防止功率信号发送到第1上下行信号分离装置8 ;而第n发射链路上的感性电路L是用于将电源信号与高频的射频信号合路,容性电路C4是用于滤除电源信号中的高频分量,容性电路C3则防止电源信号发送到第n上下行信号分离装置8。混合信号在功率检测信号分离装置4中,首先通过第1发射链路上的感性电路L和容性电路C4提取出低频的功率信号,并通过容性电路C3从混合信号中滤除功率信号,然后低频的功率信号输出到A/D转换器中进行A/D变换,A/D变换后的功率信号发送到校准权值计算装置20中。校准权值计算装置20根据功率信号的大小调整校准权值,并将调整后的校准权值发送给阵列校准装置5,用于校准各个发射链路。
通过图4和图5所示的装置,可以对阵列天线的发射链路不断进行校准,直到发射链路满足一致性要求为止。
在本发明中,通过信号合成装置1从每个天线单元(或从基站的每个天线口 )耦合一定能量的下行信号,然后把耦合的下行信号送入信号功率检测装置2中进行信号功率测量,因此本发明不需要通过外场信标天线进行合成信号功率的测量。
本发明提供的阵列天线的发射链路的校准方法包括以下步骤首先获取发射链路的增益校准权值初始值和相位校准权值初始值;然后计算发射链路的增益校准权值和相位校准权值;使用上述计算出的校准权值对阵列发射链路的增益和相位进行校准。下面对本发明方法的每一步骤进行详细地介绍。
校准权值初始值的计算可以在基站投入运营前完成。
控制基带信号使基站同时只有一个链路发射信号,调整该链路的增益校准权值,使该链路的发射信号功率达到额定值,则此时的增益校准权值即是该链路的增益校准权值的初始值。对基站的所有发射链路执行上述操作,获得每个发射链路的增益校准权值的初始值。
获得发射链路相位校准权值的初始值的方法根据下行波束形成方式的不同略有区别。
12[0053] 对于采用巴特勒矩阵实现下行波束形成的第一实施例,首先在基带控制所有发射链路发射相同相位的信号,然后选定第1发射链路作为参考通道,其余发射链路作为被校准通道,调整被校准通道的发射信号相位,使得第1天线单元的信号功率最高,其余天
线单元的信号功率最低,保存此时发射链路的相位调整系数,用向量lo
…-一,j表
示。然后计算巴特勒矩阵的等效发射系数矩阵的逆矩阵WbutH或Wbut—、并选取上述逆矩阵的第一行向量,用Fw^-^ -1>2…^,,_|表示,则发射链路的相位校准权值的初始值为
0
" …^
对于在基带进行下行波束形成的第二实施例,首先选定一个发射链路作为参考通道,其余发射链路作为被校准通道,在基带控制参考通道和一个被校准通道同时发射信号,调整该被校准通道的基带信号的相位,使得这两个通道发射的信号的合成信号的功率最低,此时该被校准通道的相位调整系数的共轭就是该通道的相位校准权值的初值;如果合成信号的功率最高,那么该被校准通道的相位调整系数就是该通道的相位校准权值的初始值。选择另一个被校准通道,重复上述操作,直至获得所有发射链路的相位校准权值的初始值。
在获得了所有发射链路的增益校准权值的初始值和相位校准权值的初始值后,基
站投入正常运营,可对发射链路的校准权值进行计算,该步骤是本发明方法的核心。校准权
值的计算包括增益校准权值的计算和相位校准权值的计算。
首先计算发射链路的增益校准权值,并校准发射链路的增益。
对于智能基站,每条发射链路的额定发射功率是确定的、已知的功率值P^但由于每条链路的发信增益不同,则每条发射链路的发射信号功率不一定能达到额定功率值PTX。在校准发射链路增益时,只需将每条发射链路的发射信号功率值调整到额定功率值PTX,就完成了发射链路的增益校准。
图2和图3所示的第一实施例以及图4和图5所示的第二实施例的发射链路增益校准权值的计算方法是相同的。
在第一实施例中,波束形成装置采用巴特勒矩阵。巴特勒矩阵的下行波束形成链路可以等效为一个功分器和一些移相器组成的网络,当只有一个发射链路发射信号时,巴特勒矩阵与每个天线单元的接口都有信号输出。假设该发射链路发射的信号功率为P (dBm),那么巴特勒矩阵的每个天线单元的接口输出信号功率为(P-201Ogl。N-Pwss) (dBm),其中N表示阵元数,PMSS为已特勒矩阵的链路损耗功率。
在第二实施例中,信号合成装置1是由一个信号合路器17、多个耦合器15和多个滤波器16组成的。当只有一个发射链路发射信号时,假设耦合器15从该发射链路分离出的信号功率为P(dBm),那么信号合成装置1输出信号的功率为P-P,(dBm) , P,为信号合成装置1的链路损耗功率。
在智能基站系统中,每条发射链路的增益校准权值是存储在固定位数存储器中的定点数,因此发射链路的增益校准权值的值域范围是已知的,而且每条发射链路的发射功率是随发信增益校准权值单调变化的,那么在校准发信增益时,以额定发射功率Pn作为校准的基准功率值,然后用优化算法调整每条发射链路的发信增益校准权值,直到每条发射链路的发射功率都满足规定的发射功率Pn为止。在本发明中,发射链路的增益校准权值是 一组8位定点数,其值域范围是[0,255],因此调整发射链路的增益校准权值的方法可采用 二分法。校准发射链路的增益的具体执行步骤如图6所示。
首先设置发射链路号NumCh = 1 (步骤601),判断链路号NumCh是否不大于阵列 天线的发射链路数n (步骤602),如果链路号大于发射链路数n,则增益校准结束(步骤 611)。如果链路号小于等于发射链路数n,则在基带控制第NumCh条发射链路发射信号(步 骤603);然后检测发射信号的功率,产生功率信号(步骤604)。对上述功率信号进行A/ D变换,获得发射信号的功率P,并判断该功率P与额定功率PTX的差的绝对值是否小于允 许的误差,如ldB (步骤605),如果小于则将当前发射链路号加1 (步骤606),然后转至步 骤602 ;如果大于等于允许的误差,则判断是否可以继续校准(步骤607),可以采用下述方 法进行判断判断二分法的迭代次数是否超过设定的次数,如果超过则认为不能继续校准; 如果没有超过设定的次数,则进一步判断增益校准权值是否是最大或者相邻两次二分法迭 代的权值是否相同,如果增益校准权值已经最大或相邻两次二分法迭代的权值相同,则认 为不能继续校准。执行步骤607后,如果可以继续校准,则采用二分法调整该发射链路的增 益校准权值(步骤608),然后根据更新后的增益校准权值校准第NumCh条发射链路,然后再 转至步骤602。如果不能继续校准,则提示第NumCh条发射链路增益校准失败(步骤610), 结束本次发射链路增益校准。
在校准了发射链路的增益权值后,计算发射链路的相位校准权值,并校准发射链 路的相位。对于下行波束采用不同方式形成的情况,发射链路相位校准方法略有区别。
图2和图3所示的第一实施例,其下行波束的形成是采用巴特勒矩阵进行波束形 成的。
通过理论计算或实际测量,可以得到巴特勒矩阵对发射信号的加权系数。根据理 论计算可知巴特勒矩阵的发射链路的等效加权系数矩阵是一个酉矩阵,记为Wbut,这个酉矩 阵的共扼转置矩阵为WbutH,根据酉矩阵的性质有KJ^^-"E。如果是实际测量的巴特勒矩
阵的发射链路的等效加权系数矩阵,则由于巴特勒矩阵本身的误差,其等效加权系数矩阵 不是一个酉矩阵,但是有『^『J =五成立,E为单位阵。
假设各个发射链路的幅度不一致的误差非常小,且相位不一致的误差也非常小, 使得幅度不一致和相位不一致的误差对波束形成效果的影响可以忽略不计,则选择等效加
权系数矩阵的共轭矩阵WbutH或逆矩阵Wbut—1中的任意一个行向量Vb必er,i =(小u小i,2…
小i,J作为一组波束权值,当每个发射链路的基带信号幅度相位特性都相同时,用这组波束 权值对每路信号进行加权,然后再传输到巴特勒矩阵进行射频波束形成,那么预期的波束 形成效果是在巴特勒矩阵的天线单元接口中只有一路天线单元端口有输出,而其它天线 单元端口没有信号输出。
但是对于实际的阵列发射链路来说,由于各个链路的增益不一致和相位不一致的 影响,当上述波束形成后的信号通过阵列发射链路时,相当于发射链路对波束进行了再次 加权,而且这种幅度相位的加权对每条发射链路都不相同,虽经过巴特勒矩阵对信号进行 再次波束形成,但上述预期的波束形成效果不会出现。
在对发射链路相位校准时,将理论计算的波束权值Vbuhe^ = Wu小i,2…作
为发射链路的相位校准权值的初值,其中i《n,当阵列发射链路的增益和相位被校准后,
14波束权值Vbuh^i =(小u小i,2…小i,J可以使巴特勒矩阵波束形成后只在第i个天线单元 端口有信号输出,而在其它天线单元端口都没有信号输出。在发射链路相位校准过程中,不 断调整这组波束权值,直到巴特勒矩阵波束形成后的信号只在第i个天线单元端口有信号
输出,而在其它天线单元端口都没有输出为止,此时发射链路的波束权值记为b^…wj,
在本发明中选择发射链路的相位校准权值是一组8位定点数,值域范围是[0, 255],采用直接搜索法对相位校准权值进行计算。校准发射链路的相位的具体执行步骤如 图7所示。
首先进行参数设置,阵列天线的发射链路共有n条,设置发射链路号NumCh = 1, 设置相位校准权值的初值Wphase(O) = [O,O,...,O],最大循环次数为M,循环变量loop的 初值为0(步骤701)。在基带控制所有发射链路的发射信号(步骤702),检测发射信号的 功率,形成功率信号(步骤703),然后对上述功率信号进行A/D变换,并获得发射信号功率 P,保存该功率值(步骤704)。将第NumCh条发射链路的相位校准权值加1 (步骤705),判 断第NumCh条发射链路的相位校准权值是否不超过相位校准权值的值域范围(步骤706), 如255。如果不超过,则对第NumCh条发射链路的相位进行校准(步骤708),然后转至步骤 703。如果超过了值域范围,则判断发射信号功率P的变化范围是否满足要求(步骤707), 如果不满足,则提示第NumCh条发射链路的相位校准失败(步骤709),结束本次相位校准 过程。如果满足要求,则记录发射信号功率P的最大值对应的相位校准权值WNumCh (步骤 710),再将发射链路号加1,即NumCh = NumCh+l (步骤711),然后判断发射链路号是否超过 n(步骤712),如果没有超过,则转至步骤703 ;如果超过了 ,则设置发射链路号NumCh为1, 将循环变量加1 ,即loop = loop+1 ,相位校准权值Wphase (loop) = [w (1) , w (2) , , w (n)] 就是WNumCh (步骤713)。判断当前相位校准权值Wphase (loop)是否等于上一次的相位校 准权值Wphase (loop-l)(步骤714),如果相等,则表示发射链路相位校准成功,用巴特勒矩 阵的发射链路的等效加权系数矩阵的酉矩阵WbutH或逆矩阵Wbut—1中的第一个行向量Vbu^u 来修正计算的相位校准权值,即WPHASE = WPHASE (loop) /VbultCTa,相位校准结束(步骤715)。如 果不相等,则判断循环变量loop是否大于最大循环次数M(步骤716),如果是,则提示发射 链路相位校准失败,相位校准结束(步骤717),否则转至步骤703。当相位校准成功后,用 新的相位校准权值替换相位校准权值的初始值。
图4和图5所示的第二实施例,在基站的基带中实现下行波束形成。在该实施例 下的发射链路相位校准方法如下所述。
以阵列天线中任意一个发射链路作为基准,然后用算法调整其余发射链路的相 位,使其余发射链路的相位与这个基准链路的相位相同。判断相位相同的准则是输出信号 的功率值达到最大。
当智能基站的发射链路的发信增益被校准后,智能基站的发射链路的冲击响 应特性可描述为/=[從翔…從沐了,其中a表示发射链路的幅度(增益), cK表示第n条发射链路的相位,T表示转置运算。假设发射链路的相位校准权值为 『/> ^=[l …e^;T,那么经过相位校准后的发射链路的冲击响应特性可以描述为
那么最后发射链路的相位校准权值为『;} = ^飛+A)…^崩'W")]r,其中Pn表示相位校准权值的相位。
当下行基带信号为s时,下行波束形成权值可设置为nXn的单位阵e。,那么阵列 天线的输出为X = en A s+n = A s+n。
假设各天线单元以线阵方式进行组阵,那么这组波束权值在垂直于天线阵平 面的方向上合成的信号可表示为S A+A",可以看出
.114VW"'+"+…+ e,"+A)i",因此合成的信号s有最大模值,为|S| 二nas,此时|32
因此通过调整|32,…,Pn的值,可以获得最大强度的合成信号,当合成信 号强度最大时,对应的向量『冊舰=[1 e應…e说f:[l 一(")…e颜^);f就
是阵列天线发射链路的校准权值。那么校准后的发射链路的冲击响应特性可描述为
爿=『所鄉.」'=["一'ae瓶+"2)…aeMK F==[aeM ...泥化f,从上式
可以看出,校准后的各发射链路的相位特性已经相同。
下面给出计算发射链路相位校准权值的方法,在调整|32, ... , Pn的值时,假设J
=lnas-p(n) I作为目标函数,其中p(n)是合成信号的功率值,将P 2, . . . , !^作为变量, 使用优化算法计算出最优的相位校准权值。可以看出这是一个(n-l)维的无约束非线性规 划问题,计算发射相位校准权值的算法很多,如用改进的单纯型法或其他优化算法都有比 较快收敛速度和比较高的收敛精度。在智能基站系统中,发射相位校准权值也是用固定位 数存储器保存的定点数,因此发射相位校准权值也有固定的值域范围。在本发明中发射链 路的相位校准权值是一组8位定点数,值域范围是[0,255],采用了直接搜索法进行相位校 准权值的计算,具体执行步骤如图8所示。
首先,设置发射链路号NumCh = 2,将所有发射链路的相位校准权值初值设置为0, 即Wphase二 [O,O,...,O](步骤SOl)。判断发射链路号NumCh是否小于或等于阵列中的发 射链路数n (步骤802),如果大于,则结束此次发射链路相位校准;如果小于或等于n,则在 基带控制第1条发射链路和第NumCh条发射链路的发射信号(步骤803)。检测发射信号的 功率,形成功率信号(步骤804),然后对上述功率信号进行A/D变换,获得发射信号的功率 P,并保存该功率值(步骤805)。将第NumCh条发射链路的相位校准权值加1 (步骤806), 判断第NumCh条发射链路的相位校准权值是否小于或等于相位校准权值的值域范围(步骤 807),如255,如果满足小于或等于值域范围,则对第NumCh条发射链路相位进行校准(步 骤809),然后转至步骤802。如果大于值域范围,则判断发射信号功率P的变化范围是否满 足要求(步骤808),如果不满足要求,则提示第NumCh条发射链路的相位校准失败(步骤 812);如果满足,则记录发射信号功率P最大值对应的相位校准权值(步骤810),然后将发 射链路号加1,即NumCh = NumCh+l (步骤811),然后转至步骤802。当相位校准成功后,用 新的相位校准权值替换相位校准权值的初始值。
对于发射链路的增益校准和相位校准,按照本发明的思路,也可以用其他优化算 法来完成,其实质并没有脱离本发明的精神实质。
最后所应说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管参 照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明 的技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围,其均应涵盖在本发明的权利要求
范围当中。
1、一种阵列天线发射链路的校准设备,所述阵列天线发射链路包括阵列发信机、n 个功率放大器、n个上下行信号分离装置和n个天线单元,阵列发信机、功率放大器和上下 行信号分离装置位于基站中,基带信号处理模块的输出进入阵列发信机中,由阵列发信机 发出n路信号,经过功率放大器和上下行信号分离装置后,从天线单元发送出去;其特征在
于,
所述校准设备包括功率检测信号分离装置、功率检测信号馈电装置、功率检测装 置、信号合成装置和阵列校准装置;其中
所述功率检测信号分离装置,接收来自上下行信号分离装置的信号,滤除射频信 号中的直流信号,并将高频的射频信号发送给所述功率检测信号馈电装置;同时,从所述功 率检测信号馈电装置发送的信号中提取功率信号,进行校准权值调整,将调整后的校准权 值发送给所述阵列校准装置;
所述功率检测信号馈电装置,一方面将所述功率检测信号分离装置输出的高频射 频信号发送给所述信号合成装置, 一方面将所述功率检测装置输出的功率信号与高频射频 信号合路,并将混合信号发送到所述功率检测信号分离装置;
所述功率检测装置,用于对来自所述信号合成装置的射频信号进行功率检测,并 输出功率信号给所述功率检测信号馈电装置;
所述信号合成装置与n个天线单元相连,用于合成射频信号,输出给所述功率检 测装置;
所述阵列校准装置,位于基带信号处理模块与阵列发信机之间,用于根据调整后 的校准权值对阵列天线发射链路进行校准。
2、根据权利要求
1所述的阵列天线发射链路的校准设备,其特征在于,所述信号 合成装置、功率检测装置和功率检测信号馈电装置可与n个天线单元组成一个室外单元, 通过一组射频电缆与基站相连。
3、根据权利要求
1所述的阵列天线发射链路的校准设备,其特征在于,所述信号 合成装置包括巴特勒矩阵、(n-l)个耦合器、(n-l)个滤波器和(n-l)个可调衰减器,其中耦 合器、滤波器和可调衰减器只在前(n-l)个发射链路上有;所述耦合器,用于从通过巴特勒 矩阵形成的射频波束信号中分离出少部分射频信号;分离出来的射频信号经过滤波器的滤 波和可调衰减器的衰减后,输出到信号功率检测装置中。
4、根据权利要求
3所述的阵列天线发射链路的校准设备,其特征在于,所述分离 出的少部分射频信号对源射频信号造成的衰减应不大于ldB。
5、根据权利要求
3所述的阵列天线发射链路的校准设备,其特征在于,所述信号 功率检测装置由(n-l)个检波器和(n-l)个放大器组成,对应前(n-l)个发射链路;前 (n-l)路射频信号经过所述检波器和所述放大器的处理后形成功率信号,输出到所述功率 检测信号馈电装置中。
6、根据权利要求
3所述的阵列天线发射链路的校准设备,其特征在于,所述功率 检测信号馈电装置包括n个信号馈电单元,分别对应n个发射链路,每个信号馈电单元都包 括感性电路L、容性电路Cl和容性电路C2 ;
对于第1发射链路至第(n-l)发射链路上的信号馈电单元,其中感性电路L用于将功率信号中的低频信号与高频的射频信号合路,容性电路C2用于滤除功率信号中的高
频分量,容性电路Cl则用于防止功率检测信号中的低频信号发送到天线单元;
而第n发射链路上的感性电路L是用于将电源信号从高频的射频信号中分离出
来,容性电路C2用于滤除电源信号中的高频分量,容性电路C1用于防止电源信号发送到天
线单元。
7、根据权利要求
3所述的阵列天线发射链路的校准设备,其特征在于,所述功率 检测信号分离装置n个感性电路L、n个容性电路C3、n个容性电路C4、 (n-l)个A/D转换 器和校准权值计算装置,其中第n发射链路没有A/D转换器;
对于第1至第(n-l)发射链路,感性电路L用于把功率信号从合路信号中分离出 来;容性电路C4用于滤除功率信号中的高频分量;容性电路C3则防止功率信号发送给对 应发射链路的上下行信号分离装置;
而对于第n发射链路,感性电路L用于把电源信号与高频的射频信号合路;容性电 路C4用于滤除电源信号中的高频分量;容性电路C3则防止电源信号发送到第n个上下行 信号分离装置;
所述A/D转换器,用于对低频的功率信号进行A/D变换,并发送到校准权值计算装 置中;
所述校准权值计算装置,用于根据收到的功率信号的大小调整校准权值。
8、根据权利要求
1所述的阵列天线发射链路的校准设备,其特征在于,所述信号
合成装置由n个耦合器、n个滤波器和一个n路信号合路器组成;所述耦合器用于从所述功
率检测信号馈电装置输出的高频射频信号中分离出少部分的射频信号;被分离出来的射频
信号经过所述滤波器的处理后送入所述合路器中,然后将合路后的射频信号输出给所述功
率检测装置。
9、根据权利要求
8所述的阵列天线发射链路的校准设备,其特征在于,所述功率 检测装置由一个检波器和一个放大器组成;合路后的射频信号经过所述检波器和所述放大 器的处理后形成功率信号,并输出到功率检测信号馈电装置中。
10、根据权利要求
8所述的阵列天线发射链路的校准设备,其特征在于,所述功率 检测信号馈电装置包括在前(n-l)个发射链路中的任一发射链路和第n发射链路上的感性 电路L、容性电路Cl和容性电路C2 ;其中
任一发射链路上的感性电路L用于把功率信号中的低频信号与高频的射频信号 合路,合路后的混合信号传输到基站中的功率检测信号分离装置;容性电路C2用于滤除功 率信号中的高频分量;容性电路C1则防止功率信号中的低频信号发送到天线单元; 第n发射链路上的感性电路L用于把电源信号从高频的射频信号中分离出来;容 性电路C2用于滤除电源信号中的高频分量;容性电路C1则防止电源信号发送到天线单元。 11、根据权利要求
8所述的阵列天线发射链路的校准设备,其特征在于,所述功率 检测信号分离装置包括在对应所述功率检测信号馈电装置中选择的任一发射链路和第n 发射链路上的感性电路L、容性电路C3和容性电路C4,以及了 A/D转换器和校准权值计算 装置;其中
任一发射链路上的感性电路L是用于把功率信号从合路信号中分离出来;容性电 路C4是用于滤除功率信号中的高频分量;容性电路C3则防止功率信号发送到上下行信号分离装置;
而第n发射链路上的感性电路L是用于将电源信号与高频的射频信号合路;容性 电路C4是用于滤除电源信号中的高频分量;容性电路C3则防止电源信号发送到第n上下 行信号分离装置;
所述A/D转换器,用于对低频的功率信号进行A/D变换,并发送到校准权值计算装 置中;
所述校准权值计算装置,用于根据收到的功率信号的大小调整校准权值。 12、一种阵列天线发射链路的校准方法,其特征在于,包括以下步骤首先获取发 射链路的增益校准权值初值和相位校准权值初始值;然后计算发射链路的增益校准权值和 相位校准权值;使用上述计算出的校准权值对阵列发射链路的增益和相位进行校准。 13、根据权利要求
12所述的阵列天线发射链路的校准方法,其特征在于,所述获 取发射链路的增益校准权值的初始值的步骤,进一步包括控制基带信号使基站同时只有 一个链路发射信号;调整该链路的增益校准权值,使该链路的发射信号功率达到额定值; 则此时的增益校准权值即是该链路的增益校准权值的初始值;对基站的所有发射链路执行 上述操作,获得每个发射链路的增益校准权值的初始值。
14、根据权利要求
12所述的阵列天线发射链路的校准方法,其特征在于,所述 获取发射链路的相位校准权值的初始值的步骤,进一步包括首先在基带控制所有发射 链路发射相同相位的信号,然后选定第1发射链路作为参考通道,其余发射链路作为被 校准通道,调整被校准通道的发射信号相位,使得第1天线单元的信号功率最高,其余天
线单元的信号功率最低,保存此时发射链路的相位调整系数,用向量b …0—」
表示;计算巴特勒矩阵的等效发射系数矩阵的逆矩阵,并选取上述逆矩阵的第一行
向量,用^^W-I^w《2…《,,j表示,则发射链路的相位校准权值的初始值为<formula>formula see original document page 19</formula>[0113] 15、根据权利要求
12所述的阵列天线发射链路的校准方法,其特征在于,所述获 取发射链路的相位校准权值的初始值的步骤,进一步包括首先选定一个发射链路作为参 考通道,其余发射链路作为被校准通道;在基带控制参考通道和一个被校准通道同时发射 信号,调整该被校准通道的基带信号的相位,使得这两个通道发射的信号的合成信号的功 率最低;此时该被校准通道的相位调整系数的共轭就是该通道的相位校准权值的初始值; 选择另一个被校准通道,重复上述操作,直至获得所有发射链路的相位校准权值的初始值。 16、根据权利要求
12所述的阵列天线发射链路的校准方法,其特征在于,所述计 算发射链路增益校准权值并调整增益的步骤,进一步包括以额定发射功率作为校准的基 准功率值,然后采用二分法计算每条发射链路的发信增益校准权值,根据计算后的增益校 准权值调整发射链路的增益,直到每条发射链路的发射功率都满足规定的发射功率为止。 17、根据权利要求
16所述的阵列天线发射链路的校准方法,其特征在于,所述计
算发射链路增益校准权值并调整增益的步骤,具体包括
步骤1)设置发射链路号NumCh = 1 ;
步骤2)判断链路号NumCh是否不大于阵列天线的发射链路数,如果链路号大于发射链路数,则增益校准结束;
步骤3)如果链路号小于等于发射链路数,则在基带控制第NumCh条发射链路发射 信号;
步骤4)检测发射信号的功率,产生功率信号;
步骤5)对上述功率信号进行A/D变换,获得发射信号的功率;
步骤6)判断该功率与额定功率的差的绝对值是否小于允许的误差,如果小于则
将当前发射链路号加1,然后转至步骤2);
步骤7)如果大于等于允许的误差,则判断是否可以继续校准,如果可以,则采用 二分法调整该发射链路的增益校准权值,然后根据更新后的增益校准权值校准第NumCh条 发射链路,然后再转至步骤2);
步骤8)如果不能继续校准,则提示第NumCh条发射链路增益校准失败,结束本次 增益校准。
18、根据权利要求
17所述的阵列天线发射链路的校准方法,其特征在于,所述步 骤7)中判断是否可以继续校准的步骤进一步包括判断二分法的迭代次数是否超过设定 的次数,如果超过则认为不能继续校准;如果没有超过设定的次数,则进一步判断增益校准 权值是否是最大或者相邻两次二分法迭代的权值是否相同,如果增益校准权值已经最大或 相邻两次二分法迭代的权值相同,则认为不能继续校准。
19、根据权利要求
14所述的阵列天线发射链路的校准方法,其特征在于,所述计 算发射链路的相位校准权值并调整相位的步骤,进一步包括选择巴特勒矩阵的发射链 路的等效加权系数矩阵的共轭矩阵或逆矩阵中的任意一个行向量Vbuh&i =(小u小u… 小i, n}作为一组波束权值,对每路信号进行加权,然后由巴特勒矩阵进行射频波束形成,采 用直接搜索法调整这组波束权值,直到巴特勒矩阵波束形成后的信号只在第i个天线单元 端口有信号输出,而在其它天线单元端口都没有输出为止,此时发射链路的波束权值记为
20、根据权利要求
19所述的阵列天线发射链路的校准方法,其特征在于,所述计 算发射链路的相位校准权值并调整相位的步骤,具体包括
步骤1)设置发射链路号NumCh = 1,设置相位校准权值的初值Wphase (0) =,最大循环次数为M,循环变量loop的初值为0 ;
步骤2)在基带控制所有发射链路的发射信号;
步骤3)检测发射信号的功率,形成功率信号;
步骤4)对上述功率信号进行A/D变换,并获得发射信号功率,保存该功率值;
步骤5)将第NumCh条发射链路的相位校准权值加1 ,判断第NumCh条发射链路的 相位校准权值是否不超过相位校准权值的值域范围;如果不超过,则对第NumCh条发射链 路的相位进行校准,然后转至步骤3);
步骤6)如果超过了值域范围,则判断发射信号功率的变化范围是否满足要求,如 果不满足,则提示第NumCh条发射链路的相位校准失败;
步骤7)如果满足要求,则记录发射信号功率的最大值对应的相位校准权值,将发 射链路号加1,然后判断发射链路号是否超过阵列天线的发射链路数,如果没有超过,则转
Wlw2 Wn},那么最后发射链路的相位校准权值为]^至步骤3);
步骤8)如果超过发射链路数,则设置发射链路号NumCh为l,将循环变量加l,相 位校准权值Wphase (loop) = [w (1) , w (2) , , w (n)]为发射信号功率的最大值对应的相 位校准权值;
步骤9)判断当前相位校准权值Wphase (loop)是否等于上一次的相位校准权值 Wphase (loop-l),如果相等,则表示发射链路相位校准成功,用巴特勒矩阵的发射链路的等 效加权系数矩阵的逆矩阵的第一个行向量Vbu^u来修正计算的相位校准权值,即WPHASE = WPHASE (loop) /Vb必eu,相位校准结束;
步骤10)如果不相等,则判断循环变量loop是否大于最大循环次数M,如果是,则 提示发射链路相位校准失败,相位校准结束;否则转至步骤3)。
21、根据权利要求
15所述的阵列天线发射链路的校准方法,其特征在于,所述计 算发射链路的相位校准权值并调整相位的步骤,进一步包括以阵列天线中任意一个发 射链路作为基准,然后调整其余发射链路的相位,使合成信号的强度最大,则对应的向量 e说…—(")…一W'-W;f就是阵列天线发射链路的校准权 值,其中cK表示第n条发射链路的相位,T表示转置运算。
22、根据权利要求
21所述的阵列天线发射链路的校准方法,其特征在于,所述计 算发射链路的相位校准权值并调整相位的步骤,具体包括
步骤1)设置发射链路号NumCh = 2,将所有发射链路的相位校准权值初值设置为 0,即Wphase =;
步骤2)判断发射链路号NumCh是否小于或等于阵列中的发射链路数,如果大于, 则结束此次发射链路相位校准;
步骤3)如果小于或等于发射链路数,则在基带控制第1条发射链路和第NumCh条 发射链路的发射信号;
步骤4)检测发射信号的功率,形成功率信号;
步骤5)对上述功率信号进行A/D变换,获得发射信号的功率,并保存该功率值;
步骤6)将第NumCh条发射链路的相位校准权值加1 (步骤806),判断第NumCh条 发射链路的相位校准权值是否小于或等于相位校准权值的值域范围,如果小于或等于值域 范围,则对第NumCh条发射链路相位进行校准,然后转至步骤2);
步骤7)如果大于值域范围,则判断发射信号功率的变化范围是否满足要求,如果 不满足要求,则提示第NumCh条发射链路的相位校准失败;
步骤8)如果满足要求,则记录发射信号功率P最大值对应的相位校准权值,然后 将发射链路号加l,转至步骤2)。
权利要求
一种阵列天线发射链路的校准设备,所述阵列天线发射链路包括阵列发信机、n个功率放大器、n个上下行信号分离装置和n个天线单元,阵列发信机、功率放大器和上下行信号分离装置位于基站中,由阵列发信机发出n路信号,经过功率放大器和上下行信号分离装置后,从天线单元发送出去;其特征在于,所述校准设备包括功率检测信号分离装置、功率检测信号馈电装置、功率检测装置、信号合成装置和阵列校准装置;其中所述功率检测信号分离装置,接收来自上下行信号分离装置的射频信号,滤除射频信号中的直流信号后将射频信号发送给所述功率检测信号馈电装置;同时,从所述功率检测信号馈电装置发送的信号中提取功率信号,进行校准权值调整,将调整后的校准权值发送给所述阵列校准装置;所述功率检测信号馈电装置,一方面将所述功率检测信号分离装置输出的射频信号发送给所述信号合成装置,一方面将所述功率检测装置输出的功率信号与射频信号合路,并将混合信号发送到所述功率检测信号分离装置;所述功率检测装置,用于对来自所述信号合成装置的射频信号进行功率检测,并输出功率信号给所述功率检测信号馈电装置;所述信号合成装置与n个天线单元相连,用于对下行射频信号进行取样,并把取样的下行射频信号合成,把合成后的取样信号输出给所述功率检测装置;所述阵列校准装置,位于基带信号处理模块与阵列发信机之间,用于根据调整后的校准权值对阵列天线发射链路进行校准。
2. 根据权利要求
1所述的阵列天线发射链路的校准设备,其特征在于,所述信号合成 装置、功率检测装置和功率检测信号馈电装置与n个天线单元组成一个室外单元,通过一 组射频电缆与基站相连。
3. 根据权利要求
1所述的阵列天线发射链路的校准设备,其特征在于,所述信号合成 装置包括巴特勒矩阵、n-l个耦合器、n-l个滤波器和n-l个可调衰减器,其中耦合器、滤波 器和可调衰减器只在前n-l个发射链路上分别有;所述耦合器,用于从通过巴特勒矩阵形 成的射频波束信号中分离出少部分射频取样信号;分离出来的射频取样信号经过滤波器的 滤波和可调衰减器的衰减后,输出到信号功率检测装置中。
4. 根据权利要求
3所述的阵列天线发射链路的校准设备,其特征在于,所述分离出的 少部分射频信号对射频波束信号造成的衰减应不大于ldB。
5. 根据权利要求
3所述的阵列天线发射链路的校准设备,其特征在于,所述信号功率 检测装置由n-l个检波器和n-l个放大器组成,对应前n-l个发射链路;前n_l路射频信号 的射频取样信号经过所述检波器和所述放大器的处理后形成n-l个功率信号,输出到所述 功率检测信号馈电装置中。
6. 根据权利要求
3所述的阵列天线发射链路的校准设备,其特征在于,所述功率检测 信号馈电装置包括n个信号馈电单元,分别对应n个发射链路,每个信号馈电单元都包括 感性电路L、容性电路Cl和容性电路C2 ;对于第1发射链路至第n-l发射链路上的信号馈电单元,其中感性电路L用于将功率 信号中的低频信号与射频信号合路,容性电路C2用于滤除功率信号中的高频分量,容性电 路C1则用于防止功率检测信号中的低频信号发送到天线单元;而第n发射链路上的感性电路L是用于将电源信号从高频的射频信号中分离出来,容 性电路C2用于滤除电源信号中的高频分量,容性电路C1用于防止电源信号发送到天线单 元。
7. 根据权利要求
3所述的阵列天线发射链路的校准设备,其特征在于,所述功率检测 信号分离装置n个感性电路L、 n个容性电路C3、 n个容性电路C4、 n-l个A/D转换器和校 准权值计算装置,其中第n发射链路没有A/D转换器;对于第1至第n-l发射链路,感性电路L用于把功率信号从合路信号中分离出来;容性 电路C4用于滤除功率信号中的高频分量;容性电路C3则防止功率信号发送给对应发射链 路的上下行信号分离装置;而对于第n发射链路,感性电路L用于把电源信号与高频的射频信号合路;容性电路 C4用于滤除电源信号中的高频分量;容性电路C3则防止电源信号发送到第n个上下行信 号分离装置;所述A/D转换器,用于对低频的功率信号进行A/D变换,并发送到校准权值计算装置中;所述校准权值计算装置,用于根据收到的功率信号的大小调整校准权值。
8. 根据权利要求
1所述的阵列天线发射链路的校准设备,其特征在于,所述信号合成 装置由n个耦合器、n个滤波器和一个n路信号合路器组成,其中所述耦合器和滤波器分别 在n个发射链路上;所述耦合器用于从所述功率检测信号馈电装置输出的射频信号中分离 出少部分的射频取样信号;被分离出来的射频取样信号经过所述滤波器的处理后送入所述 合路器中,然后将合路后的取样射频信号输出给所述功率检测装置。
9. 根据权利要求
8所述的阵列天线发射链路的校准设备,其特征在于,所述功率检测 装置由一个检波器和一个放大器组成;合路后的射频信号经过所述检波器和所述放大器的 处理后形成功率信号,并输出到功率检测信号馈电装置中。
10. 根据权利要求
8所述的阵列天线发射链路的校准设备,其特征在于,所述功率检测 信号馈电装置包括在前n-l个发射链路中的任一发射链路和第n发射链路上的感性电路L、 容性电路Cl和容性电路C2 ;其中前n-l个发射链路中的任一发射链路上的感性电路L用于把功率信号中的低频信号与 高频的射频信号合路,合路后的混合信号传输到基站中的功率检测信号分离装置;容性电 路C2用于滤除功率信号中的高频分量;容性电路Cl则防止功率信号中的低频信号发送到 天线单元;第n发射链路上的感性电路L用于把电源信号从高频的射频信号中分离出来;容性电 路C2用于滤除电源信号中的高频分量;容性电路C1则防止电源信号发送到天线单元。
11. 根据权利要求
8所述的阵列天线发射链路的校准设备,其特征在于,所述功率检测 信号分离装置包括在对应所述功率检测信号馈电装置中选择的前n-l个发射链路中的任 一发射链路和第n发射链路上的感性电路L、容性电路C3和容性电路C4,以及A/D转换器 和校准权值计算装置;其中前n-l个发射链路中的任一发射链路上的感性电路L是用于把功率信号从合路信号中 分离出来;容性电路C4是用于滤除功率信号中的高频分量;容性电路C3则防止功率信号 发送到上下行信号分离装置;而第n发射链路上的感性电路L是用于将电源信号与高频的射频信号合路;容性电路 C4是用于滤除电源信号中的高频分量;容性电路C3则防止电源信号发送到第n上下行信 号分离装置;所述A/D转换器,用于对低频的功率信号进行A/D变换,并发送到校准权值计算装置中;所述校准权值计算装置,用于根据收到的功率信号的大小调整校准权值。
12. —种阵列天线发射链路的校准方法,其特征在于,包括以下步骤首先获取发射链 路的增益校准权值初始值和相位校准权值初始值;然后通过检测发射信号功率值计算发射 链路的增益校准权值和相位校准权值;使用上述计算出的校准权值对阵列发射链路的增益 和相位进行校准。
13. 根据权利要求
12所述的阵列天线发射链路的校准方法,其特征在于,所述获取发 射链路的增益校准权值的初始值的步骤,进一步包括控制基带信号使基站同时只有一个 链路发射信号;调整该链路的增益校准权值,使该链路的发射信号功率达到额定值;则此 时的增益校准权值即是该链路的增益校准权值的初始值;对基站的所有发射链路执行上述 操作,获得每个发射链路的增益校准权值的初始值。
14. 根据权利要求
12所述的阵列天线发射链路的校准方法,其特征在于,所述获取发射链路的相位校准权值的初始值的步骤,进一步包括首先在基带控制所有发射链 路发射相同相位的信号,然后选定第1发射链路作为参考通道,其余发射链路作为被校 准通道,调整被校准通道的发射信号相位,使得第l天线单元的信号功率最高,其余天线单元的信号功率最低,保存此时发射链路的相位调整系数,用向量lo …表示;计算巴特勒矩阵的等效发射系数矩阵的逆矩阵,并选取上述逆矩阵的第一行向量,fflK",,^ =k,, ^2 《"j表示,则发射链路的相位校准权值的初始值为<formula>formula see original document page 4</formula>
15. 根据权利要求
12所述的阵列天线发射链路的校准方法,其特征在于,所述获取发 射链路的相位校准权值的初始值的步骤,进一步包括首先选定一个发射链路作为参考通 道,其余发射链路作为被校准通道;在基带控制参考通道和一个被校准通道同时发射信号, 调整该被校准通道的基带信号的相位,使得这两个通道发射的信号的合成信号的功率最 低;此时该被校准通道的相位调整系数的共轭就是该通道的相位校准权值的初始值;选择 另一个被校准通道,重复上述操作,直至获得所有发射链路的相位校准权值的初始值。
16. 根据权利要求
12所述的阵列天线发射链路的校准方法,其特征在于,所述计算发 射链路增益校准权值并调整增益的步骤,进一步包括以额定发射功率作为校准的基准功 率值,然后采用二分法计算每条发射链路的发信增益校准权值,根据计算后的增益校准权 值调整发射链路的增益,直到每条发射链路的发射功率都满足规定的发射功率为止。
17. 根据权利要求
16所述的阵列天线发射链路的校准方法,其特征在于,所述计算发 射链路增益校准权值并调整增益的步骤,具体包括步骤1)设置发射链路号NumCh = 1 ;步骤2)判断发射链路号NumCh是否不大于阵列天线的发射链路数,如果发射链路号大于发射链路数,则增益校准结束;步骤3)如果发射链路号小于等于发射链路数,则在基带控制第NumCh条发射链路发射 信号;步骤4)检测发射信号的功率,产生功率信号;步骤5)对上述功率信号进行A/D变换,获得发射信号的功率;步骤6)判断该功率与额定功率的差的绝对值是否小于允许的误差,如果小于则将当 前发射链路号加1,然后转至步骤2);步骤7)如果大于等于允许的误差,则判断是否可以继续校准,如果可以,则采用二分 法调整该发射链路的增益校准权值,然后根据更新后的增益校准权值校准第NumCh条发射 链路,然后再转至步骤2);步骤8)如果不能继续校准,则提示第NumCh条发射链路增益校准失败,结束本次增益 校准。
18. 根据权利要求
17所述的阵列天线发射链路的校准方法,其特征在于,所述步骤7) 中判断是否可以继续校准的步骤进一步包括判断二分法的迭代次数是否超过设定的次 数,如果超过则认为不能继续校准;如果没有超过设定的次数,则进一步判断增益校准权值 是否是最大或者相邻两次二分法迭代的权值是否相同,如果增益校准权值已经最大或相邻 两次二分法迭代的权值相同,则认为不能继续校准。
19. 根据权利要求
14所述的阵列天线发射链路的校准方法,其特征在于,所述计算发 射链路的相位校准权值并调整相位的步骤,进一步包括选择巴特勒矩阵的发射链路的等 效加权系数矩阵的共轭矩阵或逆矩阵中的任意一个行向量Vbu^r,i =(小u小u…小i,J 作为一组波束权值,对每路信号进行加权,然后由巴特勒矩阵进行射频波束形成,采用直接 搜索法调整这组波束权值,直到巴特勒矩阵波束形成后的信号只在第i个天线单元端口有 信号输出,而在其它天线单元端口都没有输出为止,此时发射链路的波束权值记为{Wl w2
20.根据权利要求
19所述的阵列天线发射链路的校准方法,其特征在于,所述计算发 射链路的相位校准权值并调整相位的步骤,具体包括步骤l)设置发射链路号NumCh = l,设置相位校准权值的初值Wphase(O) = [O,O,..., 0],最大循环次数为M,循环变量loop的初值为0 ;步骤2)在基带控制所有发射链路的发射信号;步骤3)检测发射信号的功率,形成功率信号;步骤4)对上述功率信号进行A/D变换,并获得发射信号功率,保存该功率值;步骤5)将第NumCh条发射链路的相位校准权值加l,判断第NumCh条发射链路的相位 校准权值是否不超过相位校准权值的值域范围;如果不超过,则对第NumCh条发射链路的 相位进行校准,然后转至步骤3);步骤6)如果超过了值域范围,则判断发射信号功率的变化范围是否满足要求,如果不 满足,则提示第NumCh条发射链路的相位校准失败;步骤7)如果满足要求,则记录发射信号功率的最大值对应的相位校准权值,将发射链 路号加l,然后判断发射链路号是否超过阵列天线的发射链路数,如果没有超过,则转至步…wj,那么最后发射链路的相位校准权值为『;骤3);步骤8)如果超过发射链路数,则设置发射链路号NumCh为1,将循环变量加1,相位校 准权值Wphase (loop) = [w (1) , w (2) , , w (n)]为发射信号功率的最大值对应的相位校 准权值;步骤9)判断当前相位校准权值Wphase(loop)是否等于上 一 次的相位校准权值 Wphase (loop-l),如果相等,则表示发射链路相位校准成功,用巴特勒矩阵的发射链路的等 效加权系数矩阵的逆矩阵的第一个行向量Vbu^u来修正计算的相位校准权值,即VPHASE = WPHASE (loop) /Vb必eu,相位校准结束;步骤10)如果不相等,则判断循环变量loop是否大于最大循环次数M,如果是,则提示 发射链路相位校准失败,相位校准结束;否则转至步骤3)。
21. 根据权利要求
15所述的阵列天线发射链路的校准方法,其特征在于,所述计算 发射链路的相位校准权值并调整相位的步骤,进一步包括以阵列天线中任意一个发射 链路作为基准,然后调整其余发射链路的相位,使合成信号的强度最大,则对应的向量e應…eW"]r=[l …"r就是阵列天线发射链路的校准权值,其中cK表示第n条发射链路的相位,T表示转置运算。
22. 根据权利要求
21所述的阵列天线发射链路的校准方法,其特征在于,所述计算发 射链路的相位校准权值并调整相位的步骤,具体包括步骤1)设置发射链路号NumCh = 2,将所有发射链路的相位校准权值初值设置为0,即 Wphase = [O,O, ,0];步骤2)判断发射链路号NumCh是否小于或等于阵列中的发射链路数,如果大于,则结 束此次发射链路相位校准;步骤3)如果小于或等于发射链路数,则在基带控制第1条发射链路和第NumCh条发射 链路的发射信号;步骤4)检测发射信号的功率,形成功率信号;步骤5)对上述功率信号进行A/D变换,获得发射信号的功率,并保存该功率值;步骤6)将第NumCh条发射链路的相位校准权值加1 (步骤806),判断第NumCh条发 射链路的相位校准权值是否小于或等于相位校准权值的值域范围,如果小于或等于值域范 围,则对第NumCh条发射链路相位进行校准,然后转至步骤2);步骤7)如果大于值域范围,则判断发射信号功率的变化范围是否满足要求,如果不满 足要求,则提示第NumCh条发射链路的相位校准失败;步骤8)如果满足要求,则记录发射信号功率P最大值对应的相位校准权值,然后将发 射链路号加1,转至步骤2)。
专利摘要
阵列天线发射链路的校准设备,包括功率检测信号分离装置、功率检测信号馈电装置、功率检测装置、信号合成装置和阵列校准装置;发射链路的下行信号经过功率检测信号分离装置的处理后发送给功率检测信号馈电装置,再发送给信号合成装置;信号合成装置分离出部分射频信号,输出给功率检测装置进行功率检测,将功率信号输出给功率检测信号馈电装置,进行功率信号和高频射频信号的合路,功率检测信号分离装置从混合信号中提取出功率信号,进行校准权值的调整,由阵列校准装置对发射链路进行校准。本发明不使用专门用于阵列天线校准的校准信号收发装置和信标天线,而采用信号功率检测的方法来计算发射增益校准权值和发射相位校准权值,收敛速度较快。
文档编号H04B7/005GKCN1879311 B发布类型授权 专利申请号CN 200380110693
公开日2010年4月28日 申请日期2003年12月31日
发明者王文杰, 郭天生 申请人:中兴通讯股份有限公导出引文BiBTeX, EndNote, RefMan专利引用 (1),
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1