有效利用扇区结构的码分多址移动通信模式的制作方法

文档序号:7572323阅读:185来源:国知局
专利名称:有效利用扇区结构的码分多址移动通信模式的制作方法
技术领域
本发明涉及一个CDMA(码分多址)移动通信系统,该系统具有与一个通信网络相连的基站和与CDMA模式的基站进行通信的移动站,其中各基站均具有多个对各基站的小区进行了分割的扇区。更具体地讲,本发明涉及针对这种具有扇区结构的CDMA移动通信系统的扩展码使用模式、扇区选择模式和传输功率控制模式。
CDMA移动通信系统是一个使用CDMA模式的系统,象基站和移动站之间的无线寻址模式那样,CDMA模式是频谱扩展模式中的一种。
在CDMA模式中,多个信道(移动站)使用同一频率,因而不同信道的传输数据序列被彼此具有弱相关性的不同扩展码相乘并多路复用,从而使得各信道可以相互区分。在用扩展码相乘时,使用的扩展码具有比要扩展的数据序列的数据速率更高的速率(片速率)(通常,使用速率比用户速率高出几百至几千倍的PN序列)。通过使用具有更高片速率的扩展码来进行扩展,可以使传输带宽变得更宽。当传输带宽变宽时,可以承受的干扰电平也相应提高,而且能够同时进行通信的信道的数量也增加了。在接收方,通过把同样的扩展码相乘到接收的数据序列上以进行解扩展,则只有期望的信号被还原成初始的波形。图26说明了频谱扩展模式中的一个示例性的波形(频域)变化。
在CDMA模式中,其它的信道导致相同的频率干扰,因而存在所谓的近/远问题,其中,邻近于基站的一个移动站发送的信道会对远离基站的另一个移动站发送的信道产生非常大的干扰。所以,为了使更多的信道能够使用有限的带宽来进行通信,即为了增加容量,需要有一种能够满足所要求的质量并使得传输功率较低的高精确传输功率控制。
在另一方面,软越区切换是CDMA模式的一个重要技术。软越区切换是一种当移动站从一个基站移动到另一个基站时,在一个移动站和多个基站之间同时连接无线信道的技术。通过同时连接多个无线连接,则可以获得位置分集组合增益(site division composition gain),从而能够降低传输功率并减少干扰。
单元的扇区结构对于增加容量也有影响。当使用扇区结构时可以减少干扰,从而能够相应增加容量。在使用FDMA模式的情况下,通过压缩频率的重用距离,扇区结构被用来增加容量,但在使用CDMA模式的情况下,通过使用扇区结构来减小干扰,同样能增加系统的容量。同在小区中使用位置分集的情况相比较而言,在扇区中使用位置分集可以很容易地实现最大比例的组合,因而能够获得较高的组合增益。基于这些原因,可以说把扇区结构用于CDMA模式比用于FDMA模式更为有效。
通常,为了减轻基站一边的控制负载,在移动站一边为越区切换操作进行小区/扇区判决。在使用CDMA模式的情况下,由于邻近小区/扇区使用相同的频率,所以移动站通过使用编码来进行小区/扇区判决。类似地,移动站扫描预先被指定为小区/扇区的导频信道(perch channel)的扩展码,并且在解扩展后通过比较导频信道的接收电平来进行小区/扇区判决。从缩短移动站在开机时所需的扫描时间的角度看,最好使用较少数量的导频信道扩展码,因此通常安排重复使用同一套导频信道扩展码。
然而,在常规的CDMA移动通信系统中,不同的导频信道扩展码被赋给不同的扇区,因而在扇区数增加时所需的导频信道扩展码的数量也增加,而且还存在一个问题,即在具有好的相关特性的编码数量受到限制时,导频信道扩展码的相关特性也相应减弱。
另外,还存在当导频信道扩展码数量增加时,移动站的扫描时间变长的问题。
在常规的CDMA移动通信系统中存在的另一个问题在于,当扇区数增加时,扇区中越区切换的次数也相应增加,因而更频繁地需要在移动站和基站之间交换控制信号,从而控制信号的传输也变得堵塞。
在常规的CDMA移动通信系统中,所用的扇区数大约为三,但随着用户数的增加,估计在未来的CDMA移动通信系统中使用的扇区数会增加到十二或更多,因而上述与扇区数增加有关的问题估计会变得更加严重。
因而本发明的一个目标是提供一种CDMA移动通信模式,该模式能够在不增加导频信道扩展码的数量并不堵塞控制信道传输的情况下增加扇区数,从而通过有效地使用扇区结构来获得容量增加的效果。
根据本发明的一个方面,提供了一种在CDMA移动通信系统中进行移动通信的方法,其中上述系统包括一个与通信网络相连的基站和以CDMA模式与基站通信的移动站,而基站则具有多个对基站的小区进行了分割的扇区,该方法包括的步骤有从基站的至少两个扇区中的每一个上,发送由被赋予基站的同一个导频信道扩展码所扩展的导频信道;在多于一个的接收扇区上接收来自各移动站的上行信号,用同一个上行链路扩展码解扩展在上述多于一个的接收扇区上接收的上行信号,并在从上述多于一个的接收扇区上同时接收的情况下求得解扩展的上行信号的最大比例组合(maximal ratio combining);使用同一个下行链路扩展码扩展下行信号,并在从多于一个的发送扇区上同时发送的情况下从上述多于一个的发送扇区上向各移动站发送扩展下行信号。
根据本发明的另一个方面,提供了一种用在CDMA移动通信系统中的基站装置,上述系统包括一个与通信网络相连的基站和以CDMA模式与基站通信的移动站,其中基站具有多个对基站的小区进行了分割的扇区,该基站包括一个从基站的至少两个扇区中的每一个上发送导频信道的导频信道发送设备,该导频信道由被赋予基站的同一个导频信道扩展码所扩展;一个通信信道接收设备,该设备在多于一个的接收扇区上接收来自各移动站的上行信号,用同一个上行链路扩展码解扩展在上述多于一个的接收扇区上接收的上行信号,并在从上述多于一个的接收扇区上同时接收的情况下求得解扩展的上行信号的最大比例组合;一个通信信道发送设备,该设备使用同一个下行链路扩展码扩展下行信号的,并在从多于一个的发送扇区上同时发送的情况下从上述多于一个的发送扇区上向各移动站发送扩展下行信号。
根据本发明的另一个方面,提供了一种用在CDMA移动通信系统中的移动站装置,上述系统包括一个与通信网络相连的基站和以CDMA模式与基站通信的移动站,其中基站具有多个对基站的小区进行了分割的扇区,并且从基站的至少两个扇区中的每一个上,发送由被赋予基站的同一个导频信道扩展码所扩展的导频信道,而导频信道则包含一个标识各扇区的扇区信息,各移动站的移动站装置包括一个导频信道接收设备,该设备接收从各扇区发送的导频信道,并根据从各扇区发送的导频信道选择至少一个发送扇区以便向上述移动站装置发送下行信号;一个通信信道接收设备,该设备接收从基站发送的下行信号;一个通信信道发送设备,该设备向基站发送上行信号,而上行信号则包含一个部分,该部分利用包括在来自各扇区的导频信道中的扇区信息,向基站通知上述的一个发送扇区,以便该基站接收来自上述由上述移动站装置通知的一个发送扇区的信号。
根据本发明的另一个方面,这里提供了一种用在CDMA移动通信系统中的移动站装置,上述系统包括一个与通信网络相连的基站和以CDMA模式与基站通信的移动站,其中基站具有多个对基站的小区进行了分割的扇区,并且从基站的至少两个扇区中的每一个上,发送由被赋予基站的同一个导频信道扩展码所扩展的导频信道,该基站根据导频信道的发送定时,在不同的时间通过通信信道从不同的扇区发送下行信号,各移动站的移动站装置包括一个接收从各扇区发送的导频信道的导频信道接收设备;一个通信信道接收设备,该设备接收从基站发送的下行信号,根据导频信道的接收定时和各个通信信道的接收定时之间的差别,标识当前接收的下行信号所来自的扇区,并测量所标识的扇区的通信信道的接收电平;一个通信信道发送设备,该设备向基站发送上行信号,而上行信号则包含一个向基站通知标识出的各个扇区和所标识扇区的测量接收电平的部分,以便该基站根据上述移动站装置通知的所标识的扇区的测量接收电平,选择至少一个向上述移动站装置发送下行信号的发送扇区。
根据下面结合附图所作的描述,本发明的特性和优点会更加易于理解。


图1是根据本发明的一个CDMA移动通信系统的结构模块图。
图2是根据本发明第一个实施例的、在图1的系统中的基站的模块图。
图3是根据本发明第一个实施例的、在图2的基站中的导频信道发送器设备的模块图。
图4是根据本发明第一个实施例的、在图2的基站中的收发器设备的模块图。
图5是根据本发明第一个实施例的、在图1的系统中的移动站的模块图。
图6是根据本发明第二个实施例的、在图2的基站中的收发器设备的模块图。
图7是根据本发明第三个实施例的、在图1的系统中的基站的模块图。
图8是根据本发明第三个实施例的、在图7的基站中的扫描接收器设备的模块图。
图9是根据本发明第四个实施例的、在图2的基站中的收发器设备的模块图。
图10是根据本发明第五个实施例的、在图2的基站中的收发器设备的模块图。
图11是说明基于本发明第五个实施例的、在图10的收发器设备中的接收扇区选择单元的操作的流图。
图12是根据本发明第六个实施例的、在图2的基站中的收发器设备的模块图。
图13是根据本发明第七个实施例的、在图2的基站中的收发器设备的模块图。
图14是根据本发明第八个实施例的、在图2的基站中的收发器设备的模块图。
图15说明了基于本发明第九个实施例的导频信道的结构。
图16说明了基于本发明第九个实施例的通信信道的结构。
图17是根据本发明第九个实施例的、在图2的基站中的导频信道发送器设备的模块图。
图18是根据本发明第九个实施例的、在图2的系统中的移动站的模块图。
图19是根据本发明第九个实施例的、在图2的基站中的收发器设备的模块图。
图20说明了基于本发明第十个实施例的、在图1的系统中的移动站的接收波形。
图21说明了基于本发明第十个实施例的通信信道的结构。
图22是根据本发明第十个实施例的、在图2的基站中的收发器设备的模块图。
图23是根据本发明第十个实施例的、在图1的系统中的移动站的模块图。
图24是根据本发明第十一个实施例的、在图1的系统中的基站的模块图。
图25说明了基于本发明第十一个实施例的、在图1的系统中的移动站的接收波形。
图26示例性地说明了在扩展频谱中的波形变化。
现在参照图1到图5详细描述基于本发明的CDMA移动通信模式的第一个实施例。
图1说明了第一个实施例中的CDMA移动通信系统的结构,其中与通信网90相连的每个基站1和2都由多个扇区(在第一个实施例中为扇区1到扇区3的三个扇区)构成,基站1或2利用预先赋予各基站的扩展码从扇区1到扇区3发送一个导频信道。在图1中,移动站92也与基站1进行通信。移动站92向基站1发送上行链路扩展码(code0),而基站1则从扇区2和扇区3向移动站92发送相同的下行链路扩展码(code1)。
图2说明了图1所示的CDMA移动通信系统中每个基站1或2的结构。如图2所示,每个基站具有针对扇区-1的天线11a,针对扇区-2的天线11b和针对扇区-3的天线c,这些天线用于每一扇区无线信号的发送和接收。天线11a,11b和11c分别与双工器13a,13b和13c相连,因此每架天线自己既可用于发射又可用于接收。双工器13a,13b和13c分别与RF发送放大器15a,15b和15c,以及RF接收放大器17a,17b和17c相连,这里每个RF发送放大器15在RF带宽内放大发送信号,并且RF每个接收放大器17在RF带宽内放大接收的信号。
各RF发送放大器15与导频信道发送器设备19相连,并发送导频信道,而各RF发送放大器15和各RF接收放大器17与多个收发器设备21a,21b,…,21n相连,这些收发器设备并且被配备给相应的通信信道并且用于与多个移动站同时进行通信。这些收发器设备21通过通信网90与相应的收发器设备(未示出)相连。
图3说明了在图2的基站中导频信道发送器设备19的结构。如图3所示,导频信道发送器设备19有一个导频信道数据产生单元191,以便产生通过该导频信道的数据。导频信道数据产生单元191产生的数据经编码器193的编码,初级调制器195的初级调制,提供给次级调制器199。还提供一个码产生器197,以便产生一个预先赋予各基站的导频信道扩展码,并且向次级调制器199提供已产生的导频信道扩展码。次级调制器199使用由码产生器197提供的导频信道扩展码,对来自初级调制器195的初级调制数据进行次级调制,即扩展。然后,由次级调制器199获得的扩展数据由分配器201分配给三个扇区的RF发送放大器15。
图4说明了图1的基站中各收发器设备21的结构,其中(a)是发送部分,(b)是接收部分。
在图4的发送部分(a)中,由编码器31编码的从通信网90发送的通信数据,用于初级调制器33的初级调制,并传送到次级调制器37。还配备一个下行链路码产生器35,以便预先产生一个赋予各移动站,即各通信信道的下行链路通信扩展码,并把已产生的下行链路通信扩展码传送到次级调制器37。
次级调制器37使用由下行链路码产生器35提供的下行链路通信扩展码,对由初级调制器33提供的初级调制数据进行次级调制,即扩展。由次级调制器37获得的扩展数据提供给开关电路41。所配备的发送扇区选择单元39,具有选择扇区发送通信数据的功能。发送扇区选择单元39可选择一个或多个扇区。根据发送扇区选择单元39获得的选择结果,开关电路41实现对来自次级调制器37的次级调制数据的开关,以便控制所选择扇区的RF发送放大器15对通信数据的传送。
在图4的接收部分(b)中,配备一个接收扇区选择单元53,它具有选择接收通信数据的扇区的功能。接收扇区选择单元53可选择一个或多个扇区。还配备一个开关电路51,根据接收扇区选择单元53获得的选择结果,把来自选择扇区的RF接收放大器17所接收的信号传送到相关器57。还配备一个上行链路码产生器55,以便预先产生一个赋予各移动站,即各通信信道的上行链路通信扩展码,并传送产生的上行链路通信扩展码到相关器57。
各相关器57使用由上行链路码产生器55传送的上行链路通信扩展码,解扩展由开关电路51传送的接收信号。这里所配备的相关器57的数量由一个RAKE接收器59的接收分支的数量决定,并且假设在第一实施例中提供足够多的相关器57。也就是说,假设图4的收发器设备21具有能从所有有效路径接收信号的结构。RAKE接收器59求得相关器57的输出的最大比例组合,然后由译码器61译码,并向通信网90发送译码信号。
图5说明了在图1的CDMA移动通信系统中各移动站的结构。如图5所示,各移动站均有一架天线71,针对基站发送和接收无线信号,并且由天线71所接收的来自基站的信号通过双工器73传送到RF接收放大器75,在RF接收放大器75处放大并传送给相关器79。还配备一个下行链路码产生器77,以便预先产生一个赋予各移动站,即各通信信道的下行链路通信扩展码,并传送产生的下行链路通信扩展码到相关器79。各相关器79使用从下行链路码产生器77提供的下行链路通信扩展码,解扩展从RF接收放大器75提供的接收信号。这里,所提供的相关器79的数量由RAKE接收器81的接收分支的数量决定,并且假设在第一实施例中提供了足够多的相关器79。也就是说,假设图5的移动站具有能从所有有效路径接收信号的结构。由RAKE接收器81求得相关器79输出的最大比例组合,然后由译码器83译码。接着通过一个语音CODEC85把译码信号由数字信号转变为语音信号,并发送到送受话器87。
另一方面,从送受话器87进入的语音信号通过语音CODEC85转变为数字信号,由编码器89编码,用于初级调制器91的初级调制,并传送给次级调制器95。还提供一个上行链路码产生器93,以预先产生一个赋予各移动站,即各通信信道的上行链路扩展码,并发送所产生的上行链路通信扩展码到次级调制器95。次级调制器95使用从上行链路码产生器93传送的上行链路通信扩展码,对从初级调制器91传送的初级调制的数据进行次级调制,即扩展。然后由次级调制器95获得的扩展数据传送给一个在RF带宽内放大信号RF的发送放大器97,并通过双工器73从天线71发送。
在前面所描述的CDMA移动通信系统具有的结构中,各基站从导频信道发送器设备19产生预先赋予各基站的由导频信道扩展码扩展的导频信道。接着,同一个导频信道由RF发送放大器15a,15b和15c放大,并经双工器13a,13b和13c从天线11a,11b和11c分别地向三个扇区发送。即,在第一实施例的CDMA移动通信系统中,同一个导频信道被发送到全部三个扇区,而不象常规的系统那样,不同的扇区使用不同的导频信道。接着在基站侧完成扇区选择,从而无须在移动站进行选择。
通过顺序使用存储在移动站中的周围单元的导频信道扩展码,移动站从基站接收导频信道,并从导频信道扩展码确定基站,但是移动站并不在意其现在定位于基站的哪一个扇区。
在从基站的两个或多个扇区处同时接收来自移动站的信号的情况下,根据接收扇区选择单元53的选择控制,由开关电路51开关控制来自此两个或多个扇区的接收信号。然后,通过在相关器57处使用相同的上行链路扩展码解扩展来自此两个或多个扇区的接收信号。接着,来自此两个或多个扇区的接收信号的最大比例组合由RAKE求得,由译码器61译码,并发送到通信网90。
同样,在从基站的两个或多个扇区同时发送信号的情况下,通过在次级调制器37处使用相同的下行链路扩展码扩展发送信号。根据发送扇区选择单元39,由开关电路41开关控制扩展的发送信号,并从两个或多个扇区发送。
此外,当移动站在同一基站内从一个扇区移动到另一个扇区时,无须改变上行链路扩展码和下行链路扩展码,从而无须把基站处选择的扇区通知移动站,并且也无须在移动站和基站之间互换涉及扇区选择的控制信号。对于容量,基站选择发送扇区和接收扇区,以便根据扇区的结构来实现容量的有效增加。
所以,与常规CDMA的移动通信系统相比,第一实施例的CDMA移动通信系统,即便当导频信道减少而扇区数量增加时,也能使用具有好的相关特性的导频信道扩展码,并可在移动站进行精确的小区/扇区判定,因在移动站处,出于进行小区/扇区判定的目的的扫描时间可缩短。此外,当移动站从一个扇区移动到另一个时,在移动站和基站之间无控制信号的互换,从而即使当扇区的数量增加时控制信息传输不会堵塞,并由于增加了扇区的数量使得容量增加。
现在参照图6详细描述基于本发明的CDMA移动通信模式的第二实施例。
在第二实施例中,来自移动站的信号经常被位于同一基站的所有扇区同时接收,为达到此目的,在各基站中的收发器设备21的结构被调整,如图6所示。第二实施例中CDMA移动通信系统的其余部分与第一实施例的相同。
在图6的收发器设备21中,发送部分(a)与图4的相同,但是接收部分(b)与图4的不同,在此接收部分(b)中配备了一个分配器63代替开关电路51和接收扇区选择单元53,以分配从全部扇区来的信号。图6结构的其余部分与图4的相同。
在此结构中,从所有扇区的移动站同时接收信号总是通过分配器63实现,并且全部扇区接收的信号由相关器57通过使用同一上行链路扩展码进行解扩展,并且其最大比例组合由RAKE接收器59求得。
从图6可明显的看出,当所有扇区的同时接收总是通过分配器63实现时,无须进行接收扇区选择。对于容量,即使在所有扇区都同时接收的情况下只要能求得最大比例组合,上行链路通信的接收特性不会降低,从而能根据该扇区结构来实现容量的有效增加,并且保证等同或超出图4结构的容量。
现在参照图7和图8详细描述基于本发明的CDMA移动通信模式的第三实施例。
在第三实施例中,通过对每个扇区配备一个扫描接收设备进行接收扇区的选择,为达到此目的,各基站的结构调整如图7所示。在第三实施例中CDMA移动通信系统的其余部分与第一实施例的相同。
图7的基站具有扫描接收设备23a,23b和23c,这些设备分别配备给相对应的三个扇区,并与各扇区的RF接收放大器17a,17b和17c分别相连。图7结构的其余部分与图2的相同。
图8说明了各扫描接收设备23的结构。如图8所示,各扫描接收设备23有一个分配器111,分配器111分配来自相应扇区RF的接收放大器17发送的信号,并传送由分配器111分配的信号至相关器115。还配备了一个通信上行链路码管理单元121,该单元存储由所有正在与该基站进行通信的移动站所赋予的上行链路扩展码,并管理各个存储的上行链路扩展码与用于该上行链路扩展码的接收器设备21之间的一致性。
通信上行链路码管理单元121顺序地把已存储的上行链路扩展码通知上行链路码产生器113,并且上行链路码产生器113产生已通知的上行链路扩展码并把产生的上行链路扩展码传送至相关器115。相关器115使用从上行链路码产生器113传送的上行链路扩展码解扩展来自分配器111的信号,并由一个RAKE接收器117接收解扩展的信号。
还配备了一个电平测量单元119,测量RAKE接收器117上的接收电平,并向收发器设备21的接收扇区选择单元53报告测量结果,这里收发器设备21由通信上行链路码管理单元121确定。接着,接收扇区选择单元53通过比较全部扇区报告的接收电平进行接收扇区的选择。其中,具有最大接收电平的扇区可选作接收扇区,或选择在最大接收电平和测量的接收电平之间的差值未超过预定值,如5dB,的扇区作为接收扇区。
通过向各扇区配备扫描接收设备23,并如前面所述选择上行链路接收扇区,而无须总是选择所有的扇区,这样可节省基站的接收器资源。此外,各扇区仅需一个扫描接收设备23,从而可高效使用扫描接收设备23。
现在参照图9详细描述基于本发明的CDMA移动通信模式的第四实施例。
在第四实施例中,各收发器设备21中配备了扫描接收器单元,从而各基站中的收发器设备21的结构调整如图9所示,在第四实施例中CDMA移动通信系统的其余部分与第一实施例的相同。
在图9的收发器设备21中,发送部分(a)与图4的相同,但是接收部分(b)与图4的不同,在此扫描接收器单元由一个开关电路123,相关器115,一个RAKE接收器117,和一个另外配备的电平测量单元119构成,这里相关器115与上行链路码产生器55相连,电平测量单元119与接收扇区选择单元53相连。图9结构的其余部分与图4的相同。
在图9所示收发器设备21的扫描接收单元中,开关电路123控制全部扇区的RF接收放大器17向相关器115顺序地发送信号。例如,按扇区1→扇区2→扇区3的方式在规定的间隔时间进行转换。注意,对于接收扇区选择单元53所选择的扇区,可使用图4的常规接收部分进行接收电平的测量,从而扫描接收器单元仅在未被接收扇区选择单元53选择的那些扇区中进行扫描。
相关器115,使用图4的常规接收部分的上行链路码产生器55产生的上行链路扩展码,解扩展来自开关电路123的信号,并由RAKE接收器117接收解扩的信号。
电平测量单元119测量RAKE接收器117的接收电平,并向接收扇区选择单元53传送测量结果。同时,接收扇区选择单元53可从开关电路51知道当前的接收扇区,从而接收扇区选择单元53能了解接收扇区和接收电平之间的关系。然后,接收扇区选择单元53通过比较全部扇区报告的接收电平进行接收扇区的选择。其中,具有最大接收电平的扇区可选作接收扇区,或选择在最大接收电平和测量接收电平之间的差值未超过预定值,如5dB,的扇区作为接收扇区。
通过在各收发器设备21中配备扫描接收器单元,并如上所述来选择上行链路接收扇区,从而无须总是选择全部扇区,这样就节省了基站的接收器资源。此外,为各移动站配备相应的电平扫描接收器,这样可以提高扇区选择的精确性。
现在参照图10和图11详细描述基于本发明的CDMA移动通信模式的第五实施例。
在第五实施例中,图9的扫描接收器单元和图4的常规收部分由整个结构实现,从而各基站中的收发器设备21的结构调整如图10所示。在第五实施例中CDMA移动通信系统的其余部分与第一实施例的相同。
在图10的收发器设备21中,发送部分(a)与图4的相同,但是接收部分(b)与图4的不同,在此电平测量单元119与接收扇区选择单元53相连,并另外配备了RAKE接收器59。图10的结构的其余部分与图4的相同。
在图10所示的收发器设备21的电平测量单元119中,RAKE接收器59处的各正在接收的扇区的接收电平被测量,并把测量结果通知接收扇区选择单元53。接着,接收扇区选择单元53根据所通知的电平测量结果,按照图11所示的算法进行控制。
在图11所示的算法中,设最大接收扇区数为n,L(MAX)表示具有最大接收电平的扇区的接收电平,而L(i)表示第i个扇区的接收电平。
在图11中,当在n个扇区中进行接收时(步骤s110),根据电平测量结果检查最大接收电平扇区的最大接收电平L(MAX)与第i个扇区的接收电平L(i)之间的差值是否超过预定值(如5dB)(步骤s120)。当L(MAX)-L(i)小于预定值时,继续n个扇区的接收。相反,当L(MAX)-L(i)大于预定值时,接收扇区的数量减少为n-1个,并进行这n-1个扇区的接收电平扫描(步骤s130)。然后,当在n-1个扇区进行接收时,根据电平测量结果检查最大接收电平扇区的最大接收电平L(MAX)与第i个扇区的接收电平之间的差值是否小于预定值(如5dB)(步骤s140)。当L(MAX)-L(i)不小于预定值时,继续n-1个扇区的接收。相反,当L(MAX)-L(i)小于预定值时,操作转向步骤S110,在此接收扇区的数量增加到n个,以便进行n个扇区的接收。
当多个扇区同时进行接收时,在移动站移动到未进行接收的扇区时就需要进行接收扇区的转换。在这种情况下,一些正在接收的扇区的接收电平通常将降低。相反地,当一些扇区的接收电平降低时,这足以进行电平扫描。图11的算法利用了这种特性,从而仅当扇区选择必须时才执行电平扫描,并且收发器设备21在其它时候用于通信,从而提高收发器设备21的使用效率。
现在参照图12详细描述基于本发明的CDMA移动通信模式的第六实施例。
在第六实施例中,选择所有接收扇区作为发送扇区,在各基站中控制全部发送扇区以同样的发送功率发送,为了达到这一目的,各基站中的收发器设备21的结构调整如图12所示。在第六实施例中CDMA移动通信系统的其余部分与第一实施例的相同。
在图12的收发器设备21与图4的不同之处在于省略了图4的发送扇区单元39,接收扇区选择单元53控制发送部分的开关电路51,图12的结构的其余部分与图4的相同。
在此结构中,从那些正在接收的扇区实现发送成为可能。上行链路与下行链路的接收电平相关,从而对上行链路通信有效的扇区也对下行链路有效。因此,在第六实施例中,当在基站选择多个扇区进行上行链路通信时,下行链路通信的发送也在多个扇区上实现,从而与上行链路通信相似,在下行链路通信中能获得位置分集组合增益。
现在参照图13详细描述基于本发明的CDMA移动通信模式的第七实施例。
在第七实施例中,选择在当前接收扇区中的具有最大接收电平的扇区作为各基站中的发送扇区,为达到此目的,各基站中的收发器设备21的结构调整如图13所示。在第七实施例中CDMA移动通信系统的其余部分与第一实施例的相同。
在图13的收发器设备21与图4的不同之处在于电平测量单元119与发送扇区单元39相连,并另外配备RAKE了接收器59。图13的结构的其余部分与图4的相同。
在图13所示的收发器设备21的电平测量单元119中,RAKE接收器59正在接收的各扇区的接收电平被测量,并把测量结果通知给发送扇区选择单元39。接着在发送扇区选择单元39处选择具有最大接收电平的扇区,并根据选择结果控制开关电路41。
对于下行链路通信,如果在接收电平低的扇区即移动站未位于其中的扇区进行发送,则干扰功率增加并对容量有不利影响,从而在第七实施例中,仅在具有最大接收电平的扇区进行发送。照这样,由于扇区的结构的进一步改善可减少干扰功率并有效增加容量。
现在参照图14详细描述基于本发明的CDMA移动通信模式的第八实施例。
在第八实施例中,控制各发送扇区的发送功率比,从而在各基站中,各扇区的发送功率比等于接收电平比。为达到此目的,各基站中的收发器设备21的结构调整如图14所示。在第八实施例中CDMA移动通信系统的其余部分与第一实施例的相同。
图14的收发器设备21与图4的不同之处在于另外配备了一个衰减器40,该衰减器位于发送部分的开关电路41的输出端,还配备了与衰减器40相连的电平测量单元119和RAKE接收器59,并且接收扇区选择单元53控制发送部分的开关电路41及接收部分的开关电路51。图14的结构的其余部分与图4的相同。
在图14所示的收发器单元21的电平测量单元119中,RAKE接收器59正在接收的扇区的接收电平被测量,并把测量结果通知衰减器40。衰减器40的功能是根据通知的各扇区的接收电平测量结果衰减各扇区的发送功率。
当最大接收电平扇区的衰减电平设为0dB时,各扇区的发送功率的衰减与各扇区的最大接收电平和接收电平之间的差值成正比。例如,一个扇区的接收电平比最大接收电平低10dB,则发送功率衰减10dB,从而接收扇区以比最大接收电平扇区低10dB的功率进行发送。
上行链路与下行链路的传播特性无须相互一致,从而在第八实施例可以从有较低接收电平的扇区进行发送,以便获得位置分集组合增益。另一方面,通过加重扇区的发送功率,以便在具有较高接收电平的扇区以较高的发送功率发送,就可能把干扰的数量压至最小值。所以,根据第八实施例有效地增加容量成为可能。
现在参照图15至图19详细描述基于本发明的CDMA移动通信模式的第九实施例。
在第九实施例中,由移动站进行扇区选择,并在移动站中通过使用插入到各导频信道部分的扇区信息,把扇区选择的结果通知基站。
图15说明了一个从基站传送到移动站的各导频信道的结构,它包含识别各扇区的扇区信息。在图15的结构中,一个扇区的号码被用作扇区信息,并插入导频信道数据之间。在此,扇区号码是赋予扇区的串行编号,比如“1”是扇区1,“2”是扇区2,及“3”是扇区3。
图16说明了从移动站传送至各基站的通信信道的结构,它包含扇区选择的结果。在图16的结构中,扇区号用于指示扇区的选择结果,并插入通信数据之间。
图17说明了第九实施例中各基站的导频信道发送器单元19的结构,其功能是将扇区信息插入导频信道。图17的导频信道发送器单元19与图3的不同之处在于它配备了与基站的扇区数量相同的编码器193,初级调制器195和次级调制器199,省略了图3的分配器201,并另外配备了与编码器193相连的扇区信息产生单元203。图17的结构的其余部分与图3的相同。
扇区信息产生单元203产生被插入到导频信道的扇区信息,并且产生的扇区信息由编码器193插入到导频信道数据之间。
图18说明了第九实施例中的移动站的结构,它具有选择基站发送扇区的功能。图18的移动站与图5的不同之处在于它另外配备了一个由接收导频信道的RF接收放大器175构成的导频信道接收部分,一个可产生导频信道扩展码的导频信道码产生器177,相关器179,一个RAKE接收器181,和一个译码器183,在RF此接收放大器175与双工器73相连,并且译码器183与编码器89相连。图18的结构的其余部分与图5的相同。
在导频信道接收部分中,导频信道被接收并根据接收的导频信道选择一个发送扇区,然后,从译码所选的发送扇区的导频信道提取扇区信息并将此扇区信息传送到编码器89,从而把所选择的发送扇区的扇区号插入通信信道,如图16所示。
注意,第九实施例所描述的导频信道接收部分在上述其它实施例中被忽略,因这对于解释其它实施例的基本特性是不必要的,但是一个常规的移动站具有一个相应于以小区判断为目的的导频信道接收部分的结构,从而无须重新把此导频信道接收部分并入常规移动站。
图19说明了第九实施例中各基站的的收发器设备21的结构,它具有从移动站所选择的扇区进行发送的功能。图19的收发器设备21与图4的不同之处在于译码器61从通信信道获得扇区信息,并把获得的扇区信息通知发送扇区选择单元39。图19的结构的其余部分与图4的相同。
用这种结构,从移动站所选择的扇区进行发送成为可能,并且可根据下行链路传播特性完成扇区选择,从而可以实现更为精确的发送扇区选择。因此,发送功率可以最小化,并且容量可以增加。
现在参照图20至图23详细描述基于本发明的CDMA移动通信模式的第十实施例。
在第十实施例中,来自不同扇区的通信信道的发送时间相互叉开。
图20说明了在第十实施例中,从移动站的三个扇区接收的导频信道和通信信道的波形。如图20所示,相对导频信道的发送时间,来自三个扇区的通信信道的发送定时被互不相同的定时差异偏差叉开,从而移动站可依据导频信道的接收定时与各通信信道的接收定时的差异识别各扇区,并实现各扇区的接收电平测量。
图21说明了在第十实施例中,从移动站向基站发送的通信信道的结构,在此将指示各扇区接收电平的测量结果信息插入通信数据之间。
图22说明了在第十实施例中,各基站的收发器设备21的结构,它具有相对导频信道的发送定时偏差通信信道的发送定时的功能。图22的收发器设备21与图4的不同之处在于开关电路41的输出端新配备了延迟电路42,此时译码器61从通信信道获得测量结果信息,并把获得的测量结果信息通知发送扇区选择单元39。图22的结构的其余部分与图4的相同。
图23说明了在第十实施例中的移动站的结构,它具有报告接收扇区和接收电平的功能。图23的移动站与图5的不同之处在于另外配备了与RAKE接收器81相连的电平测量单元80和编码器89。图23的结构的其余部分与图5的相同。
在图22的收发器设备19中,延迟电路42把不同的延迟用于不同的扇区,从而不同的扇区的通信信道被叉开,如图20所示。
同样,在图23所示的移动站的电平测量单元80,在RAKE接收器81处测量各扇区的接收电平,其中RAKE接收器接收如图20所示波形中的信号,并把测量结果传送给编码器89。然后,编码器89把测量结果信息插入通信信道,如图21所示。
在图22所示的收发器设备21的译码器61中,从通信信道获得指示移动站各扇区接收电平的测量结果信息,并且所获得的测量结果信息被传送至发送扇区选择单元39。在发送扇区选择单元39处,通过比较所有扇区的接收电平选择发送扇区。选择具有最大接收电平的扇区作为发送扇区,或是选择最大接收电平和测量接收电平之间差值不大于所规定的预定值如5dB的扇区作为发送扇区。
从而,在同一基站中,所有被选择的发送扇区都用相同的发射功率发送。
根据此控制,可因多个扇区的同时发送而获得位置分集组合增益,同时可以从移动站所选的扇区进行发送,并且可以根据下行链路的传播特性来进行扇区选择,从而可以实现更为精确的发送扇区选择。因而可以降低发送功率,提高容量。
现在参照图24至25详细描述基于本发明的CDMA移动通信模式的第十一实施例。
在第十一实施例中,来自不同扇区的通信信道的发送定时相互叉开。
图24说明了在第十一实施例中各基站的结构,它与图2的不同之处在于另外配备了分别位于RF发送放大器15a,15b和15c的输出端的延迟电路14a,14b和14c,以实现不同扇区在不同的时间进行发送。图24的结构的其余部分与图2的相同。
图24所示的基站延迟电路14用于这样的延迟,即在移动站的RAKE接收器处,来自不同扇区的信号可以被分离,而基站的多个扇区的不同发送定时包含于移动站的RAKE接收器的搜索范围之内。在这种情况下,移动站的结构可以与图5相同。
图25说明了在第十一实施例的移动站的三个扇区的接收信号波形。如图25所示,即使从多个扇区同时进行发送,来自不同扇区的信号在任何时间不会重叠,从而接收路径被分开并且RAKE接收器的特性可被提高。所以,根据第十一实施例,容量可被增加。
需注意的是如前面所述,本发明的CDMA移动通信模式并不完全需要对各基站的所有扇区使用同一导频信道扩展码,并且本发明可变形为这样一种情况,即在系统中的至少一个基站有多于一个扇区使用同一导频信道扩展码。
还需注意,除了前面所述的以外,上面实施例的多种修改和变化可在没有脱离本发明的本质和有利特点的条件下实现。因此,所有这种修改和变化都包含于所附的权利要求书的范围中。
权利要求
1.在CDMA移动通信系统中进行移动通信的方法,该系统包括一个与通信网相连的基站,和以CDMA模式与基站通信的移动站,其中基站具有多个对基站的小区进行了分割的扇区,该方法包括的步骤有从基站的至少两个扇区中的每一个上发送一个由被赋予基站的同一个导频信道扩展码所扩展的导频信道。在多于一个的接收扇区上接收来自各移动站的上行信号,利用同一个上行链路扩展码解扩展在上述多于一个的接收扇区上接收的上行信号,并在从上述多于一个的接收扇区上同时进行接收情况下,求得解扩展上行信号的最大比例组合;使用同一个下行链路扩展码扩展下行信号,并且在从上述多于一个的发送扇区上同时发送的情况下,从多于一个的发送扇区向各移动站发送经扩展的下行信号。
2.如权利要求1所述的方法,其中在发送步骤中导频信道从上述多个扇区中的每一个上被发送。
3.如权利要求1所述的方法,其中还包括步骤在基站上选择至少一个接收来自各移动站的上行信号的接收扇区,和至少一个向各移动站发送下行信号的发送扇区。
4.如权利要求1所述的方法,其中接收步骤总是在所有的上述多个扇区上同时进行接收。
5.如权利要求1所述的方法,其中还包括步骤使用一个与各扇区相对应而配备的电平扫描接收器设备,通过顺序扫描被赋予那些正在与基站通信的移动站的上行链路扩展码来测量接收电平;根据由测量步骤测量的接收电平,在基站上选择至少一个接收来自各移动站的上行信号的接收扇区。
6.如权利要求1所述的方法,其中还包括步骤使用一个与各移动站相对应而配备的电平扫描接收器设备,通过顺序接通一个扇区,并利用被赋予各移动站的上行链路扩展码进行接收来测量接收电平;根据由测量步骤测量的接收电平,在基站上选择至少一个接收来自各移动站的上行信号的接收扇区。
7.如权利要求1所述的方法,其中还包括步骤使用一个为上述各接收扇区中的一个扇区而配备的接收器设备,通过顺序接通一个扇区,并利用被赋予各移动站的上行链路扩展码进行接收来测量接收电平,当同时在上述多于一个的接收扇区上进行接收的时候若上述一个扇区的接收电平与上述多于一个的接收扇区中的最大接收电平之间的差值超过一预定值;根据由测量步骤测量的接收电平,在基站上选择上述多于一个的接收扇区用来接收来自各移动站的上行信号。
8.如权利要求1所述的方法,其中还包括步骤在基站上,从上述多个扇区中选择那些正在接收来自各移动站的上行信号的扇区用作向各移动站发送下行信号的发送扇区;其中的扩展步骤利用在各发送扇区中都相同的发送功率,在选择步骤所选出的发送扇区上同时进行发送。
9.如权利要求1所述的方法,其中还包括步骤在基站中,从正在接收来自各移动站的上行信号的那些扇区中,选择接收电平最高的一个扇区,来作为向各移动站发送下行信号的发送扇区。
10.如权利要求1所述的方法,其中还包括步骤在基站中,从上述多个扇区中选择那些正在接收来自各移动站的上行信号的扇区用作向各移动站发送下行信号的发送扇区;其中的扩展步骤利用与发送扇区的接收电平比相同的发送功率比,在选择步骤所选出的发送扇区上同时进行发送。
11.如权利要求1所述的方法,其中在发送步骤中,从各扇区发送的导频信道包含一个标识各扇区的扇区信息,另外还包括步骤在各移动站中,根据包含在从各扇区发送的导频信道中的扇区信息选择一个向各移动站发送下行信号的发送扇区;使用从各扇区发送的导频信道所包含的扇区信息,从各移动站把选择步骤所选出的上述一个发送扇区通知给基站,以便扩展步骤从上述一个发送扇区上进行发送。
12.如权利要求1所述的方法,其中扩展步骤以相对于导频信道的发送定时的不同定时,通过通信信道从不同的扇区上发送下行信号,该方法另外还包括步骤根据导频信道的接收定时和各通信信道的接收定时之间的差距,识别在各移动站处正在接收下行信号的各个扇区,测量所识别的各个扇区的通信信道的接收电平,并且从各移动站处把所识别的各扇区和所识别的各扇区的测量接收电平通知给基站;在基站处,根据从各移动站通知的各被识别扇区的测量接收电平,选择至少一个向各移动站发送下行信号的发送扇区。
13.如权利要求12所述的方法,其中选择步骤选择多于一个的发送扇区,而扩展步骤则利用相同的发送功率,从选择步骤选出的上述多于一个的发送扇区上同时进行发送。
14.如权利要求1所述的方法,其中扩展步骤以在各移动站的RAKE接收器的搜寻范围内的不同定时,通过通信信道从不同的扇区发送下行信号,而通过设置上述不同的定时,使得各移动站的RAKE接收器可区分不同扇区的通信信道。
15.用于CDMA移动通信系统的基站装置,该系统包括一个与通信网相连的基站,和以CDMA模式与基站通信的移动站,其中基站具有多个对基站的小区进行了分割的扇区,该基站装置包括一个导频信道发送设备,其中该设备从基站的至少两个扇区中的每一个上发送一个,由被赋予基站的同一个导频信道扩展码所扩展的导频信道。一个通信信道接收设备,该设备在多于一个的接收扇区上接收来自各移动站的上行信号,利用同一个上行链路扩展码解扩展在上述多于一个的接收扇区上接收的上行信号,并在从上述多于一个的接收扇区上同时进行接收情况下,求得解扩展上行信号的最大比例组合;一个通信信道发送设备,该设备使用同一个下行链路扩展码扩展下行信号,并且在从上述多于一个的发送扇区上同时发送的情况下,从多于一个的发送扇区向各移动站发送扩展下行信号。
16.如权利要求15所述的装置,其中导频信道发送设备从上述多个扇区中的每一个上发送导频信道。
17.如权利要求15所述的装置,其中还包括一个接收扇区选择单元,该单元选择至少一个接收来自各移动站的上行信号的接收扇区;一个发送扇区选择单元,该单元选择至少一个向各移动站发送下行信号的发送扇区。
18.如权利要求15所述的装置,其中通信信道接收设备总是在所有的上述多个扇区上同时进行接收。
19.如权利要求15所述的装置,其中还包括一个与各扇区相对应而配备的电平扫描接收器设备,该设备通过顺序扫描被赋予那些正在与基站通信的移动站的上行链路扩展码来测量接收电平;一个接收扇区选择单元,该单元根据电平扫描接收器设备测量的接收电平,选择至少一个接收来自各移动站的上行信号的接收扇区。
20.如权利要求15所述的装置,其中还包括一个与各扇区相对应而配备的电平扫描接收器设备,该设备通过顺序接通一个扇区,并利用被赋予各移动站的上行链路扩展码进行接收来测量接收电平;一个接收扇区选择单元,该单元根据电平扫描接收器设备测量的接收电平,选择至少一个接收来自各移动站的上行信号的接收扇区。
21.如权利要求15所述的装置,其中通信信道接收设备包括一个为上述各扇区配备的、接收来自各移动站的上行信号的接收器设备,其中,使用针对上述多于一个的接收扇区中的一个扇区的接收器设备,通过顺序接通一个扇区,并利用被赋予各移动站的上行链路扩展码进行接收来测量接收电平,当同时在上述多于一个的接收扇区上进行接收的时若上述一个扇区的接收电平与上述多于一个的接收扇区中的最大接收电平之间的差值超过一预定值;一个接收扇区选择单元,该单元根据由上述一个扇区的接收器设备测量的接收电平,选择上述多于一个的接收扇区用于接收来自各移动站的上行信号。
22.如权利要求15所述的装置,其中还包括一个扇区选择单元,该单元从上述多个扇区中选择那些正在接收来自各移动站的上行信号的扇区用作向各移动站发送下行信号的发送扇区;其中的通信信道发送设备利用在各发送扇区中都相同的发送功率,在扇区选择单元所选出的发送扇区上同时进行发送。
23.如权利要求15所述的装置,其中还包括一个扇区选择单元,该单元从正在接收来自各移动站的上行信号的那些扇区中,选择接收电平最高的一个扇区,来作为向各移动站发送下行信号的发送扇区。
24.如权利要求15所述的装置,其中还包括一个扇区选择单元,该单元从上述多个扇区中选择那些正在接收来自各移动站的上行信号的扇区用作向各移动站发送下行信号的发送扇区;其中的通信信道发送设备利用与发送扇区的接收电平比相同的发送功率比,在扇区选择单元所选出的发送扇区上同时进行发送。
25.如权利要求15所述的装置,其中在由导频信道发送设备从各扇区发送的导频信道中包含一个标识各扇区的扇区信息,因而各移动站根据包含在从各扇区发送的导频信道中的扇区信息选择一个向各移动站发送下行信号的发送扇区,并且使用从各扇区发送的导频信道所包含的扇区信息,把上述一个发送扇区通知给基站;通信信道发送设备从各移动站所通知的上述一个发送扇区上进行发送。
26.如权利要求15所述的装置,其中通信信道发送设备以相对于导频信道发送设备发送的导频信道的发送定时的不同定时,通过通信信道从不同的扇区上发送下行信号,因而各移动站根据导频信道的接收定时和各通信信道的接收定时之间的差距,识别在各移动站处正在接收下行信号的各个扇区,测量所识别的各个扇区的通信信道的接收电平,并且把所识别的各扇区和所识别的扇区的测量接收电平通知给基站;该装置还包括一个发送扇区选择单元,该单元根据从各移动站通知的被识别扇区的测量接收电平,选择至少一个向各移动站发送下行信号的发送扇区。
27.如权利要求26所述的装置,其中发送扇区选择单元选择多于一个的发送扇区,而通信信道发送设备则利用相同的发送功率,从发送扇区选择单元选出的上述多于一个的发送扇区上同时进行发送。
28.如权利要求15所述的装置,其中的通信信道发送设备以在各移动站的RAKE接收器的搜寻范围内的不同定时,通过通信信道从不同的扇区发送下行信号,而通过设置上述不同的定时,使得各移动站的RAKE接收器能区分不同扇区的通信信道。
29.用于CDMA移动通信系统的移动站装置,该系统包括一个与通信网相连的基站,和以CDMA模式与基站通信的移动站,其中基站具有多个对基站的小区进行了分割的扇区,从该基站的至少两个扇区中的每一个上发送一个导频信道,该导频信道由被赋予基站的同一个导频信道扩展码所扩展,并且从各扇区发送的导频信道包含一个标识各扇区的扇区信息,各移动站的移动站装置包括一个导频信道接收设备,该设备接收从各扇区发送的导频信道,并且根据从各扇区发送的导频信道选择一个向上述移动站装置发送下行信号的发送扇区;一个通信信道接收设备,该设备接收从基站发送的下行信号;一个通信信道发送设备,该设备向基站发送上行信号,上行信号包含一个部分,该部分通过使用从各扇区发送的导频信道中所含的扇区信息,把上述一个的发送扇区通知给基站,因而基站在上述移动站装置通知的上述一个的发送扇区上进行发送。
30.用于CDMA移动通信系统的移动站装置,该系统包括一个与通信网相连的基站,和以CDMA模式与基站通信的移动站,其中基站具有多个对基站的小区进行了分割的扇区,从该基站的至少两个扇区中的每一个上发送一个,由被赋予基站的同一个导频信道扩展码所扩展的导频信道,并且以相对于导频信道的发送定时的不同定时,通过通信信道从不同的扇区上发送下行信号,各移动站的移动站装置包括一个导频信道接收设备,该设备接收从各扇区发送的导频信道;一个通信信道接收设备,该设备接收从基站发送的下行信号,根据导频信道的接收定时和各通信信道的接收定时之间的差距,识别正在接收下行信号的各个扇区,并且测量所识别的各个扇区的通信信道的接收电平;一个通信信道发送设备,该设备向基站发送上行信号,上行信号包含一个部分,该部分把所识别的各扇区和所识别的扇区的测量接收电平通知给基站,因而基站根据从上述移动站装置通知的各个被识别扇区的测量接收电平,选择至少一个向上述移动站装置发送下行信号的发送扇区。
全文摘要
一种CDMA移动通信模式,通过使用扇区结构来增加扇区数,但不增加导频信道扩展码的数量,也不会堵塞控制信道传输,从而可以增加容量。从基站的每个扇区上发送一个由同一个导频信道扩展码所扩展的导频信道。在多扇区上接收来自各移动站的上行信号,并使用同一个上行链路扩展码解扩展,而且求得解扩展后信号的最大比例组合。使用同一个下行链路扩展码扩展下行信号,并且从多个发送扇区向各移动站发送扩展后的下行信号。
文档编号H04B7/08GK1165459SQ9710487
公开日1997年11月19日 申请日期1997年3月21日 优先权日1996年3月21日
发明者中野悦宏, 中村武宏, 尾上诚藏 申请人:Ntt移动通信网株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1