一种手持型电化学分析仪的制作方法

文档序号:8132314阅读:412来源:国知局
专利名称:一种手持型电化学分析仪的制作方法
技术领域
本发明涉及一种环境监测仪器,特别是关于一种在野外使用,连接该类电化学传感器,可用于现场快速水质分析的手持型(Micro Controller Unit即MCU)电化学分析仪。
背景技术
电化学传感器/生物传感器是发展历史最长,应用最为广泛的一类传感器。传统的电化学分析仪,通常包括一个执行控制电极电位的恒电位仪,和一个产生扰动信号的函数发生器,以及可以测量和显示极化电流i、极化电位E和时间t的记录和显示系统。在现代仪器中,恒电位仪以及放大器和其他用于控制电流和电压的模块,采用运算放大器实现。随着计算机技术的发展,函数发生器通常采用计算机产生的数字信号通过数—模转换器转换后输入到恒电位仪中,得到的电流信号通过模—数转换器传入计算机。在这种思路下,出现了一些这样的电化学分析仪,如美国化学仪器(CHI)公司的电化学工作站,荷兰益科开米(Eco Chemie)公司生产的AutoLab系列电化学工作站等。近年来,随着环境污染控制和食品安全管理的发展,要求分析仪器可以随身携带,并能在现场工作。这一需求在理论上是可以得到目前迅速发展的计算机技术(尤其是嵌入式系统)作为支撑。嵌入式系统是以应用为中心,以计算机技术为基础,并且软硬件可裁剪,适用于应用系统对功能、可靠性、成本、体积、功耗有严格要求的专用计算机系统。它一般由嵌入式微处理器、外围硬件设备、嵌入式操作系统以及用户的应用程序等四个部分组成,用于实现对其他设备的控制、监视或管理等功能。
实时嵌入式系统发展于20世纪80年代,从1981年Ready System发展了世界上第一个商业嵌入式实时内核(VRTX32),到今天已经有近20年的历史。目前,嵌入式系统已经在电信部门、消费电子领域得到一定程度的应用。韩国和日本的一些企业都推出了基于嵌入式林尼克思(即Linux)操作系统的手持设备。嵌入式Linux操作系统得到了相当广泛的半导体厂商的支持和投资,如英特尔和摩托罗拉公司。并且随着技术的进一步发展,人们普遍认为嵌入式系统将广泛进入到社会生活的各个领域。在监测技术上,也已出现了便携式分析仪器,例如便携式红外线一氧化碳分析系统。
由于电化学传感器/生物传感器是环境监测和食品安全领域最重要的分析技术之一,因此,需要按照当前计算机技术发展趋势,构建新型的便携型电化学分析仪,满足现实检测需求。

发明内容
本发明的目的是提供了一种基于现代精简指令集机器(Advanced RISCMachines,简称ARM)和LINUX的手持型电化学分析仪。
为实现上述目的,本发明采取以下技术方案一种手持型电化学分析仪,其特征在于它包括一壳体,所述壳体内设置有一恒电位器、一控制器,和电源,所述壳体外表面上设置有与所述控制器连接的液晶屏、按键及存储卡接口;所述控制器通过接口与所述恒电位器连接;一电极,一端通过引线连接所述恒电位器,另外一端裸露在所述壳体外面。
所述恒电位器包括一电路板,所述电路板上设置有恒电位器微控制器、光藕元件、模数转换器、数模转换器、多个小功耗继电器和三电极外围运放电路,所述电极通过接插件与所述三电极外围运放电路相连;所述恒电位器微控制器通过所述光藕元件连接所述模数转换器和数模转换器,所述模数转换器将所述恒电位器微控制器发出的指令发送给所述三电极外围运放电路,所述三电极外围运放电路检测的数据通过所述数模转换器和继电器传递至所述光藕元件再输入所述恒电位器微控制器。
所述恒电位器微控制器采用C8051F系列单片机。
所述恒电位器还连接一极低压差稳压模块。
所述控制器包括一主板,所述主板上设置有一微控制器,所述微控制器通过所述主板上设置的LCD接口模块、按键模块、CF卡接口模块与所述液晶屏、按键及存储卡连接,所述主板上还设置有串口模块,以通过RS232接口与所述恒电位器连接。
所述微控制器采用ARM7系列芯片。
本发明由于采取以上技术方案,其具有以下优点1、本发明由于采用嵌入式系统,体积小,结构简单,操作方便,成本低;2、能独立在野外工作;3、可快速进行电流分析。


图1是本发明的结构示意2是本发明的结构框3是恒电位器嵌入式软件结构4是基于uCLinux的软件结构5是本发明用于检测水中胆碱含量的标准曲线图6是本发明用于检测水中对硫磷含量的标准曲线具体实施方式
下面结合附图和实施例,对本发明进行详细的描述。
如图1所示,本发明包括一壳体1,壳体1的前面板上设置有液晶屏2、按键3,侧面设置有CF卡接口4,壳体1内装设有恒电位器5、控制器6、电极7和电源8。
如图2所示,恒电位器5采用单板设计,在电路板上设置有恒电位器微控制器51,光藕元件52,模数转换器53,数模转换器54,多个小功耗继电器55,和三电极外围运放电路56。其中的微控制器51为51C8051F微控制器,光藕元件52采用TLP112或TLP521,模数转换器53采用AD7714模数转换器,数模转换器54采用DAC8531数模转换器,三电极外围运放电路56采用基于加法控制放大器的四运放结构,电路比传统的三运放结构增加了一级,就是在三电极中的参比电极输入运放前增加了一级运放,提供加法电路,以保证输入电位的稳定性。四运放输出后的电流放大器与模数转换器53和数模转换器54在同一电路板上,并且通过极低压差稳压器57提供电源。整个系统的设计精度为0.1nA的电流。
由于恒电位器的检测精度、抗干扰特性受电源影响较大,而集成了数字电路和模拟电路的恒电位器需要不同电压的电源,因此加设了极低压差稳压器9,把各类不同性质的电源和地线分开。
如图2所示,控制器6是基于ARM7系列芯片为核心的嵌入式微控制器,包括一主板61,主板61上设置微控制器62。为满足控制、显示、数据处理的需要,主板61上还设置有LCD接口模块63、按键模块64、CF卡接口模块65、FLASH存储器模块66、串口模块和电源模块。通过LCD接口模块63、按键模块64和CF卡接口模块65便可连接壳体1上设置的液晶屏2、按键3及CF卡接口4。其中,FLASH存储器用于存储系统引导程序和μCLinux操作系统,而CF卡可用于存储应用程序和数据文件。控制器6通过RS232接口连接恒电位器5,控制恒电位器5的极化电位和极化电流的采集。
电极7一端通过引线接入壳体1,再通过接插件与三电极外围运放电路56相连;另外一端裸露在外面,通过手工滴加溶液进行检测。
电源8采用电池,可以是干电池或充电电池,以满足手持式仪器轻便、可移动使用的要求。
如图3所示,恒电位器5的程序结构软件采用C语言编写,首先判断是否有数据收到,没有则说明程序已在运行,判断需要延时,需要则设置采样延时、采样时间、AD采样频率等参数,不需要延时则说明已延时了,接下来根据AD运行状况进行判断,当AD处于停止时则启动AD,当AD处于运行状态则开始数据转换。然后启动DA转换。数据采集采集过程中先判断是否有数据收到,进一步判断是否为启动命令和参数数据,答案肯定就转到设置延时、AD、DA参数等,等待上一次数据发送完发送应答命令。如果只是启动AD命令和参数,则设置和启动AD,如果只是启动DA命令和参数,则启动DA命令和参数,如果接收到没有预先定义的命令一律复位系统。整个程序是处在无限循环中。
如图5所示,控制器6的软件构建于μCLinux之上,图形界面采用迷你图形接口(简称MINIGUI)。系统上电后自动加载各个串口驱动、键盘驱动、CF卡驱动,初始化设置串口参数和运行整个程序主界面。主界面上有自定义的坐标图形控件,按钮控件。一个按钮控制启动打开串口并向下位机发送启动和参数命令。一个按钮是向下位机发送停止命令,一个按钮是弹出参数设置界面。在发送启动下位机的命令后,立即能收到下位机的应答命令和采集数据。上位机发送命令的同时也做好数据的准备。在每接收一次数据后,数据需要转换成实际电流大小,并显示在图形控件上,而且要保存到CF卡里。
实施例1采用手持型电化学分析仪检测水中胆碱含量有机磷农药残留。
检测方法采用丝网印刷碳电极作为检测电极,在碳电极上滴加20μL,1mM铁氰化钾的磷酸盐溶液(pH=7),后滴加5μL 0.5mg/mL的AChE溶液,静置5min后,启动手持型电化学分析仪的测试程序,检测时间—电流曲线,设置初始电位0.25V,检测时间20秒,无静置时间,灵敏度5×10-8A/V。启动检测后,存储并显示20秒时的电流I0,然后滴加20μL一定浓度的乙酰胆碱溶液,静置5min,再次启动手持型电化学分析仪的测试程序,参数设置同上。启动检测后,存储并显示20秒时的电流I1,并两次检测的电流差值I1-I0作为计算依据,从内存中调入内建的标准曲线,换算胆碱含量,检测的曲线如图5所示。由于仪器灵敏度为1nA,因此,0-10mM的检测区间内,该方法检测胆碱的精度约为0.17mM。
实施例2采用手持型电化学分析仪检测水中胆碱含量有机磷农药残留。
检测方法采用丝网印刷碳电极作为检测电极,首先在碳电极上滴加20μL,1mm铁氰化钾的磷酸盐溶液(pH=7),后滴加5μL 0.5mg/mL的AChE溶液,5μL待测的水样,静置5min后,然后滴加20μL 10mM的硫代乙酰胆碱溶液,静置5min后,启动手持型电化学分析仪的测试程序,检测时间—电流曲线,存储并显示20秒时的电流I0,其中参数设置如下初始电位0.25V,检测时间20秒,无静置时间,灵敏度5×10-8A/V。此后,按照如下公式计算抑制电流和抑制率。
I=(I0-a)/b其中,a是内建参考值,分别为a=100,b=50。按照上述方法,采用饮用水加标实验的方法,测量得到对硫磷(一种有机磷农药)剂量-效应标准曲线,如图6所示。
权利要求
1.一种手持型电化学分析仪,其特征在于它包括一壳体,所述壳体内设置有一恒电位器、一控制器,和电源,所述壳体外表面上设置有与所述控制器连接的液晶屏、按键及存储卡接口;所述控制器通过接口与所述恒电位器连接;一电极,一端通过引线连接所述恒电位器,另外一端裸露在所述壳体外面。
2.如权利要求1所述的一种手持型电化学分析仪,其特征在于所述恒电位器包括一电路板,所述电路板上设置有恒电位器微控制器、光藕元件、模数转换器、数模转换器、多个小功耗继电器和三电极外围运放电路,所述电极通过接插件与所述三电极外围运放电路相连;所述恒电位器微控制器通过所述光藕元件连接所述模数转换器和数模转换器,所述模数转换器将所述恒电位器微控制器发出的指令发送给所述三电极外围运放电路,所述三电极外围运放电路检测的数据通过所述数模转换器和继电器传递至所述光藕元件再输入所述恒电位器微控制器。
3.如权利要求2所述的一种手持型电化学分析仪,其特征在于所述恒电位器微控制器采用C8051F系列单片机。
4.如权利要求1或2或3所述的一种手持型电化学分析仪,其特征在于所述恒电位器还连接一极低压差稳压模块。
5.如权利要求1所述的一种手持型电化学分析仪,其特征在于所述控制器包括一主板,所述主板上设置有一微控制器,所述微控制器通过所述主板上设置的LCD接口模块、按键模块、CF卡接口模块与所述液晶屏、按键及存储卡连接,所述主板上还设置有串口模块,以通过RS232接口与所述恒电位器连接。
6.如权利要求5所述的一种手持型电化学分析仪,其特征在于所述微控制器采用ARM7系列芯片。
全文摘要
本发明涉及一种手持型电化学分析仪。该手持型电化学分析仪包括一壳体,所述壳体内设置有一恒电位器、一控制器,和电源,所述壳体外表面上设置有与所述控制器连接的液晶屏、按键及存储卡接口;所述控制器通过接口与所述恒电位器连接;一电极,一端通过引线连接所述恒电位器,另外一端裸露在所述壳体外面。本发明可用于现场快速水质分析,具有体积小,结构简单,操作方便,成本低的优点。
文档编号H05K1/18GK1920546SQ200610113140
公开日2007年2月28日 申请日期2006年9月15日 优先权日2006年9月15日
发明者何苗, 蔡强, 施汉昌 申请人:清华大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1