薄膜电阻的形成的制作方法

文档序号:8037054阅读:420来源:国知局
专利名称:薄膜电阻的形成的制作方法
本申请是申请号为99106358.9,申请日为1999年4月29日的申请“薄膜电阻的形成”的分案申请。
本发明是针对薄层电阻的形成,较好的是用于印刷电路的薄层电阻,这种薄层能够埋入印刷线路板。具体而言,本发明是针对由薄层电阻材料来形成薄层电阻,所述薄层电阻材料可以通过燃烧化学气相淀积来进行淀积。
燃烧化学气相淀积(combustion chemical vapor deposition,″CCVD″)是一种近年来发明的CVD技术,它允许在开放气氛下淀积薄膜。与其它薄膜技术(包括传统的CVD技术)相比,CCVD工艺有数种优点。CCVD最主要的优点是它能够在开放的气氛中淀积膜,无需任何昂贵的炉子、真空装置或反应室。结果,与以真空为基的体系相比,体系初始投资可降低多达90%。燃烧火焰代替了其它技术所需的专门环境,提供了从溶液、蒸汽或气体源中淀积出基本组分所需的环境。前体通常是溶解在一种溶剂中,它也用作为可燃燃料。可以在大气压力和温度下,在排气罩内、户外或者在可控制环境气体或压力的室内进行淀积。
因为CCVD通常使用溶液,所以该技术的一个显著优点是它可快速和简单地改变掺杂剂和化学计量,这使复合膜的淀积变得容易。CCVD技术通常使用便宜、可溶的前体。此外,在CCVD中前体的蒸汽压力并不起重要的作用,因为溶解过程提供了用于产生必需离子组分的能量。通过调节溶液浓度和组分,可以快速和容易地淀积宽范围的化学计量。此外,CCVD过程使得可以根据具体用途的要求来定制淀积膜的化学组成和物理结构。
与传统CVD不同,CCVD工艺并不需限制在昂贵、固定、低压的反应器中进行。因此,淀积火焰或火焰束可以沿基材移动,以容易地涂覆大表面区域和/或复合表面区域。因为CCVD工艺不限于专门的环境,所以使用者可以不间断地向涂层区域中连续地加入材料,因此可分批加工。而且,使用者可以将淀积限制在底材的特定区域上,这可以通过简单地控制火焰在那些区域上的停留时间来实现。最后,CCVD技术通常使用不含卤素的化学前体,这大大地降低了对环境的负面影响。
已有多种材料用预混的前体溶液燃烧作为唯一的热源通过CCVD技术来进行淀积。这一便宜且灵活的膜淀积技术可使薄膜技术得到广泛应用。CCVD工艺有着与热喷涂大致相同的灵活性,而产生与传统CVD所得膜相同质量的保形膜。使用CCVD工艺,可以用相当低的成本在数天内淀积所需的相。
CCVD工艺的较佳实施方案详细描述于1996年8月2日提交的美国申请No.08/691,853,该文献的内容参考结合于本发明中。根据该申请,CCVD由接近超临界的液体和超临界流体制得气相形成的膜、粉末和纳米相涂层。较好的是形成含有一种或多种化学前体的液体或类液体的溶液流体。调节该溶液流体至临界压力附近或以上,然后加热至超临界温度附近,紧接着通过限流管或喷嘴释放出来,产生夹带着非常细的雾化或汽化的溶液流体的气体。燃烧该溶液流体蒸汽以形成火焰,或者使其进入火焰或电火焰等离子体中,这些前体在火焰或等离子体中或者在底材表面上反应成所需的相。由于等离子体的温度高,许多前体会在基材表面之前反应。将底材放在火焰或电炬等离子体中或其附近,淀积形成涂层。此外,所形成的材料可以收集作为纳米相粉末。
使用在临界压力附近或以上、在临界温度附近的溶液流体,得到非常细的雾化、喷雾、汽化或气化。所溶解的化学前体无需具有高的蒸汽压力,但是蒸汽压力高的前体要优于蒸汽压力较低的前体。通过加热刚好在喷嘴或限流管(雾化装置)之前或末端的溶液流体,使前体在雾化之前可用的化学反应或溶解时间最小化。该方法可用来由多种有机金属化合物和无机前体来淀积涂层。流体溶液的溶剂可选自在其中前体能形成溶液的任何液体或超临界流体。液体或流体溶剂本身可以由不同化合物的混合物组成。
降低含试剂流体的超临界温度能得到优越的涂层。许多这些流体在STP(标准温度压力)下不是稳定的液体,必须在压力缸或于低温进行混合。为了便于形成只能存在于高于环境压力的压力下的液体或流体溶液,可任选地将一种或多种化学前体首先溶解在于环境压力下稳定的第一溶剂中。将该溶液放在一个能承受压力的容器中,然后加入第二(主要)液体或流体(第一溶液能混溶于其中)。主要液体或流体的超临界温度较低,结果降低了产生所需程度喷雾需要的最高温度。通过形成高浓度第一溶液,许多所得的较低浓度溶液由第二溶液化合物和可能添加的溶液化合物组成。一般来说,在给定溶液中给定化合物的比例越高,该溶液性能就越象该化合物的性能。选择这些添加的液体和流体以助于含化学前体的溶液的非常细的雾化、汽化或气化。选择超临界温度低的最终溶液混合物,还可尽量减少化学前体在雾化装置内部发生反应,以及降低或消除在释放区域加热溶液的需要。在一些例子中,可以在释放区域之前冷却溶液,以保持溶解度和流体稳定性。超临界流体溶液领域的技术人员可以无需过多试验而确定多种可能的溶液混合物。可任选地,具有玻璃窗的压力容器或具有光纤和监视器的压力容器能够目视确定混溶性和溶质-溶剂的相容性。相反地,如果在线过滤器阻塞或是在主容器中发现留下沉淀物的话,就说明在那些条件下可能发生了不相容。
另一个优点是释放在超临界点附近或以上的流体会产生快速膨胀,形成高速的气体-蒸汽流。高速气流有效地降低了淀积表面前方的气体扩散边界层,由此提高了膜的质量和淀积效率。当气流速度高于火焰速度时,必须使用引火灯(pilotlight)或其它点火装置来形成稳定状态的火焰。在一些情况下,需要两盏或多盏引火灯以确保完全燃烧。使用等离子炬的话,无需引火灯,遵循本领域普通技术人员已知的操作条件即可容易地得到高速度。
含溶质的流体不必作为用于燃烧的燃料。不燃性流体(如水、N2O或CO2)或者难以燃烧的流体(如氨)可用来溶解前体,或者可以用作第二溶液化合物。然后它们膨胀进入提供前体反应的环境的火焰或等离子炬中。淀积可以于环境压力或其上或其下进行。等离子炬在减压下工作良好。火焰可以在低至10乇下稳定,在高压下也工作良好。在较低的压力下可以形成甚至低于500℃的冷火焰。虽然两者都可以在开放的气氛中工作,但是较好的是在受控制的气氛下于反应室实践本发明方法,以防止气载杂质夹带在所得涂层中。许多电涂层和光学涂层用途要求涂层中没有这些杂质。这些用途通常需要薄膜,但是也可以淀积用于绝热、腐蚀和磨损场合的较厚的膜。
通过更进一步地延长淀积时间,可以生长更大块的材料(包括单晶)。由于扩散速率较高,因此较高的淀积温度得到的外延淀积速率较快,这是淀积单晶厚膜或块状材料所必需的。
CCVD是一种利用氧气的火焰工艺。虽然可以使用CCVD通过在火焰的还原焰部分来淀积会与氧反应的材料(oxygen-reactive material),但是用于淀积会与氧反应的材料(如镍)的较好技术是1998年4月29日提交的美国专利申请No.09/067,975中所述的相关方法,该内容参考结合于本发明中。
参考的美国专利申请No.09/067,975中所述发明提供了用于化学气相淀积的仪器和方法,其中涂层淀积区的气氛如下建立仔细地控制和保护形成涂层所加入的材料,并使从淀积区排出的气体经过一个隔离区(barrier zone),在该隔离区中气体以大于50英尺/分钟(较好的是大于100英尺/分钟)的平均速度从所述淀积区中流走。气体快速流过隔离区基本上阻止了来自环境气氛的气体迁移到淀积区中,在那里这些气体可能与涂层或形成涂层的材料反应。通过在液体介质中以固定比例加入各种涂料前体,可以对用来形成涂层的材料进行仔细的控制。液体介质在加入反应区时雾化,在反应区中液体介质被汽化,涂料前体反应形成经反应的涂料前体。此外,涂料前体可以气体的形式加入(其本身为气体或是在载气中的混合物)。经反应的涂料前体通常由经部分、全部和分级反应的组分组成,可以作为等离子体流入淀积区中。经反应的涂料前体在淀积区中与底材表面接触并在其上淀积涂层。在反应区的周围可以提供流动的惰性气体气幕,用来保护该区中的反应性涂料/等离子体免受周围仪器中所用材料或环境气氛中的组分的沾污。
液体介质的汽化和反应区中涂料前体的反应都需要输入能量。所需能量可以由多种能源提供,如电阻加热、感应加热、微波加热、RF加热、热表面加热和/或与热的惰性气体混合。
在本文中非燃烧工艺(non-combustion process)被称为“控制气氛的燃烧化学气相淀积”(CACCVD)。这一技术提供了相对受控制的能量输入速率,使得能够高速率地进行涂料淀积。在一些较佳的例子中,液体介质和/或用来雾化液体介质的次级气体可以是用于CACCVD中的可燃性燃料。特别重要的是CACCVD能够在或约在常压下形成高质量的粘附淀积物,从而无需在复杂的真空或类似隔离设备中进行。由于这些原因,在许多情况下,CACCVD薄膜涂层可以在基材所处的地方进行原地施涂或“现场”施涂。
燃烧化学气相淀积(CCVD)不适用于那些需要无氧环境的涂覆场合。适用于这些场合的是CACCVD,它使用非燃烧能源,如热气体、经加热的管子、辐射能量、微波和使用红外或激光源激发的光子。在这些场合中,重要的是所使用的所有液体和气体是不含氧的。涂料前体可以加入液体中的溶液或悬浮液中,所述液体例如氨或丙烷,它们分别适用于淀积氮化物或碳化物。
CACCVD工艺和设备对淀积区的气氛进行控制,从而使得能够在对温度敏感或对真空敏感的底材上产生敏感涂层,这些底材可以大于那些用传统的真空室淀积技术进行加工的底材。
CACCVD的另一个优点是它能够涂覆底材而无需向底材提供额外的能量。因此,这一体系可以用来涂覆那些以前在使用大多数已有体系时不能忍受所处温度的底材。例如,镍涂层可以施涂到聚酰亚胺片底材上而不会导致该底材的变形。已有的常压淀积技术不能进行金属镍的化学气相淀积,因为镍对氧有很强的亲合力,而对聚酰亚胺片底材进行真空处理也是有问题的,因为它处于热和真空下会脱水气,且易于尺寸不稳定。


图1是本发明设备的示意图。
图2是使用接近超临界和超临界的雾化来淀积膜和粉末的设备的示意图。
图3a-3c是本发明所用雾化器的详细示意图。
图4a-4c是说明本发明形成薄层电阻步骤的剖面图。图4d是图4c薄层电阻的平面图。
图5a-5c是类似的剖面图,说明根据本发明的另一种方法形成薄层电阻的步骤。
图6是埋入绝缘材料中的图4c电阻的剖面图。
图7是本发明的施涂涂料的设备的部分剖视示意图。
图8是图7设备中所用涂覆头一部分的部分剖视的特写透视图。
图9a-9g是表示由经电阻材料涂覆的独立式箔制得电阻这一过程的结构(structure)剖面图。
图10a、b和c说明了用三层层压板开始制备在金属箔上的电阻图案的方法,所述三层层压板包含导电箔层、能蚀刻的中间层和一层多孔电阻材料。
根据本发明,在底材上形成薄层电阻,所述电阻可以埋入印刷线路板中。在底材上形成一薄层电阻材料。形成薄层的较佳电阻材料是金属(如铂)和介电材料(如二氧化硅和氧化铝)的均相混合物。即使是少量介电材料与金属混合也能显著地增加金属的电阻。较好的是电阻材料通过燃烧化学气相淀积(CCVD)淀积在基材上。在零价金属和介电材料的情况下,通过用CCVD共淀积金属和介电材料来得到均相混合物。为了形成一块块分立的电阻材料(discrete patches of the resistivematerial),蚀刻除去经选择部分的电阻材料层。这样,用形成图案的抗蚀剂(如经曝光和显影的光敏抗蚀剂)覆盖一层电阻材料,蚀刻除去下面电阻材料层的暴露部分。此外,本发明形成了薄层的一块块分立的电阻材料,和将一块块电阻材料层的间隔地方电连接起来的导电材料,所述导电材料用电路将多块电阻材料区电连接起来。这些绝缘材料、电阻材料和导电材料的结构可以用选择性蚀刻方法来形成。
某些可以用本发明CCVD进行淀积的电阻材料是多孔的。这些孔隙度有助于用腐蚀下面底材的蚀刻剂来进行蚀刻。多孔电阻材料层经选择的部分与蚀刻剂接触,所述蚀刻剂通过微孔渗透通过电阻层,腐蚀下面的底材,从而破坏底材和电阻材料层之间的粘合。由于电阻材料层很薄,因此当粘合被破坏时,与蚀刻剂接触区域的电阻材料薄层会破裂,在蚀刻剂(如喷涂的蚀刻剂)中被带走。与蚀刻剂接触的时间应限制在足以除去(剥落)电阻材料但并不长到足以导致底材显著底蚀的一段时间内。
在本发明的一个实施方案中,电阻材料淀积在金属箔(特别是铜箔)上,所述箔用来形成与本发明薄层电阻电接触的导电电路迹线。一块块分立的电阻材料是通过使用光成象和剥落蚀刻(ablative etching)来形成的。然后,将箔有电阻材料层的一面埋入介电材料(如预浸渍体)中。然后,使用光成象将箔蚀刻成电路迹线图案(circuitry trace pattern)。该电路迹线图案同样也埋入介电材料中。
因为铜和/或氧化铜在淀积电阻材料层时会与其相互作用,所以在本发明的一个实施方案中在淀积电阻材料层之前在铜表面上先淀积一层阻挡层。该阻挡层可以是金属(如镍)或者是一层介电材料(如二氧化硅),该阻挡层很薄以致于不影响铜箔和淀积于其上的电阻材料之间的电接触。当电阻材料层多孔时,使用腐蚀阻挡层的蚀刻剂可以完成剥落蚀刻。
通过参考以下本发明较佳实施方案的详细说明和附图可以更容易地理解本发明。
应该理解,本发明所用的技术名词只是为了说明特定的实施方案,并不对本发明构成限制。必须注意,本说明书和所附权利要求书中所用的单数形式“一”和“此(该)”也包括复数对象,除非上下文中清楚地另外指出。
贯穿于本申请中,在引用出版物的地方,这些出版物的整体内容就参考结合于本申请中,以更全面地说明与本发明有关的现有技术状态。
本发明提供了一种用选定的材料涂覆底材的方法。该方法包括在第一选定温度和第一选定压力下,将一种或多种能够反应以形成所选定材料的试剂溶解在适宜载体中从而形成传输溶液(transport solution),其中,对于单个前体试剂而言,试剂从溶液中沉淀出来或者化学键发生变化于此认为是“反应”。在实际淀积前一些时间,将底材放在具有第二选定压力的区域中。第二选定压力可以是环境压力,通常在20乇以上。然后将传输溶液用压力调节装置加压至高于第二选定压力的第三选定压力。本领域技术人员会认识到,有许多合适的压力调节装置,它们包括但不限于压缩机等。接着,将增压的传输溶液导入一根流体管道中,该流体管道具有入口端和相对的出口端,所述出口端安装有温度调节装置以调节出口端溶液的温度。管道的出口端还包含一个出口孔(outlet port),其取向是引导管道中的流体进入区域和向着底材的方向。该出口孔的形状可以类似于其它喷雾和雾化应用中所用的喷嘴或限流器。然后,使用温度调节装置将溶液加热至第二选定温度(溶液临界温度Tc上下50℃的范围内),同时使用压力调节装置将第三选定压力保持在第二选定压力之上并且高于溶液在第二选定温度下相应的液相线压力或临界压力Pc。然后,将增压、加热的溶液通过管道的出口孔导入区域中以产生向着底材方向的喷雾的溶液喷射液。当溶液导入该区域时,将一种或多种选定的气体混入该喷雾的溶液喷射液中以形成可反应喷射液,此后将该可反应喷射液在选定的增能点上暴露在能源下。该能源提供足够的能量以使可反应喷射液(含有传输溶液的一种或多种试剂)进行反应,从而形成涂覆底材的材料和涂料。
在本发明的另一个实施方案中,能源包括火焰源,选定的增能点包括点火点。在另一个实施方案中,能源包括等离子炬。
在该方法的另一个实施方案中,区域的第二选定压力是环境压力。
在另一个实施方案中,喷雾的溶液喷射液是最大液滴尺寸小于2微米的蒸汽或气溶胶。
在另一个实施方案中,降低区域的第二选定压力以产生温度低于1000℃的燃烧火焰。
在另一个实施方案中,载体是丙烷,传输溶液包括至少50%(体积)的丙烷。在另一个实施方案中,传输溶液还包括丁醇、甲醇、异丙醇、甲苯、或者它们的组合物。在另一个实施方案中,选择载体以使得传输溶液在标准温度和压力下在一段足以实施该方法的时间内基本上不产生沉淀物。
在该方法的另一个实施方案中,使用增压容器,在加压步骤之前、之中或之后,还将标准温度和压力下是气体的物质在选定的足以形成液体或超临界流体的压力下(取决于温度)与传输溶液接触。在较佳的实施方案中,含有标准温度和压力气体的传输溶液在选定压力下在一段足以实施该方法的时间内基本上不产生沉淀物。在另一个实施方案中,传输溶液的试剂浓度在0.0005M和0.05M之间。
在另一个实施方案中,管道的出口端还包含一个流体引入孔,在引导增压、加热的溶液流过管道的出口孔之前,将流体通过流体引入孔加入增压、加热的溶液中。这一引入形成超临界温度降低的混合溶液。
在另一个实施方案中,一种或多种试剂中的每一种的蒸汽压力不低于载体蒸汽压力的约25%。
在另一个实施方案中,管道的出口端包含内径为2-1000微米,更好为10-250微米的导管。在更好的实施方案中,管道的出口端包含内径为25-125微米的导管。在另一个较佳实施方案中,管道的出口端包含内径为50-100微米的导管。
在另一个实施方案中,温度调节装置包括通过用电流源在选定电压下向导管施加电流来电阻加热该导管的装置。在较佳实施方案中,电压低于115伏特。在另一个实施方案中,电阻加热导管的装置包括位于离出口孔4毫米内的接触器。
此外,本发明还提供了这样的上述方法,其中选择载体和一种或多种试剂以使得第二选定温度是环境温度。
可以在涂覆底材的材料包括金属、金属或准金属的氧化物、或者金属与金属或准金属的氧化物的混合物的情况下来实践上述方法。
在另一个实施方案中,可反应喷射液包含具有可燃喷射液速度的可燃喷射液,该可燃喷射液速度大于点火点处火焰源的火焰速度,还包含一种或多种点火辅助装置以点燃可燃喷射液。在较佳实施方案中,一种或多种点火辅助装置中的每一种包含引火灯。在另一个实施方案中,可燃喷射液速度大于1马赫(machone)。
在另一个实施方案中,点火点或火焰峰保持在出口孔的2厘米以内。
本发明还提供了这样一种方法,在暴露步骤中,用底材冷却装置对底材进行冷却。在较佳实施方案中,底材冷却装置包括将水引导到底材上的装置。然而,本领域普通技术人员会认识到,许多其它合适的冷却装置也可以使用。
在另一个实施方案中,涂覆底材的材料的厚度小于100纳米。在另一个实施方案中,涂覆底材的材料包含渐变的(graded)组成。在另一个实施方案中,涂覆材料的材料包含无定形的材料。在另一个实施方案中,涂覆底材的材料包含氮化物、碳化物、硼化物、金属或其它不含氧的材料。
本发明还提供了一种方法,它还包括使经选择的外层保护气体(sheath gas)在可反应喷射液周围流动,从而减少夹带的杂质并保持有利的淀积环境。
在较佳实施方案中,第二选定压力高于20乇。
现参见图1,较佳的设备100包含压力调节装置110(如泵),用来将在传输溶液储器112中的传输溶液T(也称为“前体溶液”)加压至第一选定压力,其中传输溶液T包含合适的载体,该载体中溶解了一种或多种能够反应形成选定材料的试剂,其中加压装置110能够将第一选定压力保持在传输溶液T在其温度下相应的液相线压力(如果温度低于Tc)或临界压力Pc之上;流体管道120具有入口端122和相对的出口端124,所述入口端122与传输溶液储器112流体连接,所述出口端124具有出口孔126,该出口孔的取向是将管道120中的流体导人低于第一选定压力的第二选定压力区130中,并朝着底材140的方向。其中出口孔126还包含用于对溶液进行喷雾以形成喷雾的溶液喷射液N的装置128(参见图2和3,雾化器4);温度调节装置150,它放在与流体管道120的出口端124热连接的地方,用来将出口端124处的溶液温度调节在溶液超临界温度Tc的上下50℃的范围内;供气装置160,用来向喷雾的溶液喷射液N中混入一种或多种气体(如氧气)(图中未示出)来形成可反应喷射液;能源170,位于选定的增能点172处,用来使可反应喷射液进行反应,籍此能源170提供足够的能量以使第二选定压力区130中的可反应喷射液进行反应,从而涂覆底材140。
在设备的另一个实施方案中,能源170包括火焰源,选定的增能点172包括点火点。在另一个实施方案中,能源170包括等离子炬。在另一个实施方案中,出口孔126还包含压力限流器(参见图3,限流器7)。
在仪器的另一个实施方案中,区域的第二选定压力是环境压力。
在另一个实施方案中,喷雾的溶液喷射液N是最大液滴尺寸小于2微米的蒸汽或气溶胶。
在另一个实施方案中,降低区域的第二选定压力以产生温度低于1000℃的燃烧火焰。
在另一个实施方案中,载体是丙烷,传输溶液包括至少50%(体积)的丙烷。在另一个实施方案中,传输溶液还包括丁醇、甲醇、异丙醇、甲苯、或者它们的组合物。在另一个实施方案中,选择载体以使得传输溶液在标准温度和压力下在一段足以实施该方法的时间内基本上不产生沉淀物。
在该仪器的另一个实施方案中,提供增压容器(图中未示出),还将标准温度和压力下是气体的物质在选定的足以形成液体或超临界流体的压力下与传输溶液接触。在较佳的实施方案中,含有标准温度和压力气体的传输溶液在选定压力下在一段足以实施该方法的时间内基本上不产生沉淀物。在另一个实施方案中,传输溶液的试剂浓度在0.0005M和0.05M之间。
在另一个实施方案中,管道120的出口端124还包含一个流体引入孔(参见图2,进料线17或19),在引导增压、加热的溶液流过管道120的出口孔126之前,将流体通过流体引入孔加入增压、加热的溶液中。这一引入形成超临界温度降低的混合溶液。
在另一个实施方案中,一种或多种试剂中的每一种的蒸汽压力不低于载体蒸汽压力的约25%。
在另一个实施方案中,管道的出口端包含内径为2-1000微米,更好为10-250微米的导管。在更好的实施方案中,管道的出口端包含内径为25-125微米的导管。在另一个较佳实施方案中,管道的出口端包含内径为50-100微米的导管。
在另一个实施方案中,温度调节装置150包括通过用电流源在选定电压下向导管施加电流来电阻加热该导管的装置。在较佳实施方案中,电压低于115伏特。在另一个实施方案中,电阻加热导管的装置包括位于离出口孔(126)4毫米内的接触器152。
此外,上述设备的使用是以选择载体和一种或多种试剂以使第二选定温度是环境温度为条件的。
可以在涂覆底材140的材料包括金属的情况下使用上述设备。另一种情况是涂覆底材140的材料包括一种或多种金属氧化物。在另一个实施方案中,涂覆底材140的材料包括至少90%的二氧化硅。
在另一个实施方案中,可反应喷射液包含具有可燃喷射液速度的可燃喷射液,该可燃喷射液速度大于火焰源点火点172处的火焰速度,还包含一种或多种点火辅助装置180以点燃可燃喷射液。在较佳实施方案中,一种或多种点火辅助装置180中的每一种包含引火灯。在另一个实施方案中,可燃喷射液速度大于1马赫。
在另一个实施方案中,点火点172或火焰峰保持在出口孔的2厘米以内。
本发明还提供了底材冷却装置190用于冷却底材140。在较佳实施方案中,底材冷却装置190包括将水引导到底材140上的装置。然而,本领域普通技术人员会认识到,许多其它合适的冷却装置也可以使用。
在另一个实施方案中,涂覆底材140的材料的厚度小于100纳米。在另一个实施方案中,涂覆底材140的材料包含渐变的组成。
还提供了一种仪器,它包含这样一种装置(参见图2和3,进料线17和19),它用来使经选择的外层保护气体在可反应喷射液周围流动,从而减少夹带的杂质并保持有利的淀积环境。
在较佳实施方案中,第二选定压力高于20乇。
在该方法的另一个实施方案中,能源包括火焰源,选定的增能点包括点火点。在另一个实施方案中,能源包括等离子炬、热气体等。
在形成粉末方法的另一个较佳实施方案中,传输溶液浓度在0.005M至5M之间。
为了简化操作,将前体/溶剂的溶液泵压入室温下的雾化装置是有用的。加热溶液应该作为紧接在释放溶液入较低压力区之前的最后步骤来进行。这种后期加热使得在较高温度时发生的反应和不混溶现象最小化。将溶液保持在超临界温度以下直至雾化,能够保持前体的溶解量在正常溶解度区内,并降低了溶液中形成显著溶剂-前体浓度梯度的可能性。这些溶解度梯度是超临界溶剂的溶液浓度对压力的敏感性所致。据发现,小的压力梯度(因为它们能沿着前体-溶剂体系传输而发展)会导致溶解度的显著变化。例如,通过将压力从75atm增加至85atm,可以使308°K下吖啶在二氧化碳中的溶解度增加1000倍。参见1984年11月25-30日在旧金山举行的AIChE会议中发表的V.Krukonis的“难以粉碎的固体的超临界流体成核(Supercritical Fluid Nucleation of Difficult to Comminute Solids)”一文。这一溶解度变化是潜在有害的,因为它们可能使得前体从溶液中析出和过早地沉淀或反应,堵塞管线和过滤器。
喷嘴处的压力骤降和高速度使得溶液膨胀并雾化。对于溶质浓度在正常溶解度范围内的情况(这是本发明近超临界雾化系统的较好运行方式),在溶液喷射入低压区域中以后前体仍然有效地存在于溶液中。术语“有效地存在于溶液中”必须与当溶质浓度高于正常溶剂浓度的溶液喷射入低压区域时所发生的过程结合起来理解。在这一情况下,压力骤降使得高度过饱和率成为产生严重的溶质成核的原因。如果严重的成核作用从所有溶解的前体中迅速地耗尽溶剂,那么就会增加小前体颗粒的增生。参见D.W.Matson、J.L.Fulton、R.C.Petersen和R.D.Smith的“超临界流体溶液的快速膨胀粉末、薄膜和纤维的溶质形成”,Ind.Eng.Chem.Res.,26,2298(1987);H.Anderson、T.T.Kodas和D.M.Smith的“粉末的汽相处理等离子体合成和气溶胶分解”,Am.Ceram.Soc.Bull.,68,996(1989);C.J Chang和A.D Randolph的“从超临界流体中沉淀微尺寸的有机颗粒”,AIChE杂志,35,1876(1989);T.T.Kodas的“通过气溶胶处理产生复合的金属氧化物超导的陶瓷颗粒和膜”,Adv.Mater.,6,180(1989);E.Matijevic的“细小颗粒科学和技术”,MRS Bulletin,14,18(1989);E.Matijevic,“细小颗粒第II部分形成机理和应用”MRS Bulletin,15,16(1990);K.P.Johnston和J.M.L.Penniger编辑的超临界流体科学与技术一书中第355页的R.S.Mohamed、D.S.Haverson、P.G.Debenedetti和R.K.Prud′homme的“超临界混合物膨胀后的固体形成”,美国化学学会,Washington,DC(1989);R.S.Mohamed、P.G.Debenedetti和R.K.Prud′homme的“加工条件对于由超临界混合物得到的晶体的影响”,AIChEJ.,35,325(1989);J.W.Tom和P.G.Debenedetti的“通过超临界溶液的快速膨胀形成可生物腐蚀的聚合物微球和微粒”,Biotechnol.Prog.7,403(1991)。颗粒对于形成薄涂层是不适宜的,但是在形成粉末的过程中可能是有利的。
因此,与无例外地都在超临界温度以上依靠溶剂的快速膨胀运行的非加热装置相比,加热的雾化器提供了额外的优点,即(1)所用温度可使前体-溶剂混合物雾化程度得到良好控制,以及(2)前体的严重成核可以避免,同时仍然具有超临界雾化的优点。可以产生超声速形成马赫盘形区(mach disk),这额外地有利于雾化。向释放的雾化材料中加入气体有助于引导物流,并能够确保得到所需的燃烧混合物。
通过调节进入雾化装置的热输入,可以使液体溶液汽化至不同程度。不向雾化装置中输入热量的话,超临界温度较高的液体(它们在STP下是液体)的液态溶液能够以明显远离超临界状态的液流形式流出。这会使得形成很差的火焰,可能产生不希望的液体与底材的接触。缩小喷嘴处液态溶液与其超临界温度之间的温差能够使得液态溶液分解成液滴,形成雾状,从雾化装置中释放出去。在短距离后这些液滴汽化、由此变得看不见了。随着雾化装置处接近超临界温度,液态溶液液滴的尺寸变小,溶液汽化的距离变短。使用这一雾化器,蒸汽雾滴的尺寸用气溶胶汽化测试器来测定,所得的雾滴尺寸低于仪器检测限度1.8微米。
进一步提高热输入产生了尖嘴(tip)处无喷雾的状态,即完全汽化。不希望受到理论的束缚,溶液的这一行为可能是因为试剂和溶剂的总体超临界性能所致。前体在超临界温度较低的溶剂(它们在STP下是气体)中的溶液行为相似,但是从尖嘴(也被称为“喷嘴”或“限流器”)中喷出的溶液即使没有热输入也不会形成液流。得到最佳溶液汽化所需的热量主要取决于溶液的热容量以及溶剂的超临界温度与喷嘴附近环境温度之间的温差。
需要将体系的压力和温度(在汽化之前)保持在溶液的沸点和超临界点之上。如果压力降至液相线压力或临界压力以下,同时温度在沸点以上,那么在管道中于尖嘴之前就会发生溶剂的汽化。这样就留下溶质,它们会积聚并堵塞雾化装置。类似地,压力较好的是在超临界区域中足够高以使得流体更象液体。类似液体的超临界流体是比更象气体的超临界流体更好的溶剂,进一步降低了溶质堵塞雾化装置的可能性。如果前体与前体的相互作用高于溶剂和前体之间的强度,那么溶剂-前体键会断裂,有效地将前体从溶液中析出。然后前体分子会形成团粒,粘结在雾化装置上并堵塞限流器。在大多数情况下该问题可以通过将汽化点从尖嘴内部移动到尖嘴末尾处来解决,这一汽化点移动可以通过降低进入雾化装置的热输入来完成。另一解决途径是使用一种与前体形成更强的键的溶剂,以形成更稳定的溶液。尖嘴处的少量喷雾通常产生最好质量的薄膜。如果溶液的温度太高或太低,会形成纳米或微米级的材料球粒。如果需要形成致密的涂层,这些球粒是有害的。
如果达到无喷雾状态,淀积就在临界温度以上进行。火焰加热和与外部气体混合使得STP液态溶剂免于冷凝和形成液滴。在无喷雾的情况下,雾化和相互混合非常好,但是流动稳定性降低,产生相对于尖嘴方向从一侧窜至另一侧的火焰。在这种火焰行为的情况下,虽然仍然能够进行淀积,但是难以淀积形成厚度均匀性要求严格的膜。此外,必需将释放之前溶液的温度保持在溶质沉淀或反应和沉淀的温度之下。当使用溶剂混合物时,可能在加热过程中越过不混溶性的亚稳均相极限线。这使得产生两个独立的相,由于溶质的溶解度不同,因此两个相中的浓度可能不同。这可能会影响在高的雾化温度时形成前体和产物球粒。所有这些因素都表明,如果需要的话使溶液在直至尖嘴之前尽量少受热是有利的,它能使得可能不需要的物质平衡状态没有足够的时间发生。因此所淀积的膜的结构可以受到精确地控制。
由于这一控制,可能产生许多种膜的微结构。通过提高溶液浓度,使得可能随着溶液浓度的提高而产生淀积速率的提高和以下微结构的变化由致密到多孔、由有金属光泽到无光泽、由光滑到粗糙、由柱状到小丘状、以及由薄到厚。还可以制得渐变和多层的涂层。多层可以通过向一个单独的火焰供应含不同前体的溶液来形成。顺序的多层淀积焰可以用来提高制造应用的生产量。其它一些控制淀积参数的因素包括控制表面扩散和成核的底材表面温度;控制边界层厚度从而控制淀积速率的压力;溶液组成和混合气体会改变所淀积的材料,从而改变涂层生长习性;火焰和等离子体能量水平会影响反应在何处发生和蒸汽稳定性;而离底材的距离会影响从喷雾到反应至淀积的时间,它能够使得颗粒形成或增加扩散时间形成较大的团粒。此外,电场和磁场会影响一些材料的生长习性,或者提高淀积效率。本领域普通技术人员会认识到,如此的电场和磁场会影响一些气相淀积材料的生长习性,并改变具体的淀积速率和效率。
因为溶液加热的雾化器所需的能量输入对于不同的前体/第一溶剂/第二溶剂的溶液而言会有变化,所以较好的是用第一溶剂对第二溶剂比例恒定的溶液淀积多层薄膜。这样的话,当由一种溶液转换为另一种溶液时,不必改变输入雾化器的能量。这一方案的简化提高了性能和可靠性,同时降低了成本。此外,可以使底材经过含不同试剂的火焰以制得所需多层。
当溶液提供用于燃烧的燃料时,高达0.1摩尔的浓度可得到致密涂层,这与材料有关。大多数材料的较佳浓度为高达0.01摩尔。扩散性和迁移率较差的材料需要溶液浓度低于0.002。对于大多数材料而言,低于0.0001摩尔的溶液浓度会得到非常慢的淀积速率。添加可燃材料的火焰淀积可以具有较高的浓度,甚至是超过1M,但是为了前体较好地形成蒸汽,高浓度不太适宜,除非该前体或这些前体的蒸汽压力高。低蒸汽压力前体的溶液浓度较好的是低于0.002摩尔。
不希望受到理论的束缚,理解本发明的淀积技术原理是基于CVD不局限于表面上的反应这一发现是很有帮助的。参见Hunt,A.T.的“燃烧化学气相淀积,一种新型的薄膜淀积技术”,博士论文Georgia Inst.of Tech,Atlanta,GA.,(1993);Hunt,A.T.“预底材反应CVD和蒸汽的定义”(″Presubstrate Reaction CVD,and aDefinition for Vapor″)发表于第13届CVD国际会议,Los Angles,CA(1996),这些内容参考结合于本发明中。反应可以主要发生在气流中,但是所得的淀积材料必需在尺寸上是低于临界的,以得到具有气相淀积微结构的涂层。这些发现表明,蒸汽由能够吸附在底材上并易于扩散进入低能位置或结构的单独原子、分子或纳米团粒组成的。因此,最大团粒尺寸必须随底材温度降低而降低,因为临界核尺寸也随温度降低而降低。本领域普通技术人员已知,在溶剂蒸发后留下试剂团粒,团粒的尺寸与试剂的蒸汽压力、初始的雾滴尺寸和溶液浓度。因此,低蒸汽压力试剂的雾化(因此不会在火焰中气化)必须非常细以形成蒸汽。
较佳的液体溶剂是低成本溶剂,包括但不限于乙醇、甲醇、水、异丙醇和甲苯。水溶液必须加入先在的火焰中,而可燃溶剂本身可用来形成火焰。较好的是用溶液形成火焰本体而不是将溶液加入火焰中,但这不是必须的。较低的试剂浓度可得到这样的结果,它有助于形成低于临界核尺寸的材料。
一个较佳的溶剂和第二溶液流体是丙烷,它在STP下是气体。然而必须注意到,许多其它溶剂体系也可以使用。例如,参见CRC Handbook of Chemistry andPhyysics,CRC Press,Boca Raton,Florida。较好的是丙烷,因为它成本低、可从市场上购得并且安全。许多低成本的有机金属化合物可以用于主要含丙烷的溶液。为了便于处理,可以将初始前体溶解在甲醇、异丙醇、甲苯或其它与丙烷相容的溶剂中。然后将该初始溶液放在容器中,向该容器中加入液态丙烷。丙烷于室温时只有在约100psi以上才是液体。所得溶液的超临界点比初始溶液低得多,它降低了雾化器所需的能量输入,使雾化变得容易了。此外,第一溶剂的作用是提高丙烷的极性溶解度,从而对于许多试剂,使其溶液浓度高于单独用丙烷所得的溶液浓度。作为一般的规则,第一溶剂的极性应随着溶质(前体)极性的增加而增加。因此,异丙醇比甲苯更有助于极性溶质的溶解度。在一些情况下,第一溶剂用作第二溶剂和溶质上配位体之间的屏障。一个例子是乙酰丙酮化铂[Pt(CH3COCHCOCH3)2]溶解在丙烷中,其中前体/第一溶剂和第一溶剂/第二溶剂之间的重量比可以高于其它体系所需的该重量比。
氨被认为是用于淀积涂层和粉末的第二溶剂并进行了试验。虽然氨是一种能够与一些硝酸盐基前体相容的廉价溶剂,但是它不易与其它第二溶剂一起使用,而纯氨的普遍腐蚀性会产生问题。在不加入前体的情况下对氨的雾化性能进行了测试,所用的压力容器在试验之后被显著地腐蚀了,即使使用惰性型号316的不锈钢容器也不例外。与烃基溶剂形成对比,氨仅仅在数分钟之后就使得Buna-N和Viton垫圈失效。即使有合适的垫圈还是会产生问题,因为所需涂层或粉末通常必须不含痕量的铁或其它从压力容器壁上浸出的元素。然而,可以使用如EPDM弹性体这样的材料。
其它经过试验并可使用的类似气体的第二溶剂包括乙烷、乙烯、乙烷/乙烯混合物、丙烷/乙烯混合物和丙烷/乙烷混合物。由乙烷和铂的金属有机化合物的超临界混合物淀积得到了铂薄膜。
一个有用的溶剂和第二溶液流体是丙烷,它在STP下是气体。然而必须注意到,许多其它溶剂体系也可以使用。例如,参见CRC Handbook of Chemistry andPhysics,CRC Press,Boca Raton,Florida。较好的是丙烷,因为它成本低、可从市场上购得并且安全。许多低成本的有机金属化合物可以用于主要含丙烷的溶液。为了便于处理,可以将初始前体溶解在甲醇、异丙醇、甲苯或其它与丙烷相容的溶剂中。然后将该初始溶液放在容器中,向该容器中加入液态丙烷。丙烷于室温时只有在约100psi以上才是液体。所得溶液的超临界点比初始溶液低得多,它降低了雾化器所需的能量输入,使雾化变得容易了。此外,第一溶剂的作用是提高丙烷的极性溶解度,从而对于许多试剂,使其溶液浓度高于单独用丙烷所得的溶液浓度。作为一般的规则,第一溶剂的极性应随着溶质(前体)极性的增加而增加。因此,异丙醇比甲苯更有助于极性溶质的溶解度。在一些情况下,第一溶剂用作第二溶剂和溶质上配位体之间的屏障。一个例子是乙酰丙酮化铂[Pt(CH3COCHCOCH3)2]溶解在丙烷中,其中前体/第一溶剂和第一溶剂/第二溶剂之间的重量比可以高于其它体系所需的该重量比。
氨被认为是用于淀积涂层和粉末的第二溶剂并进行了试验。虽然氨是一种能够与一些硝酸盐基前体相容的廉价溶剂,但是它不易与其它第二溶剂一起使用,而纯氨的普遍腐蚀性会产生问题。在不加入前体的情况下对氨的雾化性能进行了测试,所用的压力容器在试验之后被显著地腐蚀了,即使使用惰性型号316的不锈钢容器也不例外。与烃基溶剂形成对比,氨仅仅在数分钟之后就使得Buna-N和Viton垫圈失效。即使有合适的垫圈还是会产生问题,因为所需涂层或粉末通常必须不含痕量的铁或其它从压力容器壁上浸出的元素。然而,可以使用如EPDM弹性体这样的材料。
其它进行试验的溶剂和溶剂混合物得到类似的质量,但是更难以使用,因为它们的沸点明显较低,这需要冷却溶液或非常高的压力。由于丙烷的易处理性使其成为较佳的溶剂,但是在不能使用丙烷的情况下(如当不能找到溶解于丙烷的前体时)其它超临界溶剂可作为丙烷的替代品。如果需要的话,其它流体可用来进一步降低超临界温度。
一种加热方法是对喷嘴端(在此前体溶液喷射入低压区)和限流管后部之间施加电流。这一直接加热限流管的方法由于响应时间短而便于快速改变雾化情况。可以通过提高尖嘴和连接尖嘴的电线之间的连接电阻来使最强加热的位置朝尖嘴移动。薄壁限流管的电阻大于厚壁限流管,使响应时间缩短。可以应用其它加热方法,已经研究了一些方法,包括但不限于远程电阻加热(remote resistiveheating)、长燃火焰加热(pilot flame heating)、感应加热和激光加热。本领域普通技术人员能够容易地确定用于调节雾化器出口孔处温度的其它适宜的加热装置。
远程电阻加热使用安装在电加热管内部的非导电性限流管。该非导电性管紧配合在导电管内部。向导电管施加电流对该管加热,能量将传输入内部的非导电性限流管中。与直接加热限流管的方法相比,该方法需要较大的加热电流,显示较长的响应时间,这在某些状况下是有利的,因为响应时间提高可得到程度高的热稳定性。另一方面,长燃火焰加热和激光加热分别使用长燃火焰和激光的能量来加热限流管。加热限流管可以使限流管的尖嘴处于长燃火焰或激光中的直接加热方式进行,或者以加热较大的外层管的间接加热方式进行。因为需要传输入溶液的能量相当大,所以被加热的管子较好的是具有比直接电加热或远程电加热情况更厚的壁。外层管子与引燃火焰或激光接触时允许使用薄壁的限流管。
现参考图2和图3,示出了使用超临界雾化来淀积膜和粉末的设备200。该设备200包含速度固定或可变的泵1,它将试剂传输溶液2(也称为“前体溶液”)从溶液容器3泵压入雾化器(也称为“喷雾器”或“汽化器”)4中。图3是更详细说明雾化器4的插图。前体溶液2被泵压从前体溶液容器3经过管线5和过滤器6进入雾化器4中。然后,将前体溶液2泵压入温度恒定或可变的受控的限流器7中。加热可以用许多方式来完成,包括但不限于电阻电加热、激光加热、感应加热或火焰加热。对于电阻电加热,交流或直流电流都可以使用。连接限流器7的接头8中的一个较好的是放在非常靠近限流器7尖嘴的地方。在通过直流源加热的情况下,该接头8或极可以是正的或负的。另一个极9可以连接在外壳10内部或外部、沿限流器7的任何其它地方。对于特殊应用(如涂覆管子内部),这种情况下雾化器总体积小是有利的,较好的是在外壳10后部与限流器7相连或者在外壳10内部连接。外壳10后部的气体连接以在线的排列方式示出,但是也可以不影响设备200功能的任何其它方式进行排列。
细的气体A供应管线11,大多数情况下为1/16″ID,将可燃气体混合物运送到小出口12,在那里该气体混合物能够用作稳定的长燃火焰来燃烧通过限流器7供应的前体溶液,较好的是在限流器7的2.5厘米的范围内。气体A的供应通过流量控制器13来进行监控,并控制气体A混合物的各组分14和15的流动。在靠近或位于雾化器4中的混合″T″形接头16中,对气体A的燃料组分14和氧化组分15进行混合。这一后期混合出于安全的原因是适宜的,因为它降低了回烧的可能性。外壳10内部的配送通道将供气管线11与气体A进料口17连接起来。气体B供应管线18用来输送来自供应处19的气体B,以使得它与喷雾溶液的喷射液进行良好混合。在大多数情况下利用高速气流。一些气体B的供气孔20(大多数情况下为6个,可以使用更多或更少的孔,这取决于具体用途)位于限流器7的周围,提供气体B以使得到所需的流动方式。气流B的流动性能受到以下这些因素的影响气体B贮器21中气体B的压力、由流量控制器13测得的流量、管线5的直径和供气孔20的数目。或者,可以使气体B流经与限流器7同轴并环绕其的较大管子。一旦前体溶液2被泵压入前体供应管线22,前体溶液的温度就被由电源23决定的流经限流器7的电流所控制(在电加热的情况下)。然后可以调节该加热电流以使得发生合适量的雾化(喷雾、汽化)。然后,这一稳定的长燃火焰能够引燃喷雾的反应性喷射液,并在底材24上淀积粉末或膜。
已经用本发明所述的方法和设备淀积了许多不同的涂层。虽然在大多数情况下使用丙烷作为超临界第二溶剂(即少量的高前体浓度的第一溶剂与大量第二溶剂混合),但是也使用过其它溶剂。其它可能的第二溶剂包括,但不限于N2O、乙烯、乙烷和氨。
本领域的普通技术人员会认识到,本发明的方法和设备可以涂覆几乎所有的底材。如果底材能够承受加工过程中所得热气体的温度和状态的话,该底材就可以被涂覆。底材可以使用冷却装置(本文于别处会说明),如喷水来冷却。但是当底材表面温度较低时,由于相关的扩散速率低所以不可能得到许多材料的致密或结晶涂层。此外,在热气体中的底材稳定性可以通过使用低温低压火焰,采用或不采用额外的底材冷却来得到进一步解决。
已经提出了用于CCVD淀积膜和粉末的多种化学前体,本文中再提出其它一些化学前体。除了能提供金属或准金属元素以外,要求任何用于CCVD的化学前体能溶于合适的载体溶剂中,最好是溶于丙烷中。而且,如果前体溶液要含有多于一种金属和/或准金属的前体的话,化学前体必须可互相溶解在合适的载体溶剂中并且在化学上相容。如果前体不能高度溶解在第一溶剂(如丙烷)中,那么它可以先溶解在第二溶剂(如甲苯)中,随后作为在第二溶剂中的溶液引入第一溶剂中,条件是当该溶液引入第一溶剂中时化学前体不会沉淀。而且,选择化学前体时也应考虑到成本问题。
如果当化学前体的混合物被用来淀积特定组成的层或粉末时,最好在不加入任何附加溶剂的情况下这些前体能够结合成均匀的“预溶液(pre-solution)”。否则,需要所有的化学前体互溶于一种共同溶剂中,溶剂越少越好,作为“预溶液”。当然,这些要求的性能有助于运输和处理,特别是当预期的第一溶剂是丙烷或在室温下为气相的其它材料时。虽然希望能够提供“预溶液”,但是认为能将化学前体互溶于一种或多种溶剂的淀积溶液中,不论是作为该溶液制备和出售或是在现场制备成淀积溶液也都是可接受的。
对于淀积,载体溶剂中前体化合物的总浓度通常约在0.001-2.5%(重量)之间,较好的约在0.05-1.0%(重量)之间。
对于大多数CCVD淀积,较好的是将前体溶解在有机溶剂中。然而,对于本发明针对的电阻材料而言,碳与电阻材料的共沉淀物是不希望的。一些材料(如镍)对碳具有高亲合力。因此,这些材料的前体较好的是溶解在水溶液和/或氨溶液中,在该情况下,水溶液和/或氨溶液和/或N2O溶液会吸入用于CCVD的氢/氧火焰中。
与其它淀积方法相比,与较佳雾化装置一起应用的CCVD的优点之一是含一种或多种溶解的化学前体的前体溶液被雾化成接近超临界的液体,或者在一些情况下雾化成超临界流体。因此,燃烧并淀积在底材上或以粉末形式淀积的一种或多种前体的量与各个化学前体和一种或多种载体溶剂的相对蒸汽压力无关。这不同于常规的CVD方法,常规CVD方法中必须为每种欲被汽化的化学前体(通常在载气中)提供单独的供气管线以向CVD炉供气。此外,某些常规CVD前体会歧化,这使得难以均匀地提供该化学前体,这又一个问题通过CCVD技术容易地得到解决。
图7和图8示出了控制气氛的燃烧化学气相淀积(CACCVD)设备。涂料前体710与液体介质712在包含混合或储存器716的形成区714内混合。前体710和液体介质712形成一流动的物流,经泵718加压、过滤器720过滤、通过导管722加入雾化区724中,从该雾化区中液流相继流经反应区726、淀积区728和隔离区730。不需要通过混合涂料前体710和液体介质712形成真正的溶液,只要涂料前体在液体介质中足够细碎。然而,最好是形成溶液,因为一般来说这样能得到更均匀的涂层。
流动物流进入雾化区724时雾化。雾化可以通过用于雾化流动液流的已知技术来完成。在图示设备中,当流动物流从管道722中出来时,紧靠该液流周围排放高速的雾化用气体,如此进行雾化。该雾化的气流由贮气筒或其它高压气体源提供。在图示实施方案中,高压氢(H2)既用作雾化用气体又用作燃料。雾化用气体由氢气筒732通过调节阀734、流量计736通入管道738中。管道738与管道722同轴延伸至雾化区,在雾化区中两根管道终止,使得高速的雾化用氢气与流动液流接触,从而使该液流雾化成悬浮在周围的气体/蒸汽中的细颗粒流。该细颗粒流进入反应区726中,在该反应区中液体介质蒸发,涂料前体反应形成经反应的涂料前体,这通常包括将涂料前体解离成其组分的离子,得到流动的离子颗粒或等离子体。该物流/等离子体被送入淀积区728中,在该淀积区中经反应的涂料前体与底材740接触在其上淀积涂层。
也可以在液体介质/涂料前体的物流从管道722中出来时,朝它直接喷射雾化用气流来雾化流动物流。或者,当液流从管道722中出来时直接施加超声或类似能量即可完成雾化。
液体介质的蒸发和涂料前体的反应需要在流动物流离开反应区以前向其输入相当大的能量。该能量输入可以在该物流经过管道722时或者在雾化区和/或反应区中进行。该能量输入可以通过多种已知的加热技术来完成,所述加热技术如电阻加热、微波或RF加热、电感应加热、辐射加热、将流动物流与远程加热的液体或气体混合、光子加热(如激光)等。在图示实施方案中,是在流动物流经过反应区时燃烧与该物流直接接触的燃料和氧化剂来完成能量输入。这一相对较新的技术被称为燃烧化学气相淀积(CCVD),更完整地描述于结合于本发明中的美国专利No.5,652,021。在图示实施方案中,燃料氢气由氢气筒732、通过调节阀、流量计742加入管道744中。氧化剂(氧气)由氧气筒746经过调节阀748和流量计750加入到管道752中。管道752与管道744同轴延伸,管道744在管道722和738周围同轴地延伸。氢气和氧气一从它们各自的管道中出来就燃烧形成燃烧产物,它在反应区726中与雾化液体介质和涂料前体混合,从而加热并使得液体介质蒸发和涂料前体反应。
至少环绕在反应区初始部分周围的流动的惰性气体屏障将反应性气体与存在于反应区附近仪器中的物质隔离开来。一种惰性气体如氩气由惰性气体筒754经过调节阀756和流量计758加入到管道760中。管道760与管道752同轴延伸。管道760延伸出其它管道722、738、744和752以外,延伸至靠近底材的地方,在该处它与底材740一起形成淀积区728,在该淀积区中于底材上淀积通常为管道760截面形状的涂层762。当惰性气体流出氧气管道752的末端,它最初形成延伸在反应区周围的流动屏障,将反应区中的反应组分与管道760隔离开来。当惰性气体沿管道760前进时,惰性气体与反应区中的气体/等离子体混合,变成进入淀积区728的流动物流的一部分。
最初点燃氢气和氧气需要一个点火源。单独的手动操作的点火装置足以适用许多场合,然而使用这一装置需要暂时降低惰性气流直至形成了稳定的火焰峰。在一些情况下,整个气流可能太大以致于不能形成独立稳定的火焰峰。在该情况下,需要提供一个点火装置,它能够在可燃气体进入反应区时连续或半连续地点燃它们。可以使用的点火源的例子是长燃火焰或产生火花的装置。
在淀积区728中,经反应的涂料前体在底材740上淀积涂层762。流动物流的剩余部分由淀积区流经隔离区730排放到环境或周围的气氛中。隔离区730的作用是防止淀积区被环境气氛的组分所沾污。当流动物流经过隔离区730时其高速是该区的特点。在大多数涂覆场合中,通过要求流动物流在经过隔离区时达到至少50英尺/分钟的速度,可以基本上消除淀积区被环境大气的组分所沾污的可能性。在那些对沾污更加高度敏感的涂覆操作(如制备TiN或WC)中,通过要求流动物流达到至少100英尺/分钟的速度可以基本上消除环境大气沾污淀积区的可能性。
在图7的实施方案中,护环(collar)764与接近淀积区728的管道760末端相连,并垂直于该管道末端延伸出去。隔离区730是护环764和底材740之间的地方。使护环成形得到靠近底材表面的适顺表面766,由此得到一条供气体从淀积区排放到环境大气中的较小间隙。护环的适顺表面764和底材之间的间隙足够小以使得对于护环和底材之间通道的至少一部分而言,要求排气达到隔离区所需的速度。为了这一目的,将护环762的适顺表面764成形为基本上平行于底材740表面而放置。如图示实施方案中,当底材740表面基本上为平面时,护环的适顺表面也基本上是平面。
在管道760末端附近发生的边缘效应(如升高温度和残留的反应组分)能够将淀积区延伸至正对着管道760末端前面的底材区域之外。护环764应该从它与管道760的连接处向外延伸一段距离,此段距离足以防止由于可能的文丘里效应而导致环境气体回混入淀积区中。并且确保淀积区的整个区域(它已因先前所述的边缘效应而扩大了)由于高速排气吹过护环和底材之间区域而避免环境气体的回流。扩大的护环确保了整个扩大的淀积区中防止沾污。护环的直径应该是管道760内径的至少2倍,较好的应为管道760内径的至少5倍。管道760的内径通常在10-30毫米的范围内,较好的是在12-20毫米的范围内。
在操作中,护环764位于与待涂覆底材740的表面基本上平行的地方,距底材表面1厘米或更短的距离。较好的是,护环和底材的相对表面隔开2-5毫米。定距装置(如三个固定或可调的销钉,图中未示出)可装在护环上以帮助保持护环和底材之间适宜的间距。
图7所示的实施方案对于向太大或不便于在经特别控制的环境(如真空室或净化室)中进行处理的底材施涂涂层而言是特别有利的。这一图示的涂覆技术是有利的,因为它可以在环境压力条件下和更方便的“现场”场地来完成。一系列同轴的管道722、738、744、752和760形成了涂覆头768,它可以由较小的柔软管来提供,并且足够小至可携带。大底材可以用如下几种方式来涂覆一是使涂覆头按栅格或类似图案沿底材反复地横向移动;一是将底材横向移动,而一排涂覆头排列成可累积地提供均匀的涂层;一是扫描(raster)一排涂覆头。本技术除了能够在以前因太大以致于不能涂覆的制品上得到薄膜涂层以外,还能在以前于真空条件下进行涂覆的较大单元底材上得到涂层。通过涂覆这些较大单元的底材能够提高生产经济效率,尤其是涉及底材的大批量生产时。
图7和图8所示的实施方案还特别适用于制造对氧化敏感的涂层,如大多数金属涂层。为了得到这些涂层,将燃料通过管道744加入雾化的液体介质和涂料前体附近,同时通过管道752加入氧化剂。通过管道738加入的雾化用气体和/或通过管道722加入的液体介质可以是具有燃烧值的材料,它们可以是与涂料前体反应的材料,或者它们可以是惰性材料。当制得的涂料或涂料前体材料对氧气敏感时,在反应和淀积区中保持还原气氛,这可以完成如下确保加入的氧化剂总量限制在低于向反应区中提供的燃料完全燃烧所需量的水平,也就是说以低于化学计算量提供氧化剂。一般来说,燃料的过剩量是受限制的,以便当残余的热气体与大气中的氧混合时,限制火焰区的发展。当制得的涂料和前体材料是耐氧气或通过氧气存在增强时(如制造大多数氧化物涂层),可以通过加入化学计算量或过量的氧化剂来在反应区和淀积区中提供氧化气氛或中性气氛。此外,对于耐氧试剂和产品,氧化剂可以通过内部管道744加入,而燃料通过外部管道752加入。
通过管道760提供的惰性气体必须足以将管道的内表面与反应区中产生的反应性气体隔开。当该惰性气体与来自反应区的其它气体一起加入时,它必须足以提供隔离区所需的气体速度。
能量输入可以通过图7和8所示的燃烧方法以外的机理来完成。例如可如下完成将电流通过管道722以在管道中产生电阻热,然后当液体介质和涂料前体经过管道时电阻热转递至它们。显然,当使用燃烧方法以外的方式来进行能量输入时,722、738、744、752和760这些管道并不是都需要的。当通过一种来自电的能量输入机理来进行能量输入时,通常省去管道744和752中的一根或两者都省去。
经淀积涂层的孔隙度或密度可以通过改变火焰区和底材表面处的淀积区之间的距离来调节。一般来说,缩短这一距离能提高涂层的密度,而增宽这一距离会得到孔隙度更大的涂层。
在图示CACCVD技术中,反应区通常与燃烧燃料所产生的火焰一起扩张。当然,必须保持火焰区和底材分开足够的距离,以使得底材不被火焰区更靠近底材表面可能造成的较高温度所损害。虽然底材对温度的敏感度随底材材料而异,但是底材表面处淀积区内的温度通常比最高的火焰温度至少低600℃。
当用另一些方法来提供能量输入时,如在流动物流处于反应区中或达到反应区之前,将它与预热的流体混合来进行主要的能量输入时,反应区中所得的最高温度显著地低于用燃烧能量输入得到的最高温度。在这些情况下,涂层性能可以通过改变反应区和底材表面处的距离来调节,而不必太多地顾虑底材过度受热。因此,术语反应区和淀积区可用来定义仪器中的功能区,但是并不意味着定义相互排斥的区域,也就是说,在一些情况下涂料前体的反应会发生在底材表面处的淀积区内。
当主要的能量输入是燃烧火焰以外的方式时,得到较低的最高温度,这使得能够使用对温度敏感的涂料(如一些有机材料)。特别是在电容器、集成电路或微处理机中可以用聚合物进行淀积作为保护性涂层或介电中间层材料。例如,聚酰亚胺涂层可以从其聚酰胺酸前体得来。类似地,聚四氟乙烯涂层可以从低分子量前体得来。
在流动物流离开反应区之前向其输入能量,通常就不必通过加热底材向淀积区提供能量,而这是其它涂覆技术通常所需的。在本发明淀积体系中,由于底材是用作散热器来冷却存在于淀积区中的气体,而不是用来加热这些气体,因此底材所处的温度显著地低于那些需要通过底材向淀积区传输能量的体系中所遇到的温度。因此,CACCVD涂覆方法可用于许多对温度敏感的底材,而这些底材不能用通过底材加热的技术来进行涂覆。
宽范围的前体可以气体、蒸汽或溶液的形式使用。较好的是使用得到所需形态的最低成本的前体。用于淀积各种金属或准金属的合适的化学前体如下,但并不局限于这些例子Pt 乙酰丙酮化铂[Pt(CH3COCHCOCH3)2] (在甲苯/甲醇中),铂-(HFAC2)、二苯基-(1,5-环辛二烯)铂(II)[Pt(COD)在甲苯-丙烷中]硝酸铂(氢氧化铵的水溶液中)
Mg 环己烷甲酸镁、2-乙基己酸镁[Mg(OOCCH(C2H5)C4H9)2]、环己烷甲酸镁、Mg-TMHD、Mg-acac、硝酸镁、2,4-戊二酸镁(Mg-2,4-pentadionate)Si 四乙氧基甲硅烷[Si(OC2H5)4]、四甲基甲硅烷、焦硅酸、硅酸P磷酸三乙酯[(C2H5O)3PO4]、亚磷酸三乙酯、亚磷酸三苯酯La 2-乙基己酸镧[La(OOCCH(C2H5)C4H9)3]、硝酸镧[La(NO3)3]、La-acac、异丙氧化镧、三(2,2,6,6-四甲基-3,5-庚二酸根)合镧[La(C11H19O2)3]Cr 硝酸铬[Cr(NO3)3]、2-乙基己酸铬[Cr(OOCCH(C2H5)C4H9)3]、硫酸铬、羰基铬、乙酰丙酮化铬(III)Ni 硝酸镍[Ni(NO3)2](在含水氢氧化铵中)、乙酰丙酮化镍、2-乙基己酸镍、环烷醇镍(Ni-napthenol)、二羰基镍Al 硝酸铝[Al(NO3)3]、乙酰丙酮化铝[Al(CH3COCHCOCH3)3]、三乙基铝、仲丁氧化铝、异丙氧化铝、2-乙基己酸铝Pb 2-乙基己酸铅[Pb(OOCCH(C2H5)C4H9)2]、环己烷甲酸铅(lead naphthenate)、Pb-TMHD、硝酸铅Zr 2-乙基己酸锆[Zr(OOCCH(C2H5)C4H9)4]、正丁氧化锆、锆(HFAC)2、乙酰丙酮化锆、正丙醇锆、硝酸锆钡 2-乙基己酸钡[Ba(OOCCH(C2H5)C4H9)2]、硝酸钡、乙酰丙酮化钡、Ba-TMHDNb 乙氧化铌、四(2,2,6,6,-四甲基-3,5-庚二酸根)合铌Ti 异丙氧化钛(IV)[Ti(OCH(CH3)2)4]、乙酰丙酮化钛(IV)、二异丙氧化二乙酰丙酮化钛、正丁氧化钛、2-乙基己酸化钛、氧化二(乙酰丙酮化)钛Y2-乙基己酸钇[Y(OOCCH(C2H5)C4H9)3]、硝酸钇、异丙氧化钇、环己烷甲酸钇(Y-napthenoate)Sr 硝酸锶[Sr(NO3)2]、2-乙基己酸锶、Sr(TMHD)Co 环己烷甲酸钴、羰基钴、硝酸钴Au 氯化三乙基膦合金(I)、氯化三苯基膦合金(I)B 硼酸三甲酯、B-三甲氧基环硼氧烷K 乙氧化钾、叔丁氧化钾、2,2,6,6,-四甲基庚烷-3,5-二酸钾Na 2,2,6,6-四甲基庚烷-3,5-二酸钠、乙氧化钠、叔丁氧化钠Li 2,2,6,6-四甲基庚烷-3,5-二酸锂、乙氧化锂、叔丁氧化锂Cu Cu(2-乙基己酸根)2、硝酸铜、乙酰丙酮化铜Pd 硝酸钯(在氢氧化铵水溶液中)(NH4)2Pd(NO2)2、乙酰丙酮化钯、六氯合钯酸铵(ammonium hexochloropalladium)Ir H2IrCl6(在50%乙醇水溶液中)、乙酰丙酮化铱、羰基铱Ag 硝酸银(在水中)、硝酸银、氟代乙酸银、乙酸银、环己烷丁酸银、2-乙基己酸银Cd 硝酸镉(在水中)、2-乙基己酸镉Nb 2-乙基己酸铌Mo (NH4)6Mo7O24、Mo(CO)6、二氧化二(乙酰丙酮化)钼Fe Fe(NO3)3·9H2O、乙酰丙酮化铁Sn SnCl2·2H2O、2-乙基己酸锡、Sn-四正丁基锡、四甲基锡In In(NO3)3·xH2O、乙酰丙酮化铟Bi 硝酸铋、2-乙基己酸铋Ru 乙酰丙酮化钌Zn 2-乙基己酸锌、硝酸锌、乙酸锌W 六羰基钨、六氟化钨、钨酸在淀积金属前体和/或准金属前体混合物的大多数情况下,淀积物通常是与反应混合物中前体所提供的金属和/或准金属的相对比例成化学计算量关系。然而,这一关系既不精确也没有完全的可预测性。虽然如此,它在得到所需组成的涂层或粉末的过程中没有产生任何明显的问题,因为得到所需组成的涂层或粉末所需的化学前体的相对量可以容易地确定而无需对任何一组涂覆参数作过多的试验。一旦在一组涂覆参数下确定了得到所需组成的涂层或粉末的化学前体的比例,该涂覆能够以高度可预测的结果进行重现。因此,如果需要涂层或粉末含有特定的预定比例的两种金属,那么可以从含有预定的化学计算量比例的两种金属的两种化学前体开始。如果确定两种金属不会以预定的比例淀积的话,就对两种前体化学物质的相对量作调节直至淀积材料中得到所需比例的金属。然后,这一经验决定的量将成为将来淀积的依据。
CCVD具有能够淀积非常薄、均匀的层的优点,所述层可以用作埋入式电容器和电阻的介电层。对于埋入式电阻,淀积层的厚度通常至少约40埃。材料可以淀积至任何所需的厚度;然而,对于用CCVD形成电阻层,厚度很少超过50,000埃(5微米)。通常膜厚在100-10,000埃的范围内,最常见是在300-5000埃的范围内。因为电阻层越薄,电阻越高、材料越省(例如用铂时),能够淀积非常薄的膜是CCVD方法的一个优点。涂层薄还有助于加工过程中迅速蚀刻,通过该蚀刻形成分立的电阻(discrete resistors)。
用CCVD制得的涂层的例子包括由四乙氧基甲硅烷[Si(OC2H5)4]在异丙醇和丙烷中的溶液得到的二氧化硅涂层;由乙酰丙酮化铂[Pt(CH3COCHCOCH3)2]在甲苯和甲醇中的溶液制得的铂涂层;由硝酸镧在乙醇中、硝酸铬在乙醇中和硝酸镍在乙醇中的溶液制得的掺镍LaCrO3涂层。
电阻的电阻值取决于材料的电阻率和电阻的长度与截面积。虽然从材料效率角度考虑需要非常薄的膜,但是当功率负荷(电流)高时,可能需要较厚的膜。对于需要较厚膜的较高功率负荷要求,需要材料的电阻率较高,例如通过使用掺杂更多的金属作为电阻材料。
新型的电阻材料可以通过CCVD和CACCVD来淀积,因此可以用CCVD和CACCVD工艺与常规或改进印刷线路板技术相结合来形成多个非常小的分立电阻。通过用CCVD和CACCVD来对导电材料、特别是金属(如铂和镍)与高电阻(介电)材料(如二氧化硅)进行共同淀积,形成新型的电阻材料。发现,非常少量的高电阻材料(如约0.1%-20%(重量))就能极大地降低导电材料的导电性能。例如,铂虽然是一种优秀的导体,但是当用0.1至约5%(重量)的二氧化硅进行共同淀积时,它可用作电阻,其阻值与共同淀积的二氧化硅含量有关。虽然申请人不希望受到理论的限制,但是认为当用CCVD或CACCVD对导体和少量非导体进行共同淀积时,非导体通常以单个分子或分子纳米团粒的形式在整个导体中均匀地淀积。
对于打算用CCVD或CACCVD来淀积的电阻材料(它是导体金属和少量介电材料的混合物),金属必须能够在含氧体系中作为零价金属淀积出来。能用火焰使淀积物为零价状态的判据是金属的氧化电势必须低于淀积温度时二氧化碳和水的氧化电势中较低的一个。(在室温时,水的氧化电势较低;在其它温度时,二氧化碳的氧化电势较低。)能够容易地用CCVD进行淀积的零价金属是那些氧化电势等于或低于银的金属。因此,Ag、Au、Pt和Ir可以用直接的CCVD进行淀积。氧化电势稍高一些的零价金属可以用提供还原性更强的气氛的CACCVD工艺来淀积。Ni、Cu、In、Pd、Sn、Fe、Mo、Co和Pb最好用CACCVD来淀积。于此,金属还包括合金,所述合金是这些零价金属的混合物。能够与零价金属共同淀积的较佳介电材料是金属氧化物或准金属氧化物,如二氧化硅、氧化铝、氧化铬、二氧化钛、二氧化铈、氧化锌、氧化锆、氧化磷(phosphorous oxide)、氧化铋、常用的稀土金属的氧化物,以及它们的混合物。硅、铝、铬、钛、铈、锌、锆、镁、铋、稀土金属和磷都具有较高的氧化电势,以致于如果用推荐的用于电阻材料的前体共同淀积任一种上述金属,这些金属将以零价状态淀积,而掺杂剂会以氧化物形式淀积。因此,即使不使用火焰,介电材料也需要具有较高的氧化、磷化、碳化、硝化或硼化电势,以形成所需的两相。
此外,对于氧反应性更高的金属和金属合金,CACCVD是优选的工艺。即使该金属能够用直接CCVD淀积为零价金属,如果欲淀积于其上的底材易受氧化,较好的是提供经控制的气氛(即CACCVD)。例如,铜和镍底材容易被氧化,较好的是用CACCVD在这些底材上进行淀积。
另一种能够用CCVD以薄层淀积在底材上的电阻材料是“导电氧化物”。尤其是Bi2Ru2O7和SrRuO3是可以用CCVD淀积的导电氧化物。虽然这些材料是“导电”的,但是当它以无定形状态淀积时其电导率非常低;因此,一薄层这些混合的氧化物可用来形成分立电阻。与导电金属相似,“导电氧化物”可以用介电材料(如金属或准金属的氧化物)进行掺杂,以此提高它们的电阻率。这些混合的氧化物可以淀积成无定形层或结晶层,无定形层往往在低淀积温度下淀积,而结晶层往往在较高的淀积温度下淀积。对于用作电阻而言,通常较好的是无定形层,其电阻率高于结晶层的电阻率。因此,虽然这些材料在它们正常的结晶状态下被归类为“导电氧化物”,但是无定形氧化物(即使是非掺杂形式)可以得到良好的电阻值。在一些情况下可能需要形成低阻值(1-100Ω)的电阻,可以加入增强导电性的掺杂剂,如Pt、Au、Ag、Cu或F。如果用介电材料(如金属或准金属的氧化物)掺杂来提高导电氧化物的电阻率,或者用增强导电性的材料来降低导电氧化物的电阻率的话,这些均匀混合的介电材料或增强导电性的材料的含量通常约在电阻材料的0.1-20%(重量),较好的是至少约0.5%(重量)。
存在多种其它的“导电材料”,它虽然导电,但是具有足够的电阻率以形成本发明的电阻。它们的例子包括氧化钇钡铜和La1-xSrxCoO3,0≤x≤1,如x=0.5。一般来说,在临界温度以下具有超导电性能的任何混合氧化物,在该临界温度以上能够用作电阻材料。从本文以上所描述的前体中合适地选择前体,可以淀积该多种电阻材料。
为了得到金属/氧化物电阻材料膜,要提供既含有金属前体又含有金属或准金属的氧化物的前体的前体溶液。例如,为了得到铂/二氧化硅膜,淀积溶液含有铂前体,如乙酰丙酮化铂(II)或二苯基-(1,5-环辛二烯)铂(II)[Pt(COD)]和含硅前体(如四乙氧基甲硅烷)。这些前体大致按照欲淀积成膜的金属以及金属或准金属(会形成氧化物)的比例来进行混合;然而,对于任何所需的金属与氧化物的比例,必须凭经验来确定确切的比例。因此,本发明的用来形成电阻膜的前体溶液含有重量比约在100∶0.2至100∶20之间的形成金属的前体和形成氧化物的前体。
类似地,当对导电氧化物进行淀积以形成电阻材料层时,须以合适比例提供每种金属(Bi和Ru,以及Sr和Ru)的前体,以得到正确化学计算量的导电氧化物。同样,可能要做一些实验来确定在任一特定的淀积条件下提供前体的精确比例,以得到所需化学计算量的混合氧化物。此外,当用介电性金属氧化物或准金属氧化物掺杂导电氧化物以提高意欲淀积材料的电阻率,或者用增强导电性的材料掺杂以降低意欲淀积材料的电阻率时,可加入附加前体以得到少量的金属氧化物或准金属氧化物,如占淀积的掺杂的导电金属氧化物的0.1-20%(重量)、较好为至少约0.5%(重量)的金属氧化物或准金属氧化物。
以上提到的两种铂前体的任一种都能溶于甲苯。通过超声处理(sonification)可使铂前体的溶解变得容易。能够方便地向铂前体的溶液中加入溶于甲醇、异丙醇或甲苯的四乙氧基甲硅烷以形成前体溶液。然后可以用丙烷或其它有机溶剂将该前体溶液进一步稀释至所需浓度。
一般来说,对于运输、贮存和加工而言,前体化学物质溶解于普通的液体有机溶剂(如甲苯、异丙醇、甲醇、二甲苯及其混合物)中,(全部的前体化学物质的)浓度约为0.25-20%(重量),较好的至少约为0.5%(重量),通常高达约5%(重量)。一般来说,对于运输和加工而言,希望提供浓缩形式的浓缩液以使得成本最低、可燃液体含量最少。同时必须考虑稳定性,尤其是低温稳定性(如低至-20℃),以免过度浓缩的溶液发生沉淀。淀积时,通常进一步稀释前体溶液,例如将其稀释于丙烷中,稀释至(全部前体化学物质的)浓度约为0.005-1.0%(重量),较好约为0.05-1.0%(重量),更好不超过约0.6%(重量)。
最重要的可以用CACCVD以掺杂或不掺杂形式进行淀积的金属中的一种是镍。镍价廉,相对于导电金属(如铜)可以进行选择性的蚀刻。一种用来通过CACCVD淀积零价镍的重要前体是硝酸镍。镍可以从硝酸镍的氨水溶液中淀积出来。然而如上所述,较好的是从处于接近超临界状态的液体中淀积出来。为此,有利的硝酸镍载体包括液化氨或液化一氧化二氮(N2O)。一氧化二氮可以加压至700-800psi进行液化。氨可以通过加压和/或低温进行液化。据发现,不论载体是液化氨还是液化一氧化二氮,较好的是加入少量水,即最多约为40%(重量),较好约为2-20%(重量)的水,(余量为液化氨或液化一氧化二氮,约为60-100%(重量))。水能提高液化氨或液化一氧化二氮的超临界点。这使得更易于在充分低于超临界点的状态下操作,以使得不会遇到粘度和密度的变化。此外,加入水降低了溶液的不稳定性。(然而,应该理解的是在一些情况下淀积可以在液化氨或液化一氧化二氮中进行而无需添加水。)在这样的镍淀积溶液中,镍前体与用于镍掺杂剂的任何前体通常以少量存在,即约为0.001-2.5%(重量)。目前用于镍的较佳掺杂剂是镍亚磷化物(nickel phosporous)和/或镍亚磷氧化物(nickel phosphorousoxides),如磷酸镍。据信,当使用含磷前体(如磷酸)时,主要的掺杂剂种类是磷酸镍。水和液化氨或N2O作为载体共溶剂的前体溶液是有利的,因为不存在碳,而碳的存在可能导致碳的淀积。
在制备在液化氨载体中的硝酸镍前体溶液时,方便的做法可以是将硝酸镍与任何掺杂剂的前体预溶解在氢氧化铵溶液中,然后将该溶液与液化氨混合。
本文中所述的电阻材料可以制成电阻,可以是埋入式电阻或者是在集成电路或其它电子应用中印刷线路板表面上的电阻。这通常完成如下使用光敏抗蚀剂在电阻材料层上形成一层抗蚀图案,使用合适的蚀刻剂除去未被抗蚀图案所覆盖区域内的电阻材料。对于金属/氧化物电阻材料层,所选的蚀刻剂是用于电阻材料的金属组分的蚀刻剂。通常这些蚀刻剂是酸或路易斯酸,如用于铜的FeCl3或CuCl2。硝酸和其它无机酸(如硫酸、盐酸和磷酸)可用来蚀刻镍、可淀积的多种其它金属和导电氧化物。
王水可以用来蚀刻贵金属,如铂。王水是一种腐蚀性极强的酸混合物,在本发明中用来蚀刻金属,尤其是贵金属,如铂和金。Au也可以在碘化钾/碘(KI/I2)溶液中进行蚀刻。因为CCVD使用了火焰,所以易于产生氧化物,只有反应性较差的金属(即氧化电势低的金属)易于淀积成金属而不是氧化物。最容易淀积的是贵金属,如铂和金。当然这些金属是很昂贵的,但是CCVD的优点是它能用来淀积非常薄但又均匀的膜。因此,用CCVD来淀积薄层贵金属在许多情况下是可行的。而且,由于贵金属是非氧化性的,它们用于高质量电子应用的经济效益可以容易地得到证明。
此外,虽然贵金属是导体,但是发现,将贵金属与较少量的氧化物(如二氧化硅或氧化铝)一同淀积时,淀积所得的材料是高度电阻性的。因此,含有少量(如0.1%-5%)氧化物的金属(如铂)可以用作印刷线路板中的电阻。这些材料可以在印刷线路板上淀积成层,然后用印刷线路板技术加工得到分立的电阻。
然而,贵金属由于其非反应性的性质难以蚀刻,而蚀刻是许多制备印刷线路板工艺中所要求的。王水作为金属(尤其是贵金属)在印刷线路板工艺中的蚀刻剂。
王水是由两种已知酸制得的3份浓盐酸(12M HCl)和1份浓硝酸(16MHNO3)。因此,盐酸对硝酸的摩尔比为9∶4,虽然由此比例稍作变化(即6∶4至12∶4)对于本发明的蚀刻目的也是可接受的。由于王水具腐蚀性且寿命有限,因此它不能市售,必须是现场制备。为了降低其腐蚀性,王水可以用水稀释至高达约水与王水的比例为3∶1。当然用水稀释会增加蚀刻时间,但是用33%的王水溶液可以实现铂的良好的蚀刻时间。当然,反应性更强的金属(如铜)用王水可以更容易地蚀刻。另一方面,贵金属(如铂)不会被许多适用于蚀刻铜的材料(如FeCl3或CuCl2)所蚀刻,因此在形成印刷线路板中可以使用多种选择性蚀刻。
蚀刻的速度取决于数种因素,它们包括王水的强度和温度。王水较好的是新鲜制备的。一般来说,王水蚀刻是在55-60°的范围内进行的,尽管这会随着用途而有所变化。
以下对形成分立电阻的讨论是假定使用以铂为基的电阻材料,因为铂/二氧化硅是目前较好的CCVD淀积的电阻材料。然而应该理解,可以用其它电阻材料来代替,包括上述金属/氧化物和导电氧化物的膜。同样,在以下说明的对铜和以铂为基的电阻层进行选择性蚀刻的技术中,应该理解存在着多种可用于本发明多种导体/电阻材料的组合的选择性蚀刻剂。
在最简单的形式中,本发明的电阻400仅仅是在绝缘底材402上的一块或一条薄层电阻材料401(如4c和4d),它摆放成在每一端都有接触用铜片403,以提供电阻与电子线路的电连接。底材402可以是柔软片材(如聚酰亚胺片)、刚性的环氧树脂/纤维玻璃板,或者甚至是液晶片材。适用于许多场合的合适底材是有机聚合物(如聚酰亚胺)的厚度约为10微米或更薄的膜。于此发现,在最优化淀积参数之后,CCVD可以向绝缘底材(如聚酰亚胺)施用电阻材料层,而不会使底材燃烧或变形。将电阻材料层直接淀积在绝缘底材上通常得到电阻材料层与绝缘底材的良好粘合。一般来说,这一粘合优于使用粘合剂将电阻材料与底材进行粘合的已有技术。分立电阻400如下形成用CCVD在绝缘底材402上淀积一薄层的电阻材料401(4a),形成图4a的结构。向电阻材料的外露表面施涂耐化学性光敏抗蚀剂并用常规光成象技术形成图案,所述抗蚀剂如Morton Electronic Materials出售的Laminar 5038耐王水的抗蚀剂(在铂蚀刻的情况下)。一般来说,能够经受酸性非常高的条件(如镀金条件)的抗蚀剂适宜用作用王水进行蚀刻时的抗蚀剂。如此电阻材料层的外露部分被蚀刻除去,(在以贵金属为基的电阻材料的情况下使用王水进行蚀刻)剩下一块块或一条条的电阻材料401(4b)以形成图4b的结构。然后,可以在电阻材料条401的两端施用连接用铜片403,形成图4c的电阻400。
然后较好的是参见图5a-5c,用光成象技术形成薄层电阻材料块401和电连接导电块403。图5a示出了一个三层结构409,它包括绝缘底材402、根据本发明用CCVD形成的电阻材料层401(5a)(如Pt/二氧化硅)、以及用CCVD或其它技术(如电解电镀)形成的导电层403(5a)(如铜)。
图5a的结构409可以用光成象技术用两种两步法中的一种来形成图案。在一种方法(参见图5b)中,用一种抗蚀剂覆盖导电材料层403(5a),用光成象技术使该抗蚀剂形成图案,然后在抗蚀剂的外露区域用例如王水蚀刻除去导电材料层和下面的电阻材料层,得到图5b的结构,它具有形成图案的电阻材料块(401(5b))和形成图案的导电材料块(403(5b))。接着,施涂第二种抗蚀剂,光成象并显影。此时,只有导电材料块(403(5b))的外露部分被蚀刻剂蚀刻除去,由此得到图4c的电阻结构400。所述蚀刻剂能选择性地蚀刻导电层而不对电阻材料块进行蚀刻,例如在Cu作为导电材料层、Pt/二氧化硅作为电阻材料的情况下,蚀刻剂为FeCl3或CuCl2。在另一种方法(参见图5c)中,形成具有图案的抗蚀层,用例如FeCl3蚀刻除去导电材料层403(5a)的外露部分,再形成一层具有图案的抗蚀层,然后用王水蚀刻除去电阻材料层(401(5b))的外露区域,以形成电接触403,并得到图4c的电阻结构400。使用两种方法中的任一种,都能用普通的形成印刷线路的常规光成象技术来形成分立的薄层电阻400。
另一种形成分立电阻的方法是由图4a所示的具有位于一绝缘底材上的一层电阻材料(如Pt/二氧化硅)的双层结构开始,使用光敏蚀刻剂方法,在底材上形成一块块或一条条的分立电阻材料,得到图4b所示的结构。接着,例如用电解电镀在电阻块或电阻条上形成一层导电材料(如铜),得到图5b所示的结构。再施涂一层光敏蚀刻剂并成象,然后蚀刻除去导电材料的外露部分以留下导电的电连接块403,并得到如图4c所示的电阻结构400。
虽然图4c的电阻400可以位于印刷线路板器件的表面,但是在大多数情况下这些电阻是埋入多层印刷线路板中的,如图6所示,其中在绝缘底材402(如聚酰亚胺)上形成的电阻400埋在附加的绝缘材料层420(如环氧树脂/纤维玻璃的预浸渍材料)中。
图9a-g示出了电路化方法的剖面图,它由导电箔900(如铜箔)开始,用CCVD或CACCVD淀积一层电阻材料905,这一双层结构由图9a表示。本方法中所用铜箔的厚度通常约为3-50微米。
然后,向双层结构的两面上施涂光敏抗蚀剂层910和915。将覆盖电阻材料层905的光敏抗蚀剂910暴露于形成图案的光化辐射下,而覆盖导电箔900的光敏抗蚀剂915毯式暴露(blanket-exposed)于光化辐射下。然后对光敏抗蚀剂进行显影,得到图9b所示的结构,在电阻材料层905上覆盖有具有图案的光敏抗蚀剂层,而保护导电箔的是毯式曝光的光敏抗蚀剂层915。
如图9c所示,然后选择性地从已除去光敏抗蚀剂910的区域中蚀刻去电阻材料层905。接着除去剩下的光敏抗蚀剂910和915。
此后,如图9d所示,向结构的电阻材料一面上施用一有机叠层920。该叠层保护现已形成图案的电阻材料层905免受进一步的加工,并且当随后从电阻材料层的另一面上除去部分的导电箔时起到支承一块块的电阻材料层905的作用。
接着向导电箔990施涂光敏抗蚀剂层925。它用有图案的光化辐射成象并显影,得到图9e所示的结构。此后,用选择性蚀刻导电箔900但不蚀刻电阻材料层905的蚀刻剂对导电箔900进行蚀刻,留下图9f所示的结构。除去光敏抗蚀剂925,留下图9g所示的电阻结构。该结构可以随后埋入介电材料(图中未示出)中。
作为本方法的变化,应该注意到,如果所用的蚀刻剂是能够选择性地蚀刻电阻材料层905而不蚀刻或仅仅是部分蚀刻导电箔900的话,则不必施用蚀刻层915(图9b和9c)。
当本文中提及“蚀刻”时,该术语用来表示的不仅是本领域中的普通含义(在该含义中强的化学物质溶解了一层材料,如硝酸溶解了镍),而且包括物理除去(如激光除去和通过粘合力不足而除去)。在这一方面,以及根据本发明的一个方面,我们认为用CCVD或CACCVD淀积得到的电阻材料(如掺杂的镍和掺杂的铂)是多孔的。据信,其孔隙度允许液体蚀刻剂扩散经过电阻材料层,在物理方法中,破坏电阻材料层和下面一层之间的粘合力。
例如,参见图9b和9c,如果导电箔层900是铜,电阻材料层905是掺杂的铂(如Pt/二氧化硅)或掺杂的镍(如Ni/PO4)的话,可用氯化铜来除去电阻材料层的外露部分。氯化铜不溶解Pt或Ni,但是电阻材料层的孔隙度使得氯化铜能够达到它下面的铜。溶解了少部分的铜,使电阻层905的外露部分用物理方法剥落(physical ablation)。该物理剥落发生在氯化铜显著地蚀刻下面铜层900之前。
出于同样的原因,按照本发明淀积的电阻材料的孔隙度可以通过剥落来除去。例如,位于聚酰亚胺底材上的铂层可以用蚀刻剂蚀刻除去,所述蚀刻剂如上述从导电铜底材上除去电阻层的蚀刻剂,尤其是无机酸,如盐酸、硫酸和酸性氯化铜(acidic cupric chloride)。因此,在例如迄今为止说明的使用普通光敏抗蚀剂技术的方法中,分立电阻可以通过在绝缘底材(如聚酰亚胺膜)上蚀刻电阻材料薄膜来形成。
如果导电材料层900是铜,有时使用已经被氧化的铜箔是有利的;经氧化的铜箔可从市场上购得。经氧化铜箔的优点在于稀HCl溶液(如1/2%)溶解氧化铜而不溶解零价铜。因此,如果电阻材料层是多孔以使得稀HCl溶液经过其扩散的话,HCl可用来剥落蚀刻。溶解表面氧化铜会破坏铜箔和电阻材料层之间的粘合力。正如以上关于图9a-9g所示方法中注意到的,使用不腐蚀箔的蚀刻剂就无需保护性光敏抗蚀剂层915(图9b和9c)。
为了使加工步骤最少,施涂的光敏抗蚀剂可以是能够埋入材料中的,如Morton International的永久抗蚀剂。如果蚀刻剂不蚀刻导体或者仅仅是部分蚀刻导体的话,材料的两面可以同时进行加工。具体是只有电阻材料侧的光敏抗蚀剂需要能够埋入,而导体侧的光敏蚀刻剂可以作为最终加工步骤除去。或者,可以选择导体材料面上所用的光敏抗蚀剂,以使得它不被用于除去电阻材料面上光敏抗蚀剂所用的特殊剥离剂所去除。能够埋入的光敏蚀刻剂会减少公差的损失,这种公差损失是由于电阻材料底蚀而引起的,因为底蚀的材料是在光敏抗蚀剂去除后就会剥落。
可以证明,当多孔电阻材料层(如掺杂的铂和掺杂的二氧化硅)与某些蚀刻剂一起使用时,蚀刻过程是物理剥落过程。这是因为在蚀刻剂浴中发现电阻材料片。正因为如此,剥落的电阻材料可以用物理方法(如过滤、沉降、离心等)从蚀刻剂浴中分离出来。这尤其便于回收昂贵材料(如铂)。
为了实际上可用剥落技术除去,电阻材料层必须总体上对于不溶解电阻材料却足以腐蚀下面材料表面的蚀刻剂是足够多孔的,以使得在约2至5分钟内使界面粘合力丧失并剥落导电材料。同时,该蚀刻剂必须是在蚀刻期间不明显地腐蚀下面材料(如铜箔),因为这一腐蚀可能导致过分底蚀或损失机械强度(即降低可加工能力)。
因此,图10a示出了关于上述的结构,一层导电层1000,如铜;一层中间可蚀刻层1002,如氧化铜;一层电阻材料的多孔层1004,蚀刻剂可以通过该层渗入并溶解中间层而不明显地消蚀导电层。参见图10b,用曝光和显影来形成有图案的电阻层1006;然后参见图10c,蚀刻剥落电阻层1004以形成有图案的电阻层,这一剥落如下进行将电阻层1004与蚀刻剂接触,该蚀刻剂通过多孔电阻层渗入并腐蚀中间层1002,从而使上面覆盖的电阻层被机械剥落除去。
虽然从对于下面铜导电层1000是能够有选择蚀刻的角度来看,氧化铜是合适的中间层1002,但是氧化铜并不是用于中间层1002的较佳材料。据发现,当电阻材料(如二氧化硅掺杂的铂)直接淀积在铜或氧化铜上时,铜和/或氧化铜有与该电阻材料反应的趋势,以使得该电阻材料的电阻率可能不可预测。因此,较好的是在用CCVD或CACCVD施用电阻材料之前,将中间层1002施涂到导电箔层1000上,中间层的材料应使得箔层1000中的导电材料不扩散入电阻材料层1004中。
用于中间层1002的材料的要求必须是能够用蚀刻剂足够地蚀去(degrade)中间层以剥落电阻材料层1004。较好的是蚀刻剂最小限度地减少或不减少导电层1000。例如可以有能蚀刻中间层但不与导电层1000反应的化学物质。然而,即使一种化学物质能蚀刻形成中间层1002的材料也能蚀刻形成导电层1000的材料,通常仍然可能通过控制蚀刻条件(包括时间)来使用该蚀刻剂,以蚀去中间层1002而不会明显地蚀去导电层1000。例如,如果导电层1000是铜,中间层1002是镍,会蚀去镍和铜的氯化铜是一种合适的抗蚀剂,只要控制蚀刻条件以使得明显地蚀去非常薄的镍层,而不会明显地蚀去厚得多的铜层。此外,中间层1002的材料必须使得导电层1000与电阻材料层之间保持良好的电接触。
中间层1002所用材料的一种选择是金属,如镍,它通过在导电层(如铜)之间提供了一层阻挡层而防止了铜和电阻材料层1004之间的相互作用。镍可以淀积在铜上,例如通过电镀。一般来说,镍中间层约为2-6微米,尽管并不认为厚度是特别关键的。
中间层1002材料的另一种选择是陶瓷,如二氧化硅或其它金属或准金属的氧化物。这样的中间层可以在淀积电阻材料层1004之前如上所述用CCVD进行淀积。虽然大多数陶瓷材料(如二氧化硅)是电绝缘(介电)的,但是如果淀积成足够薄的层(如平均厚度约为15-50纳米)的话,介电材料仍然能够用作中间阻挡层1002而不明显地破坏导电层1000和电阻层1004之间的电接触。(当讨论中间层厚度时,讨论的是平均厚度,因为厚度通常是各处不同,取决于例如底材粗糙度和淀积条件这些因素。)净效应是一种可蚀刻的漏电中间层,它是有效的组成的缓冲层。
如果二氧化硅用作中间层的话,合适的用于二氧化硅的蚀刻剂包括二氟化氢铵、氟硼酸和它们的混合物。如果二氧化硅用作中间层的话,特别适合的一种用于二氧化硅的蚀刻剂是含有1.7%(重量)的二氟化氢铵和1.05%(重量)的氟硼酸的水溶液。可以向这两种组分的混合物中加入其它材料。
在二氧化硅的情况下,需要有足够多的纳米级孔隙的或有缺陷的涂层以使能够得到电阻和导体之间的纳米级直接接触点。这些接触点的尺寸可以是1-100纳米,形成0.05%-10%的区域,由此使得电阻特征尺寸进一步下降至微米级分辨率,同时仍提供优良的电联接。这仍然足够地减少了材料的互相作用。或者可以使用不良绝缘体、半导体或导电的复合陶瓷或聚合物材料,在这些情况下这些材料可以更厚一些。此外,在这一方面,底材表面越粗糙,中间层就越厚,这可能是因为较粗糙的底材表面往往会得到更多孔的中间层涂层。也就是说,我们认为底材表面越粗糙,中间涂层中产生的针孔数就越多,通过针孔可以保持电接触。
可用作中间层的其它氧化物包括氧化锌、氧化锶和氧化钨。这些氧化物中的每一种都可以使用上述锌、锶和钨前体用CCVD进行淀积。这些氧化物中的每一种都可以在足以使铜不会氧化的低温下用CCVD施用到铜底材上。这些氧化物中的每一种可以以相当低的成本施用。
氧化锌是一种特别有前途的中间层材料,因为它是电的半导体。因此,它能够在导电金属(如铜)和电阻之间提供良好的电连续性。可以对氧化锌(和其它氧化物)进行掺杂以提高电导率。另外,氧化锌能够用盐酸进行蚀刻。
氧化锶和氧化钨是能够用强碱(如KOH)蚀刻的。
现通过具体实施例对本发明作更详细的说明。
实施例1用CCVD在聚酰亚胺上淀积一层Pt/SiO2电阻材料,所用淀积条件如下溶液的制备1.23克Pt(COD)250毫升甲苯0.43克TEOS(在甲苯中含1.5%(重量)的Si)150克丙烷淀积的条件溶液流量3毫升/分钟淀积时间对于5″×6″的底材约为18分钟淀积次数(#ofpasses)6淀积温度500℃自耦变压器3.0A尖嘴氧气流量约为2900毫升/分钟由上述淀积条件所得样品电阻值为每平方约17欧姆。
这是含2.5%(重量)SiO2的65%浓溶液的一个例子。可以变化的变量包括按比例加入使溶液浓度达到100%的Pt(COD)和TEOS量(如1.89克Pt(COD)和0.65克TEOS(1.5%(重量)的Si)),以及可以加入以改变所得SiO2重量%的TEOS的量(用于该目的通常为0.5-5%(重量))。
实施例2在一些情况下,需要将某些材料淀积在对氧化敏感的底材上而不氧化该底材。这可以使用CACCVD技术来进行,一个例子是在Ni上淀积介电化合物SrTiO3。这一淀积使用了常规的CCVD喷嘴,它安置在能够在火焰周围提供惰性气体或还原气体的套管中。如图8所示,然后将加套的喷嘴安置在石英管内以防止在淀积期间空气到达底材。对于该CACCVD火焰,可燃溶液象在CCVD工艺中一样沿针管(needle)流动、氧气沿尖嘴流动,氢气沿引火管流动。高流量的惰性气体(如氩气或氮气)或还原气体(如90-99.5%氩气/10-0.5%氢气)在火焰周围沿套管流动。对于非常小的样品,用惰性气体或还原气体吹扫的侧臂是石英管的一部分,以使得加热的样品在淀积之后于经控制的气氛中冷却,从而防止在该时刻被氧化。据EDX和XRD分析表明,该方法使得SrTiO3淀积在Ni上,而不形成NiO或不淀积碳。早期的实验表明,使用碳淀积电势低的溶剂(如甲醇)要优于使用甲苯。使用甲苯时碳会淀积在底材上。迄今为止理想的工艺参数如下溶液的制备0.82克2-乙基己酸锶(甲苯中含1.5%(重量)的Sr)0.73克Ti-二异acac(Ti-di-i-acac)(甲苯中含0.94%(重量)的Ti)17毫升甲醇100克丙烷淀积的条件溶液流量 2毫升/分钟淀积时间 15分钟(在10-15分钟内变化)淀积温度 ~950℃(在800-1050℃内变化)自耦变压器1.9A(在1.9-2.25A之间变化)引火氢气流量 ~1926毫升/分钟(低至550毫升/分钟)尖嘴氧气流量 ~1300毫升/分钟(在500-2322毫升/分钟之间变化)还原气体混合物0.5-10%氢气/余量的氩气还原气体流量 58升/分钟实施例3利用0.760克Ni(NO3)H2O和0.30克H3PO4在400毫升6M NH4OH中的溶液、使用图7所示的设备,在200TAB-E聚酰亚胺底材上淀积磷酸盐掺杂的镍薄膜。该溶液以0.50sccm的流量流经在尖嘴722处有22微米ID(0.006″OD)熔凝硅石毛细管插入件(3毫米长)的22号(ga.)的不锈钢针管。氢气以1.20lpm的速率流经环绕管738。氢以756sccm的速率流经环绕738的管子744。氧气以1.40lpm的速率流经环绕744的管子752.氩气以28.1lpm的速率流经外层管768。所有的气流在手动点燃火焰之前就开始流动。一般来说,为了让火焰峰点燃内部喷嘴不得不减少氩气流。然后将氩气流回复到其初始设定值。一旦点燃,就不再需要长燃小火或点燃源来保持燃烧。淀积点约1毫米以上的气体温度为500℃。在离喷嘴护环2毫米处,以20″/分的速率、0.0625″的步幅,通过水平扫描对底材上3.5″×3.5″的面积横越扫描一次。这一扫描移动总共需要12分钟。
经淀积的磷酸盐掺杂的镍层的线性电阻为115欧姆/英寸。
使用不含磷酸的溶液重复进行该淀积以用于比较。镍层的电阻值为5欧姆/英寸。
实施例4使用以下化学试剂和工艺参数来淀积Bi2Ru2O7前体溶液0.0254%(重量)在2-乙基己酸盐中的Bi+0.0086%(重量)在乙酰丙酮化物中的Ru+1.8026%(重量)甲醇+15.0724%(重量)甲苯+83.0910%(重量)丙烷。
参数前体溶液的流量3毫升/分钟。
尖嘴氧气流量4升/分钟。
自耦变压器2.30A。
没有后部冷却。
淀积温度250-650℃。
在400℃的气体温度下涂覆无定形的Bi2Ru2O7,电阻值低于7200微欧姆·厘米(μΩ·cm);这是迄今为止的最佳方式。丙烷和甲苯用作溶剂。为了制备用于淀积的浓缩或稀释的溶液,可以使用1-35%(重量)范围内的甲苯。也可以使用在99-65%(重量)范围内的丙烷。通过改变溶剂重量百分数,可以相应地调节溶质(2-乙基己酸铋和乙酰丙酮化钌)的浓度。前体溶液的流量在1-5毫升/分钟的范围内。
实施例5使用以下化学试剂和工艺参数来淀积SrRuO3前体溶液0.0078%(重量)在2-乙基己酸盐中的Sr+0.0090%(重量)在乙酰丙酮化物中的Ru+12.7920%(重量)甲苯+87.1912%(重量)丙烷。
参数前体溶液的流量3毫升/分钟。
尖嘴氧气流量4升/分钟。
自耦变压器2.75A。
没有后部冷却。
淀积温度300-650℃。
在400℃的气体温度下涂覆无定形的SrRuO3,电阻值低于5400微欧姆·厘米(μΩ·cm);这是迄今为止的最佳方式。丙烷和甲苯用作溶剂。为了制备用于淀积的浓缩或稀释的溶液,可以使用1-35%(重量)范围内的甲苯。也可以使用在99-65%(重量)范围内的丙烷。通过改变溶剂重量百分数,可以相应地调节溶质(2-乙基己酸锶和乙酰丙酮化钌)的浓度。前体溶液的流量在1-5毫升/分钟的范围内。
实施例6方法一形成单个分立电阻根据(实施例1的)方法,在25微米厚的聚酰亚胺片材上淀积200纳米厚的铂/二氧化硅层(Pt∶SiO2,97.5∶2.5)。在铂层上层叠一层光敏抗蚀剂,它是MortonInternational Electronics Materials出售的Laminar 5000系列的抗蚀剂。用光学工具(photo tool)覆盖抗蚀剂层,抗蚀剂层的未覆盖部分用70毫焦耳的紫外线进行曝光。然后使用传送带化的喷雾显影机在约25psi下用80°F的1%碳酸钠一水合物溶液显影以除去未曝光的抗蚀剂,调节停留时间以使得断裂点(breakpoint)发生在显影室长度(chamber length)40%-50%的位置,接着用自来水和去离子水进行多次喷射淋洗。
接着,使片材与50℃的50%的王水溶液(500毫升H2O+125毫升HNO3+375毫升HCl。)接触足够的时间以除去那些已经去除抗蚀剂的区域内所有的Pt/SiO2材料,如此形成分立电阻。
实施例7方法二形成带有铜连接电路的单个分立电阻根据(实施例1的)方法,在25微米厚的聚酰亚胺片材上淀积200纳米厚的铂/二氧化硅层(Pt∶SiO2,97.5∶2.5)。然后,使用市售商提供的酸性镀铜浴、应用市售商提供的标准镀敷参数,将铜直接镀敷到Pt/SiO2层的表面上,厚度为12微米。在镀敷的铜层上层叠一层光敏抗蚀剂,它是Morton International ElectronicsMaterials出售的Laminar 5000系列的抗蚀剂。用光学工具覆盖抗蚀剂层,抗蚀剂层的未覆盖部分用70毫焦耳的紫外线进行曝光。然后使用传送带化的喷雾显影机在约25psi下用80°F的1%碳酸钠一水合物溶液显影以除去未曝光的抗蚀剂,调节停留时间以使得断裂点发生在显影室长度40%-50%的位置,接着用自来水和去离子水进行多次喷射淋洗。
接着,使片材与50℃的50%的王水溶液(500毫升H2O+125毫升HNO3+375毫升HCl.)接触足够的时间以除去那些已经去除抗蚀剂的区域内所有的镀敷铜和Pt/SiO2材料,如此形成电子线路图案。使用传送带化的喷雾抗蚀剂剥离机在约25psi下用130°F的3%氢氧化钠溶液除去光敏抗蚀剂,调节停留时间以使得断裂点发生在剥离室长度40%-50%的位置,接着用自来水和去离子水进行多次喷射淋洗。
向电路化的电子图案上层叠一层光敏抗蚀剂,它是Morton InternationalElectronics Materials出售的Laminar 5000系列的抗蚀剂。用光学工具覆盖抗蚀剂层,抗蚀剂层的未覆盖部分(除分立电阻区以外的所有区域)用70毫焦耳的紫外线进行曝光。然后使用传送带化的喷雾显影机在约25psi下用80℃的1%碳酸钠一水合物溶液显影以除去未曝光的抗蚀剂,调节停留时间以使得断裂点发生在显影室长度40%-50%的位置,接着用自来水和去离子水进行多次喷射淋洗。然后,在市售氯化铜蚀刻剂中蚀刻外露的铜区域,以仅仅除去铜而使Pt/SiO2露出且未受腐蚀,从而形成每端都用铜电路迹线连接的电阻。使用传送带化的喷雾抗蚀剂剥离机在约25psi下用130°F的3%氢氧化钠溶液除去光敏抗蚀剂,调节停留时间以使得断裂点发生在剥离室长度40%-50%的位置,接着用自来水和去离子水进行多次喷射淋洗。
实施例8方法三形成带有铜连接电路的单个分立电阻根据(实施例1的)方法,在25微米厚的聚酰亚胺片材上淀积200纳米厚的铂/二氧化硅层(Pt∶SiO2,97.5∶2.5)。然后,使用市售商提供的酸性镀铜浴和镀敷参数,将铜直接镀敷到Pt/SiO2层的表面上,厚度为12微米。在镀敷的铜层上层叠一层光敏抗蚀剂,它是Morton International Electronics Materials出售的Laminar 5000系列的抗蚀剂。用光学工具覆盖抗蚀剂层,抗蚀剂层的未覆盖部分用70毫焦耳的紫外线进行曝光。然后使用传送带化的喷雾显影机在约25psi下用80°F的1%碳酸钠一水合物溶液显影以除去未曝光的抗蚀剂,调节停留时间以使得断裂点发生在显影室长度40%-50%的位置,接着用自来水和去离子水进行多次喷射淋洗。
然后在市售蚀刻剂氯化铜中蚀刻铜,露出Pt/SiO2。剥去抗蚀剂,使用工业标准真空层压工艺施涂一层新的光敏抗蚀剂(Laminar 5000系列)。第二光掩模的线宽比第一图案宽2密耳,用该第二光掩模曝光第二图案,所用的曝光参数与第一抗蚀剂曝光操作中所用的曝光参数相同。
接着,使片材与50℃的50%的王水溶液(500毫升H2O+125毫升HNO3+375毫升HCl)接触足够的时间以除去那些已经去除抗蚀剂的区域内所有的外露Pt/SiO2材料,如此形成电子线路图案。使用传送带化的喷雾抗蚀剂剥离机在约25psi下用130°F的3%氢氧化钠溶液除去光敏抗蚀剂,调节停留时间以使得断裂点发生在剥离室长度40%-50%的位置,接着用自来水和去离子水进行多次喷射淋洗。
向片材上层叠第三次新的一层光敏抗蚀剂层,它是Morton InternationalElectronics Materials出售的Laminar 5000系列的抗蚀剂。用光学工具覆盖抗蚀剂层,未覆盖部分(除分立电阻区以外的所有区域)用70毫焦耳的紫外线进行曝光。然后使用传送带化的喷雾显影机在约25psi下用80℃的1%碳酸钠一水合物溶液显影以除去未曝光的抗蚀剂,调节停留时间以使得断裂点发生在显影室长度40%-50%的位置,接着用自来水和去离子水进行多次喷射淋洗。然后,在市售氯化铜蚀刻剂中蚀刻外露的铜区域,以仅仅除去铜而使Pt/SiO2露出且未受腐蚀,从而形成每端都用铜电路迹线连接的电阻。使用传送带化的喷雾抗蚀剂剥离机在约25psi下用130°F的3%氢氧化钠溶液除去光敏抗蚀剂,调节停留时间以使得断裂点发生在剥离室长度40%-50%的位置,接着用自来水和去离子水进行多次喷射淋洗。
实施例9带有二氧化硅阻挡层的电阻本实施例是如何使用SiO2阻挡层制备埋入式电阻的例子。
从最终电路迹线所需厚度的铜箔开始,用CCVD淀积法在该铜箔上淀积约20-50纳米厚的SiO2阻挡层。这可以通过淀积在单片箔上或者使用滚筒法(rollprocess)(从卷轴到卷轴)来实现。
在淀积阻挡层过程之后,使用CCVD工艺淀积厚度约为100-150纳米的电阻材料(如掺杂有2.5%SiO2的Pt金属)。此时测试淀积材料的质量(其厚度、组成和体电阻率)。
实际上的电阻材料样品由作为阻挡层的无定形二氧化硅涂层和铂-二氧化硅复合物的覆盖电阻层组成。底材是尺寸为24″× 30″的铜箔,涂覆面积为08″×24″。
电阻前体的溶液含有0.512%(重量)的二苯基-(1,5-环辛二烯)铂(II)、0.028%(重量)的四乙氧基甲硅烷、58.62%(重量)的甲苯和40.69%(重量)的丙烷。二氧化硅前体的溶液含有0.87%(重量)四乙氧基甲硅烷、8.16%(重量)异丙醇和90.96%(重量)丙烷。淀积带有二氧化硅阻挡层的电阻涂层还使用了浓度较低的Pt(SiO2)前体溶液,如上述浓度的80%、75%、65%和50%。
使用四喷嘴CCVD体系如下进行淀积对于第一遍的二氧化硅,温度为650℃;对于第二遍的二氧化硅,温度为750℃;对于覆盖三遍的Pt(SiO2)电阻涂层,温度为700℃。
为了从组件中除去不需要的电阻材料,将能光成象的抗蚀剂(如Laminar 5000)涂覆在电阻材料上。用标准光处理工艺(如透过光掩模进行紫外线曝光)对光敏抗蚀剂材料进行曝光,使用合适的溶剂(如80℃的2%碳酸钠溶液)除去未聚合的光敏抗蚀剂,露出要在随后的剥落蚀刻过程中除去的电阻材料。然后,将该组件经过喷雾蚀刻机进行处理,在该蚀刻机中组件与玻璃蚀刻剂溶液(例如,在水中的1.7%(重量)二氟化氢铵和1.05%(重量)氟硼酸)接触足够的时间以化学腐蚀SiO2阻挡层并剥落不需要的电阻材料。这一方法的原理是蚀刻剂穿透电阻材料中的微孔腐蚀下面的SiO2层。由于玻璃抗蚀剂增溶溶解SiO2层,因此电阻材料丧失了粘合力,还因为电阻材料厚度薄,所以破裂成小片,作为固体被喷射的蚀刻剂材料带走。与蚀刻剂的接触时间限于足以除去电阻材料而不会长得(约15-60秒)足以导致由光敏抗蚀剂覆盖的所需材料发生底蚀的这一段时间。
然后使用工业层压工艺将电阻材料转移至一层标准环氧层压材料上在经蚀刻的电阻组件的电阻材料一面上放置一片76289预浸渍体,接着放置一片有机剥离片。将该组件放在标准的PWB层压机上,使用标准层压条件固化。在层压后,从层压组件上剥去剥离片,除去铜以露出电阻,形成连接电路迹线。使用标准的光处理工艺并用氯化铜蚀刻来完成除去铜的这一过程。从上面表面上除去铜,同时留下铜来连接电阻的两端,如此形成电阻。
实施例10带有镍阻挡层的电阻以下是如何使用镍阻挡层来制备掩埋(埋入)式电阻的一个例子。
从最终电路迹线所需厚度的铜箔开始,用电镀或CCVD淀积法在该铜箔上淀积约2-5微米厚的镍金属阻挡层。这可以通过淀积在单片箔上或者使用滚筒法(rollprocess)(从卷轴到卷轴)来实现。
在淀积阻挡层过程之后,使用CCVD工艺淀积厚度约为100-150纳米的电阻材料(如掺杂有2.5%SiO2的Pt金属)。此时测试淀积材料的质量(其厚度、组成和体电阻率)。
加工带有镍阻挡层的实际电阻样品。这些样品由三片18″×24″的铜片组成,这些铜片是用商业镀镍浴电镀上镍的。所淀积的镍的三种厚度约为3.5、7.0和10.5微米。底材是制备标准PWB(印刷线路板)中所用的商业铜箔。
电阻材料是使用电阻前体溶液淀积的,该电阻前体的溶液含有0.512%(重量)的二苯基-(1,5-环辛二烯)铂(II)、0.028%(重量)的四乙氧基甲硅烷、58.62%(重量)的甲苯和40.69%(重量)的丙烷。淀积带有镍阻挡层的电阻涂层还使用了浓度较低的Pt(SiO2)前体溶液,如上述浓度的80%、75%、65%和50%。
淀积使用四喷嘴的CCVD体系进行,对于三遍覆盖的Pt(SiO2)电阻涂层都使用700℃的温度。
为了从组件中除去不需要的电阻材料,将能光成象的抗蚀剂(如Laminar 5000)涂覆在电阻材料组件的两面上(如果将一种蚀刻镍但不蚀刻铜的选择性蚀刻材料用来剥落蚀刻电阻材料的话,那么只有电阻材料一面需要涂覆光敏抗蚀材料)。用标准光处理工艺(如透过光掩模进行紫外线曝光)对光敏抗蚀剂材料进行曝光,使用合适的溶剂(如80℃的2%碳酸钠溶液)除去未聚合的光敏抗蚀剂,露出要在随后的剥落蚀刻过程中除去的电阻材料。然后,将该组件经过喷雾蚀刻机进行处理,在该蚀刻机中商业氯化铜蚀刻溶液喷洒在组件上导致电阻材料的剥落蚀刻。这一方法的原理是蚀刻剂穿透电阻材料中的微孔腐蚀下面的镍层。由于玻璃抗蚀剂增溶溶解镍层,因此电阻材料丧失了粘合力,还因为电阻材料厚度薄,所以破裂成小片,作为固体被喷射的蚀刻剂材料带走。与蚀刻剂的接触时间限于足以除去电阻材料而不会长得(约15-60秒)蚀穿铜箔载体的这一段时间。
然后使用工业层压工艺将电阻材料转移至一层标准环氧层压材料上在经蚀刻的电阻组件的电阻材料一面上放置一片76289预浸渍体,接着放置一片有机剥离片。将该组件放在标准的PWB层压机上,使用标准层压条件固化。在层压后,从层压组件上剥去剥离片,除去铜以露出电阻,形成连接电路迹线。使用标准的光处理工艺并用氯化铜蚀刻来完成除去铜的这一过程。从上面表面上除去铜,同时留下铜来连接电阻的两端,如此形成电阻。
实施例11淀积氧化锶阻挡层使用CCVD工艺将氧化锶涂层淀积在铜箔上。在淀积期间,使溶液流量、氧气流量和冷却空气流量保持恒定。氧化锶前体的溶液含有0.71%(重量)的2-乙基己酸锶、12.75%(重量)甲苯和86.54%(重量)的丙烷。在65psi下,溶液的流量为3.0毫升/分钟,氧气的流量为3500毫升/分钟。冷却空气是处于室温下的,在80psi下的流量为25升/分钟。用铜管将冷却空气通向底材背部,铜管的末端放在离底材背部2英寸处。在700℃的火焰温度下进行淀积,该火焰温度是用型号K的热电偶在底材表面处测得的。冷却空气的流量可以在15-44升/分钟的范围内。淀积温度在500-800℃内变化。
实施例12淀积氧化锌阻挡层使用CCVD工艺将氧化锌涂层淀积在铜箔上。在淀积期间,使溶液流量、氧气流量和冷却空气流量保持恒定。氧化锌前体的溶液含有2.35%(重量)的2-乙基己酸锌、7.79%(重量)甲苯和89.86%(重量)的丙烷。在65psi下,溶液的流量为3.0毫升/分钟,氧气的流量为4000毫升/分钟。冷却空气是处于室温下的,在80psi下的流量为25升/分钟。用铜管将冷却空气通向底材背部,铜管的末端放在离底材背部2英寸处。在700℃的火焰温度下进行淀积,该火焰温度是用型号K的热电偶在底材处测得的。冷却空气的流量可以在9-25升/分钟的范围内。淀积温度在625-800℃内变化。
实施例13淀积氧化钨阻挡层使用CCVD工艺将氧化钨涂层淀积在铜箔上。在淀积期间,使溶液流量、氧气流量和冷却空气流量保持恒定。氧化钨前体的溶液含有2.06%(重量)的六羰基钨、26.52%(重量)甲苯和73.28%(重量)的丙烷。在65psi下,溶液的流量为3.0毫升/分钟,氧气的流量为3500毫升/分钟。在350℃的淀积温度时不使用冷却气体。温度是用型号K的热电偶在底材表面处测得的。可以在淀积中向底材背部引入冷却气体流,其流量在7-10升/分钟的范围内。淀积温度可以在350-800℃内变化。
权利要求
1.一种埋入式电阻结构,它包含一块包含导电氧化物的电阻材料层,在所述电阻材料块上的位于彼此隔开位置上的装置,用来将所述电阻材料块与电子线路连接起来,和埋入了所述电阻材料块和所述连接装置的绝缘材料。
2.如权利要求1所述的电阻结构,其中所述电阻材料包含约80-99.5wt%所述导电氧化物和约0.1-20wt%介电材料或增强导电性的材料的均相混合物。
3.如权利要求1所述的电阻结构,其中所述介电材料是金属氧化物或准金属氧化物。
4.如权利要求1所述的电阻结构,其中所述导电氧化物是选自Bi2Ru2O7和SrRuO3。
5.如权利要求1所述的电阻结构,其中所述电阻材料层的厚度至少约为40埃。
6.如权利要求1所述的电阻结构,其中所述电阻材料层的厚度约为40-50,000埃。
7.如权利要求52所述的电阻结构,其中所述电阻材料层的厚度约为300-5000埃。
8.一种形成电阻的方法,所述电阻包含一块电阻材料和在彼此隔开位置上与所述电阻材料块电连接的数块导电材料层,所述方法包括a)提供一层金属箔层,b)提供一层粘合在所述金属箔层上的电阻材料,c)用光敏抗蚀剂覆盖所述电阻材料层的经选择部分,d)从所述金属箔层上蚀刻所述电阻材料层未经覆盖的部分,e)除去剩下的光敏抗蚀剂,f)向所述结构的电阻材料一面上层压一片聚合物支承材料,g)用光敏抗蚀剂覆盖所述金属箔层的经选择部分,以及h)蚀刻所述箔层未经覆盖的部分。
9.如权利要求8所述的方法,其中在步骤d)之前向所述金属箔层的外露部分提供一层保护层,所述保护层在步骤g)之前的某一时刻除去。
10.如权利要求8所述的方法,其中所述金属箔层是铜。
11.如权利要求8所述的方法,其中所述电阻材料是掺杂有介电材料的金属。
12.如权利要求8所述的方法,其中所述电阻材料掺杂了铂或镍。
13.如权利要求8所述的方法,所述电阻材料具有足够的多孔性,以使得蚀刻剂可以透过所述电阻材料层扩散而削弱所述电阻材料和所述绝缘底材之间的粘合致使所述电阻材料层接触蚀刻剂的部分从所述金属铂上剥落。
14.如权利要求13所述的方法,其中所述电阻材料掺杂了铂或镍。
15.如权利要求13所述的方法,其中所述金属箔层是铜。
16.如权利要求13所述的方法,其中所述铜箔的表面被氧化。
全文摘要
本发明涉及可以埋入多层印刷线路板中的薄膜电阻,也涉及用来形成这些薄膜电阻的结构和形成这些结构的方法,包括使用燃烧化学气相淀积法。本发明还涉及化学前体溶液,使用该化学前体溶液可以通过燃烧化学气相淀积技术将电阻材料淀积到底材上。
文档编号H05K3/06GK1521769SQ0315406
公开日2004年8月18日 申请日期1999年4月29日 优先权日1998年4月29日
发明者A·T·亨特, 黄子娟, 邵虹, J·托马斯, 林文宜, S·S·肖普, H·A·卢藤, J·E·姆克恩泰尔, R·W·卡彭特, S·E·博顿利, M·亨德里克, A T 亨特, 博顿利, 卡彭特, 卢藤, 吕锟, 姆克恩泰尔, 硭, 肖普 申请人:莫顿国际股份有限公司, 微涂技术股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1