一种弯曲2d阵列的超声换能器以及体积成像的方法

文档序号:8171063阅读:215来源:国知局
专利名称:一种弯曲2d阵列的超声换能器以及体积成像的方法
技术领域
本发明涉及一种医学超声成像法,更具体地,涉及一种适于对较大的 浅解剖结构特征进行体积成像的超声换能器。
背景技术
多种无创诊断成像方法能够产生身体内部的器官或脉管的横截面图 像。超声是非常适于这种无创成像的成像方法。超声诊断成像系统已被 心脏病学家、产科专家、放射科医师或其他人广泛用于检查心脏、正在 发育的胎儿、内腹器官和其它解剖结构。这些系统通过发射超声能量波 进入身体,接收从超声碰撞的组织界面反射回的超声回波,以及将接收 到的回波转换为超声波被导向通过的身体部分的结构表示来进行工作。在常规超声成像法中,可利用平面超声射束或切片扫描感兴趣的对 象,诸如内部组织以及血液。线性阵列的换能器通常被用来通过精细地 聚焦在仰角方向(elevation direction)上发射和接收到的超声波,操控发 射和接收到的超声波通过方位方向(azimuth direction)上的一个角度范 围来扫描薄的切片。这样,具有线性阵列也可称为一维阵列的换能器元 件的换能器可以这种方式工作获得二维图像,该图像表示了通过与进行B 模式成像的换能器表面相垂直的平面的横截面。线性阵列还可通过将线性一维阵列在仰角方向上进行平移或者经过 在仰角方向上扩展的一个角度范围扫描阵列来形成三维图像,也可称为 是"体积"图像。体积超声图像还可常规地通过使用二维阵列换能器来 围绕两个轴操作发射和接收的超声波而获得。利用一维阵列进行体积成像的主要限制是需要物理地移动阵列来获 得图像。这种需求使超声波系统必须能够通过物理地追踪阵列的运动或 通过电处理图像信号来追踪一维阵列的位置或角度。此外,由于需要移 动阵列以及处理在阵列的每个位置或角度上接收到的超声返回信号,因 此还需要一段较长的周期才能获得体积图像。使用一维阵列进行体积成像的主要优势在于即使在很近的区域内也能成像的面积仅仅受到阵列中 元件数目以及阵列移动的面积的限制。美国专利号5,305,756中描述了利用一维阵列获得有关三维体积中解 剖结构的信息的另一种方法。如其中所述的,发射和接收的超声波聚焦 在方位方向AZ上,在仰角方向上发散,产生一系列扇形射束。因而从线 性阵列的每个元件顺序发射和接收超声波,形成声穿透体积区域的扇形 射束序列。投影平面位于声穿透的体积区域的中心。在每个范围的体积 区域内的全部回波均被投影成在相应范围的投影平面上的一个点。因为 换能器在声学上整合了每个范围的全部回波,因此得到的图像表示了整 个体积区域的二维投影。虽然美国专利号5,305,756中描述的成像技术具有不需要物理地扫描 阵列的优点,但是其仍具有显著的缺点实际上无法获得真实的三维体 积图像。因此,其无法精确地示出在阵列下的体积区域中的解剖特征。 例如,由于在同一深度的点并不落在距离换能器固定范围的地点上,这 些点看起来像是横跨了投影上的一个深度范围。相反地,横跨一个深度 范围的解剖结构看上去像位于单个深度的投影上。并且,投影图像无法 解决位于距离换能器相同固定范围的位置上的解剖结构。例如,仅仅占 据小部分固定范围位置的结构可能被同样位于固定范围位置上的其他解 剖结构所模糊。利用二维阵列进行体积成像具有许多优点,包括不需要物理地扫描阵 列以及可提供真实的三维图像。因此,利用二维阵列可较利用一维阵列 更迅速地获得超声图像。然而,当尝试增加阵列的尺寸或孔径来获得大 范围视野时,二维阵列中的换能器元件的数目将增加至一个无法实施的 大的数目。更具体地,具有10,000或更多元件的阵列的设计和使用所面 临的一些挑战是诸如特定应用的集成电路的适当电路的设计、由如此多 的紧密封装的换能器元件产生的大量的热的处理、用来将从这些大量的 换能器元件发出的信号耦合到超声成像系统所需的电缆的尺寸、声学平 面性的需求以及常规的制作困难。这些困难將导致常规的二维超声阵列 中元件的数目通常被限制在大约3,000个元件。出于这个原因,常规的二维超声阵列只能得到相对较小的成像孔径。常规二维阵列可以具有的较小的成像孔径将限制它们用于在特定的 用途中,这些特定用途指的是具有较小的入口面积和在附近区域中(也 就是邻近阵列表面的较浅深度上的)观察需要的适当区域,诸如心脏病 学。由于发射和接收的超声波可在扩散的方向上被操控,这些相对较小 的孔径阵列可在远场中的较大视野上成像。然而,特定的应用,诸如产 科成像,需要获得近场中的较大视野上成像。常规的二维阵列由于不具 有足够大的孔径而出于之前指出的理由无法用于这些用途中。因此,需要--种可进行真实地体积成像的二维超声阵列,其可在不需 要使用不切实际的大量换能器元件的情况下获得近场中的较大视野。发明内容依据本发明的原理,-一种超声成像系统包括超声成像探针、通过通信 链路连接至探针的超声信号通路,以及显示器。超声成像探针发出在方 位方向上基本平行或发散的以及在仰角方向上发散的射束。该射束图案 可由使射束在仰角方向上发散出的透镜形成,或者由阵列在仰角方向上 的物理弯曲形成。换能器元件的阵列具有在方位方位上延伸的行以及在 仰角方向上延伸的列。超声信号通路通过通信链路将发送信号发送至超 声成像探针中的换能器元件或接收来自换能器元件的信号。超声信号通 路将从换能器元件接收到的信号组合成图像信号,该图像信号对应于与 超声成像探针相邻的体积区域中的解剖结构的体积图像。随后在显示器 上显示体积图像。成像探针中的换能器元件优选以步进的方式从一行或 一组行或一列或一组列扫描至下一个。成像探针还优选包括多个与相应 的换能器元件的子阵列相耦合的子阵列射束生成器。每个子阵列射束生 成器还响应于接收自超声成像通路的发射信号,可操作地将发射信号应 用至相应子阵列中的换能器元件。每个子阵列射束生成器还可操作地在 相对于阵列表面的非正交方向上操作射束,因此发散射束将扫描近场中 的较宽视野。随后,来自每个子阵列的被处理的信号组合成复合接收信 号,其通过通信链路耦合至超声成像通路。


图1是依据本发明的超声成像系统的等距视图。图2是用于图1的超声成像系统中的电子部件的方框图。图3是可用于图1和2的成像系统中的依据本发明一个实施例的超声成像探针的等距视图。图4是示出其声学信号图案的图3的超声成像探针的等距视图。图5是用于图3的超声成像探针中的电子部件的一个例子的示意图。图6是依据本发明一个实施例的用于图4的超声成像探针的一个子阵列射束生成器的方框图。
具体实施方式
图1示出了依据本发明一个实施例的超声成像系统10。系统10包括 底架12,该底架包含系统10的大部分电路。底架12安装在推车14上, 显示器16安装在底架12上。成像探针12通过电缆22连接至底架12上 的三个连接器26中的一个上。正如以下将详细描述的,探针20包括二 维超声成像阵列,该阵列将使用较少的换能器元件,但仍然可具有近场 中较大的视野。接下来将描述的较少换能器元件和其他技术的使用将使 电缆22相对较薄,因此电缆22不会对成像探针20的便利操作造成影响。 然而,这就具有一个优点即使信号通过电缆22之外的其他装置进行耦 合,也将极大地减少必须从探针20耦合至底架12的信号的数量。例如, 如果信号是通过无线电或红外从探针20耦合至底架12的,信号减少的 数目将减少所需的无线通道和/或无线带宽的数目。继续参看图l,底架12包括一般由附图标记28指示的键盘和控制器, 使得声谱仪的操作者可操作超声系统10,并输入与患者或将要进行的检 查类型有关的信息。在控制面板28的背面是触摸屏显示器18,其上显示 了可编程的自定义功能键,用来补充键盘和控制器28以控制系统10的 操作。在操作时,成像探针20靠着患者(未示出)皮肤放置,并保持静止 来获得皮肤下的体积区域中的血液或组织的图像。成像探针20在近场中 的大视野将使系统20尤其适用于特定领域中,诸如产科,而在此之前体 积成像在这些领域中并不是很实用。显示器16上显示体积图像,并可通过位于两个附属架子30之一上的记录器(未示出)进行记录。系统10还可记录或打印包含文本和图像的报告。与图像相对应的数据还可通过适当的数据链路诸如互联网或局域网进行下载。除了利用二维探针20在 显示器上显示体积图像之外,超声成像系统还可利用探针20来提供其他 类型的图像,并且其也可以接受其它类型的探针(未示出)来提供其它 类型的图像。图2中示出了超声成像系统10的电子部件。如上所述,超声成像探 针20通过电缆22与连接器26之一相耦合,连接器还连接至常规设计的 超声信号通路40上。正如本领域技术人员公知的,超声信号通路40包 括将电信号耦合至探针20的发射器(未示出)、接收从探针20发出的与 超声回波相对应的电信号的捕获单元(未示出)、处理来自捕获单元的信 号来执行各种功能诸如分离出特定深度发回的回波或分离出流经脉管的 血液发回的回波的信号处理单元(未示出)、以及将来自信号处理单元的 信号转换成适于被显示器16使用的信号的扫描转换器(未示出)。这个 实施例中的处理单元可处理B模式(结构)和多普勒信号,来获得各种 B模式和多普勒体积图像,包括光谱多普勒体积图像。超声信号通路40 还包括控制模块44,其与处理单元50交互,以控制上述单元的操作。当 然,超声信号通路40还可包括除了上述的部件之外的其他部件,并且在适当的情况中,可省略上述的一些部件。处理单元50包括多个部件,仅举几个例子包括中央处理器("CPU") 54、随机存储器("RAM") 56以及只读存储器("ROM") 58。正如本领 域技术人员公知的,ROM58存储CPU54执行的指令程序以及CPU54使 用的初始化数据。RAM56提供CPU54使用的数据和指令的临时存储。 处理单元50与大容量存储器诸如磁盘驱动器60交互,用于数据的永久 性存储,该数据诸如相应于系统10获得的超声图像的数据。然而,这种 图像数据最初存储在图像存储装置64中,该装置与在超声信号通路40 和处理单元50之间延伸的信号通路66相耦合。磁盘驱动器60还优选存储可以被调用或启动来引导声谱仪操作者进行各种超声波检查的协议。处理单元50还可与键盘和控制器28交互。声谱仪操作者可操作键盘 和控制器28来使超声系统10在检查结尾制作出自动产生的报告。处理单元50优选与打印包含文字和一个或多个图像的报告的报告打印机80 交互。打印机80提供的报告类型取决于超声检查的类型,其通过特定协 议的执行来进行操作。最后,如上所述,与图像相对应的数据可通过合 适的数据链路,诸如网络74或调制解调器76,下载到临床信息系统70或其他装置。图3示出了用于系统10中的超声成像探针20的一个例子。当然,探 针20还可用于处理系统IO之外的其他系统中。成像探针20包括基座部 分00,该部分在平面图以及方位"A"以及仰角"E"的仰角视图中均 是矩形的。基座部分100通常包含吸声衬垫材料来削弱换能器阵列背面 发出的回响。阵列部分104位于基座部分100之上,阵列部分在平面图 中和当沿着仰角方向观看时是矩形的,但当沿着方位方向观看时是弯曲 的。阵列部分104具有阵列表面108,该表面在仰角方向上是朝外弯曲的 或弓形的,在方位方向上是平面的。 一般由附图标记110指示的多个换 能器元件设置在阵列表面108上。换能器元件110成行和成列地位于阵 列表面上,行是在方位方向上延伸的,而列是在仰角方向上延伸的。探针20可利用弯曲矩阵阵列制作技术来进行制作。例如, 一个实施 例包括倒装芯片阵列结构中的薄的、倾斜的和弯曲的特定应用的集成电 路。另一个实施例是在柔性插入机构上制作换能器元件阵列,随后将该 插入结构通过嵌入的相连粘附到弯曲的衬板上。还可使用诸如美国专利 6,043,5卯(Gilmore)示出的其他技术。现在将参看图4描述超声成像探针20及其声波图的操作。在操作中,首先通过发出超声信号和接收超声回波来扫描位于相同方位位置上的一 列或多列换能器元件HO。例如,首先扫描结束列112上的全部换能器元 件110。可替换地,首先扫描结束列112上的换能器元件110以及与列112 相邻的N列上的换能器元件110。随后,继续在方位方向上以步进方式 从在仰角方向上延伸的一列或一组列扫描至下一列或下一组列。正如以 下将详细描述的,用延迟单元(图4中未示出)来延迟耦合至每个换能 器元件110的电信号或来自每个换能器元件的电信号,以在选定的方向 上以及选定的深度上聚焦在仰角和/或方位方向上的发出的和接收的超声 波。在成像探针20的一个例子中,延迟单元并不用来操作发出的和接收的超声射束。相反地,在方位方向上的扫描通过从一列或一组列一列一 列地步进来单独地进行。在探针20的另一个例子中,在方位方向上的扫描通过一列一列地步进来进行,但是可在图像表面108的末端上操作延 迟单元,使发出的和接收的超声波从探针20开始在方位方向上延伸。可 使用这个例子中的探针20形成图4示出的声波图120。在探针20的另一 个例子中,用延迟单元来在方位和仰角方向上操作发出的和接收的超声 波。这样操作超声波将扩大方位和仰角方向上的视野,这在产科成像中 是非常重要的。正如本领域技术人员公知的,这种操作可使成像系统10 获得空间上的组合而减少斑点伪像。同样还可使用其他例子。作为可与在方位方向上一列--列地步进扫描相替换,还可在仰角方向 上一行一行地步进来完成扫描。使用这种方法的话,通过发出超声信号 和接收超声回波来首先扫描位于相同仰角位置上的一行或多行换能器元 件10。例如,可首先扫描位于结束行122上的全部换能器元件110。可 替换地,首先扫描结束行122上的换能器元件110以及与行122相邻的N 行上的换能器元件IIO。随后,在仰角方向上以步进的方式从一行扫描到 下一行地进行扫描。如同之前的实施例,可以在仰角、方位或两者中的 阵列边缘处离轴(与阵列表面非正交的)的角度上操作射束,以扩大阵 列换能器扫描的视野。方位方向上的换能器元件110的数目将取决于所需的分辨率和所需的 近场中的视野的大小。需要相当大数量的换能器元件110才能获得用于 特定应用诸如产科成像的足够的视野。然而,在仰角方向中,仅仅需要 相对较少数量的换能器元件110,因为阵列表面120在仰角方向上的曲率 将使换能器元件110在该方向上面对呈弧形的角度增量。因此,尽管在 仰角方向上使用了相对较少的换能器元件,图4示出的声波图120还可 在仰角方向上延伸较长距离。因而,获得的声波图120相对于具有相同 数量换能器元件的常规平面二维阵列具有非常大的孔径。如果需要的话, 还可用延迟元件来使发出的和接收的超声波在仰角方向上离轴,以增大 该方向上的视野尺寸。图5示意性示出了超声成像探针20的电子部件。探针20不仅仅包括 换能器元件110,还包括子阵列射束生成器130。子阵列射束生成器130对换能器元件110的子阵列执行生成射束的操作。通过延迟接收到的信 号以及随后将延迟信号组成复合信号来对从相应的子阵列射束生成器 130中的换能器元件110接收到的信号执行生成射束的操作。随后,系统10中的超声信号通路40 (图2)对从每个子阵列射束生成器130接收的 复合信号执行另外的射束生成。因此,在探针20使用相对较少换能器元 件110来横跨仰角方向的情况中已经获得的减少的基础上进一步减少了 必须从探针20耦合至底架12 (图l)的信号的数量以及电缆22的厚度。虽然图5示出的超声成像探针20为换能器元件的每个子阵列使用了 各自的子阵列射束生成器130,但在成像探针20的其他例子中,还可仅 仅为同时激活的子阵列中的每个提供各自的子阵列射束生成器130。那 么,每个子阵列中的激活的换能器元件110可被多路复用到子阵列射束 生成器中的相应的一个。虽然付出了增加多路复用器和多路复用器控制 电路的代价,通过使每个子阵列射束生成器130与多个子阵列交互,可 以减少子阵列射束生成器130的数目。图6中详细示出了一个子阵列射束生成器130。每个射束生成器130 起到包含在仰角方向上延伸的M个换能器元件和在方位方向上延伸的N 个换能器元件的换能器元件110的子阵列132的作用。超声信号通路40 发出发射波形至探针20,如之前所讨论的该波形将由发射延迟单元150 接收。超声信号通路还可将延迟信息送至子阵列射束生成器。发射延迟 单元150以相应的延迟值来延迟该发射波形,以将元件110发出的超声 波聚焦在选定的深度,并任选地在方位和仰角方向的任一或两者上操作 发出的超声波。通过总线152将得到的延迟信号耦合至多通道发射放大 器154。放大器154提高该延迟信号,并通过总线156将其应用到相应的换能器元件no上。相应于由各自换能器元件接收到的声回波的电信号随后通过总线160 耦合至多通道接收放大器164。如之前讨论的,接收放大器164增大了较 低水平信号的幅值,并通过总线168将其应用到接收延迟单元170上。 提供接收延迟单元170之一用于各个换能器元件110所接收的每个信号。 接收延迟单元170延迟该放大的接收信号,使接收的超声波聚焦在选定 的深度。接收延迟单元170还可在方位和仰角方向的任一或两者上操作接收的超声波。延迟接收信号通过总线174耦合至求和电路176上,该 电路对来自接收延迟单元170的信号求和,以形成从换能器子阵列发出的一个复合信号。瞬间的复合信号表示出从选定深度和位置所接收到的超声波。选定位置可在子阵列132的中心之下,或者,如果接收延迟单 元进行方位或仰角操作的话,选定位置将偏离子阵列132的中心之下。虽然已经参看公开的实施例描述了本发明,但本领域技术人员可以意 识到在不脱离本发明的精神和范围的情况下可做出多种形式和细节的修 改。例如,虽然已经相对于方位和仰角方向描述了超声成像探针20的方 向关系,但是可以理解这些指定均是随意的。例如,可以认为探针20在 仰角方向上是平面的而在方位方向上是向外弯曲的。同时,虽然已经描 述换能器元件110是设置成在方位方向上延伸的行和在仰角方向上延伸 的列的,但这种描述是随意的,行和列还可分别设置在仰角和方位方向 上。本领域技术人员可根据常规技术获得这些更改。因此,本发明仅仅 受到附属的权利要求书的限制。
权利要求
1.一种超声成像探针,包括呈现出发射束起始图案的换能器主体,其在方位方向上基本上是平面的而在仰角方向上是向外弯曲的;安装在换能器主体上的换能器元件的二维阵列,其在方位方向上延伸成行以及在仰角方向上延伸成列;与换能器元件的相应子阵列相耦合的多个子阵列射束生成器,每个子阵列射束生成器可操作地将发射信号应用至相应子阵列中的换能器元件上,以及延迟从相应子阵列中的换能器元件所接收到的信号,以及将延迟的信号组合成复合信号;以及将复合信号耦合至超声处理和显示系统的通信链路。
2. 权利要求1的超声成像探针,其中子阵列射束生成器可操作来 以步进的方式从一行或一组行或一列或一组列至下一个地将发射信号应 用到换能器元件以及接收来自换能器元件的信号。
3. 权利要求1的超声成像探针,其中任何子阵列射束生成器还可 操作来在方位方向上操作由位于换能器元件阵列的方位末端的换能器元 件发射和接收的超声射束,因而使探针的声束图延伸超过换能器元件阵列 的方位末端。
4. 权利要求1的超声成像探针,其中任何子阵列射束生成器还可 操作来在仰角方向上操作由位于换能器元件阵列的仰角末端的换能器元 件发射和接收的超声射束,因而使探针的声束图延伸超过换能器元件阵列 的仰角末端。
5. 权利要求1的超声成像探针,其中任何子阵列射束生成器还可 操作来在方位方向上和仰角方向上操作由换能器元件发射和接收的超声波。
6. 权利要求1的超声成像探针,其中通过阵列在仰角方向的物理 弯曲,发射束起始图案在仰角方向上向外弯曲。
7. 权利要求1的超声成像探针,其中在方位方向上延伸的每个行 中的换能器元件的数目基本生大于在仰角方向上延伸的每个列中的换能 器元件的数目。
8. 权利要求1的超声成像探针,还包括用来操作由阵列发射的射束的声学透镜,其中通过声学透镜在仰角方向上的操作,发射束起始图案在仰角方 向上向外弯曲。
9. 一种超声成像系统,包括 超声成像探针,包括包括阵列换能器元件的换能器主体,这些换能器元件具有在方 位方向上基本上是平面的换能器元件的行和在仰角方向上是向外弯曲 的换能器元件的列,换能器元件发送射束,该射束在相对于其发射点上 的阵列的表面成正交和非正交的角度上是可操作的; 以及超声信号通路,其通过通信链路将发射信号应用至在超声成像探针 中的换能器元件并接收该换能器元件发出的信号,超声信号通路将来自换 能器元件的被接收信号组合成图像信号,该图像信号对应于与超声成像探 针相邻的体积区域中的解剖结构的图像;以及耦合来接收超声信号通路发出的图像信号的显示器,该显示器可操 作来显示体积图像。
10. 权利要求9的超声成像系统,其中超声信号通路可操作来以步 进的方式从一行或一组行或一列或一组列到下一个地将发射信号应用至 换能器元件并接收来自该换能器元件的信号。
11. 权利要求9的超声成像系统,其中超声成像探针还包括与换能 器元件的相应子阵列相耦合的多个子阵列射束生成器,每个子阵列射束生 成器可操作来将发射信号应用至相应子阵列中的换能器元件上,每个子阵 列射束生成器还可操作来延迟所接收的来自相应子阵列中的换能器元件 的信号,以及将延迟的信号组合成复合接收信号,该复合接收信号通过通 信链路耦合至超声成像通路。
12. 权利要求ll的超声成像系统,其中每个子阵列射束生成器包括 多个发射延迟单元,每个发射延迟单元响应于接收的发射控制信号来产生相应的发射信号;多个接收延迟单元,每个接收延迟单元产生相应的延迟接收信号;以及求和电路,组合该延迟接收信号以提供复合接收信号。
13. 权利要求11的超声成像系统,其中任何子阵列射束生成器还可 操作来在方位方向上操作由位于换能器元件阵列的方位末端的换能器元 件发射和接收的超声射束,因而使超声成像探针的声束图延伸超过换能器 元件阵列的方位末端。
14. 权利要求11的超声成像系统,其中任何子阵列射束生成器还可 操作来在仰角方向上操作由位于换能器元件阵列的仰角末端的换能器元 件发射和接收的超声射束,因而使超声成像探针的声束图延伸超过换能器 元件阵列的仰角末端。
15. 权利要求9的超声成像系统,其中超声信号通路可操作来对来 自换能器元件的接收信号执行空间组合,因此显示器可显示空间组合的体 积图像。
16. 权利要求9的超声成像系统,其中为换能器元件的每个子阵列 提供一个相应的子阵列射束生成器。
17. 权利要求9的超声成像系统,其中在方位方向上延伸的每行中 的换能器元件的数目基本生大于在仰角方向上延伸的每列中的换能器元 件的数目。
18. 权利要求9的超声成像系统,其中通信链路包括多导线电缆。
19. - -种提供体积区域内解剖结构的图像的方法,该方法包括从二维阵列的换能器元件发射超声波进入体积区域中,超声波从阵 列的各个方向进行发射,当正交于阵列表面来操作该超声波时,其在方位方向上是平行的并在仰角方向上是发散的;用二维阵列接收来自体积区域的超声回波;用与换能器元件的子阵列相耦合的子阵列射束生成器来处理所接收 到的回波;将处理过的回波耦合至超声图像处理和显示系统;以及 处理该处理过的回波,以产生体积区域内解剖结构的图像。
20. 权利要求19的方法,还包括将由位于阵列方位末端附近的阵列元件所发出的超声波从与阵列相正交的方向传送到在方位方向上发散的方向上。 21.权利要求19的方法,还包括将由位于阵列仰角末端附近的阵列元件所发出的超声波从与阵列相 正交的方向传送到在仰角方向上发散的方向上。
全文摘要
一种超声成像系统,包括具有换能器元件阵列的成像探针,这些换能器元件在方位方向上是平面的和较为细长的,在仰角方向上是向外弯曲的。因此,当换能器元件以步进方式进行扫描时,探针的声波图在仰角方向上发散。因而尽管使用了较少的换能器元件,探针仍可在近场中获得较大的视野。该探针还包括子阵列射束生成器来延迟相应的子阵列中的换能器元件发射和接收的信号。接收信号被耦合至成像系统中,该系统包括将接收到的信号处理成与体积图像对应的信号的信号通路。随后与信号通路相耦合的显示器可显示与换能器元件阵列相邻的体积区域中的解剖特征的体积图像。
文档编号B06B1/06GK101238390SQ200680029190
公开日2008年8月6日 申请日期2006年7月24日 优先权日2005年8月5日
发明者R·戴维森 申请人:皇家飞利浦电子股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1