用于增材制造多孔无机结构的方法和由其制成的复合材料与流程

文档序号:16992430发布日期:2019-03-02 01:04阅读:275来源:国知局
用于增材制造多孔无机结构的方法和由其制成的复合材料与流程

本发明涉及一种增材制造多孔无机结构的方法和使用所述多孔结构制成的复合制品。特别地,本发明是一种用于形成通过碳相结合在一起的多孔无机结构的增材制造方法。



背景技术:

熔丝制造(fff)通常也称为塑料喷射打印或熔融沉积成型(fdm),已被用于通过使用热塑性长丝形成3d部件,所述热塑性长丝被拉入喷嘴、加热、熔化然后挤出,其中挤出的长丝在冷却时熔合在一起(参见例如美国专利第5,121,329号和第5,503,785号)。因为所述技术需要熔化长丝和挤出,所以材料一直限于热塑性聚合物(通常是尼龙)和复杂的设备。此外,所述技术需要在制造复杂部件时也被挤出的支撑结构,所述支撑结构必须能承受形成部件所需的高温,同时也易于被移除,例如通过溶解来移除。

fdm已经用于通过在挤出的热塑性长丝中装载陶瓷微粒来形成陶瓷,如a.bandyopadhyay等人在《美国陶瓷协会杂志(j.am.cer.soc)》80[6]1366-72(1997)所述。然而,所述技术的有限使用已经被用于制造陶瓷或金属,因为难以在长丝中装载陶瓷达到高水平,但仍然能够熔化和挤出热塑性聚合物,并且因为难以制造出强度足以容易地手动处理的生坯(除去热塑性聚合物之后的部件)。其他增材制造技术已经变得更加普遍,例如陶瓷悬浮液的水基挤出,例如《美国陶瓷协会杂志》98[7]198-2001(2015)所述,但这些需要特别适合的悬浮液和化学品。同样,形成陶瓷或金属的另一种更常见的方法是基于粉末的3d打印(p-3dp)。同上。这往往需要具有足够流动的大颗粒(通常直径至少约10至20微米)以制备连续的粉末层,然后通过粘合剂将所述粉末层结合在一起,且所述部件必须从床中取出并随后加工。因此,这种技术倾向于用于制造供铸造复杂金属部件用的模具。

陶瓷或金属的均匀高度多孔结构通常不是通过增材制造技术制造的,因为一旦去除粘合剂(生坯强度不足)就不能处理所述部件。同样地,出于相同的原因以及在制造必要的流动以在粉末床中制造层或在悬浮液中充分装载中的难度,亚微米部件的多孔部件也没有形成。因此,希望提供一种增材制造方法和由其制成的部件,以避免现有技术中的一个或多个问题,例如上述那些问题。例如,希望提供一种增材制造方法、用于这种方法的材料和可以使用亚微米粉末并实现可以手动处理而不破损生坯的部件。



技术实现要素:

本发明的第一方面是一种增材制造多孔无机部件的方法,其包含:

(i)提供包含有机反应性材料和无机微粒的混合物,

(ii)通过喷嘴分配所述混合物以形成沉积在基座上的挤出物,

(iii)移动所述基座、所述喷嘴或其组合,同时分配所述混合物,使得所述基座和所述喷嘴之间以预定图案水平位移,以在所述基座上形成所述混合物的初始层,

(iv)重复步骤(ii)和(iii)以形成粘附在所述初始层上的所述混合物的连续层,以形成增材制造部件,

(v)使所述有机反应性材料反应形成热固性材料,所述热固性材料在加热时形成碳,以及

(vi)将所述增材制造部件在气氛中加热到一定的温度,在所述温度下,所述热固性材料分解并且形成碳相,所述碳相结合所述无机微粒,从而形成所述多孔无机部件。

所述方法令人惊讶之处在于允许形成高度多孔的增材制造部件。此外,热固性材料在加热过程中不能流动形成碳(类似于粘合剂去除)并产生碳粘合剂,因此形成的部件往往具有最小的收缩,避免了在其他增材制造技术中可能出现的许多缺陷,例如干燥裂缝或坍塌。

本发明的第二方面是一种多孔增材制品,其包含至少两层无机微粒,所述至少两层无机微粒通过碳结合相在整个所述增材制品中结合在一起。令人惊奇的是,本发明第一方面的方法能够制备非常细的无机微粒的高度多孔体,所述无机微粒由已经反应的有机反应性材料的分解产生的碳相结合以制备热固性材料。可以进一步加工多孔制品以制备其他有用的制品,例如本发明的第三方面或其他多孔体,例如针状莫来石体。

本发明的第三方面是一种复合制品,其包含第二方面的多孔增材制品,其中所述多孔增材制品的所述无机微粒被包封并分散在固化液体的连续基质中。

改进的增材制造方法可用于形成无机多孔增材制造,然后所述无机多孔增材制造可用于形成复合部件或反应以形成多孔或致密部件,例如多孔针状莫来石或碳化钛、氮化钛或碳化硅。

附图说明

图1是通过本发明的方法制备的本发明的增材制品的侧视图。

图2是本发明多孔无机部件侧面的扫描电子显微照片,显示了使用本文增材制造方法得到的保留层结构。

具体实施方式

增材制造方法涉及使用包含有机反应性材料和无机微粒的混合物,其中有机反应性材料通常在其被分配到的环境下反应或在与第二组分同时混合并与其一起分配的情况下反应,并形成交联或热固性基质或材料。通常,在任何有用或合适的温度下将混合物分配到空气气氛中。令人惊奇的是,可以在不加热的情况下分配混合物并充分保持其形状以形成增材制造部件。通常,这意味着至少一部分或全部混合物在环境温度(23℃)下在剪切下流动。使用具有有机反应性材料和无机微粒的混合物允许分配挤出物,所述挤出物保持了其所挤出通过的喷嘴开口的形状。

有机反应性材料可以是任何这样的材料:能够通过经由如下所述的喷嘴挤出来增材制造,然后交联形成热固性材料,所述热固性材料在非氧化气氛中热解时形成足够量的碳以结合混合物中的无机微粒。示例性有机反应性材料可以包括任何已知的热固性单体、树脂或预聚物(例如可从密歇根州米德兰的道康宁公司(dowcorningcorp.)获得的聚氨酯、聚酯和硅酮),硅烷改性的聚合物或预聚物(例如,可从得克萨斯州帕萨迪纳的钟化北美控股公司(kanekaamericasholding,inc.)获得的mspolymer甲硅烷基封端的聚醚,可从密歇根州米德兰的陶氏化学公司(thedowchemicalcompany)获得的vorasil硅烷封端的聚氨酯或可从纽约州沃特福德的迈图高新材料公司(momentiveperformancematerialsinc.)获得的spur+硅烷封端的聚氨酯)、酚-甲醛、三聚氰胺、环氧树脂或聚酰亚胺。令人满意的是,有机反应性材料包含预聚物,特别是下面进一步描述的聚氨酯预聚物。

通常,由有机反应性材料形成的碳的量为由有机反应性材料形成的热固性材料的0.1%至25%。通常,碳的量为至少0.25%、0.5%、1%或1.5%至至多15%、10%、5%或3%。形成的碳插入无机颗粒之间,在加热后将它们结合在一起形成连续的基质。

混合物可以通过一种组分或多种组分(2种或更多种)提供。通常,混合物通过一种组分或两种单独的组分提供。当混合物通过一种组分提供时,反应性有机材料通常在其分配的气氛中反应,例如空气中存在的水分,以形成所需的增材制造部件。说明性地,当混合物通过两种组分(分配前是分开的)提供时,一种组分含有与另一种组分中的一种或多种化合物反应的反应性有机物质,并且它们通常在分配之前在混合时彼此反应形成所需的增材制造部件。当以具有多于一种组分的混合物提供时,组分可以具有一种或多种与气氛反应的成分,但这不是必需的。

通常,所述混合物在低剪切下具有高粘度,以助于在分配后保持形状。“高粘度”是指材料或构成材料的组分的粘度为至少约10,000、20,000或30,000厘泊至约2,000,000或1,000,000厘泊。同样优选地,如果混合物以多于一种组分提供,则在相同的剪切应变速率下,每种组分的粘度在每个其它组分的约50%内,所述剪切应变速率接近预期用于分配所述材料的应变速率。“近”意味着应变速率是通常用于分配反应性材料的应变速率的±50%。如果粘度在40%以内则更是优选。

有用的指示性低剪切测量是使用布鲁克菲尔德(brookfield)粘度计在最低转速下使用5号心轴或使用特拉华州纽卡斯尔的tainstruments的ar2000流变仪以连续流动方法测量粘度的测量,其中直径为20毫米的4度锥形板在25℃下使用,连同152微米的间隙和1至150s-1的剪切扫描。在低剪切下以厘泊为单位的粘度在5s-1的剪切速率下被被测量。

同样地,希望混合物在较高剪切下具有较低的粘度(即剪切稀化),以助于容易分配。通常,希望混合物在100s-1下的粘度比在5s-1的剪切速率下小至少2、3、5、10或甚至20或更多倍。

在特定的实施例中,希望混合物在流动之前具有屈服应力,这有助于在从开口挤出过程中保持由喷嘴开口赋予的横截面形状。屈服应力的特征在于使用流变仪测量g'——储能模量。在测量屈服应力时,首先在高剪切下混合混合物,例如在容器中混合,其中桨叶以200rpm旋转约1分钟。然后将混合物置于流变仪(例如,tainstruments的ar2000流变仪)中,并相应地进行频率为0.1hz的10至10,000pa的振荡应力扫掠。合适的测量装置几何形状是25毫米平行板,具有约1,000微米的间隙。在执行扫掠之前,使用动态预剪切来减轻由设定平行板的间隙引起的任何残余法向力。合适的动态预剪切由频率为1hz并且约1分钟的0.01拉德位移组成。

通常,屈服应力为至少约20pa、30pa、40pa至约2000pa。同样,在剪切后以便在高剪切下流动或在分配时经受剪切时恢复屈服应力的时间尽可能短。例如,理想的是,在剪切后以几分之一秒或至多约1、5或甚至10秒恢复至少约50%的屈服应力。

足够量的屈服强度或应力的恢复可以通过用泵剪切并施加到基材上的混合物下垂性能来确定。可以通过pyzik等人在共同未决申请pct/us15/055266第5页第12至23行以及图1和2中描述的方法确定下垂。

作为实例,通过使用预聚物作为与无机微粒混合的有机反应性材料,可以在混合物中实现上述理想的流变性质。在说明性实施例中,预聚物是异氰酸酯封端的预聚物。异氰酸酯的量以足够的量存在,以在增材制造部件形成期间在挤出物之间提供粘合特性。这种预聚物还具有足够的平均异氰酸酯官能度,以便在分配时制备交联的聚氨酯,但不要太高以至于聚合物不稳定。在此上下文中,“稳定性”是指由预聚物制备的材料在环境温度下具有至少三个月的保质期,因为在这样的时间期间它没有表现出粘度的增加,粘度的增加妨碍其分配、应用或使用。例如,粘度不应该升得太大而使分配不实用。优选地,在所述时间段内,材料的粘度增加不超过约50%。

期望混合物的预聚物具有总nco含量,这有利于在60分钟后制备的部件中可接受的强度和预聚物的稳定性。总nco含量包括来自异氰酸酯封端的预聚物的nco或用于制备预聚物的未反应的异氰酸酯。优选地,nco含量为预聚物的重量的约0.6%或更高、更优选地为重量的约0.9%或更高,并且更优选地为重量的约4.0%或更低、更优选地为重量的约3.5%或更低、更优选地为重量的约3.0%或更低,并且甚至更优选地为重量的约2.6%或更低。重量低于约0.6%时,预聚物粘度可能太高而无法处理,并且即使是可以分配的,工作时间也可能太短。

用于制备说明性预聚物的优选的聚异氰酸酯包括美国专利第5,922,809号中第3栏第32行至第4栏第24行中公开的那些,通过引用并入本文。优选地,聚异氰酸酯是芳族或脂环族聚异氰酸酯,例如二苯基甲烷-4,4'-二异氰酸酯、异佛尔酮二异氰酸酯、四甲基二甲苯二异氰酸酯,并且最优选二苯基甲烷-4,4'-二异氰酸酯。二醇和三醇通常称为多元醇。

预聚物由异氰酸酯反应性化合物制成,但优选使用多元醇如二醇和三醇制成,例如美国专利第5,922,809号第4栏第60行至第5栏第50行中所述的那些,通过引用并入本文。多元醇(二醇和三醇)是聚醚多元醇,并且更优选是聚氧化烯氧化物多元醇。最优选的三醇是通过使甘油与环氧丙烷反应,然后使产物与环氧乙烷反应制备的环氧乙烷封端的多元醇。

优选地,选择聚醚以降低预聚物的极性。确定预聚物极性的重要因素是用于制备预聚物的聚醚中的环氧乙烷单位的量。优选地,预聚物中的环氧乙烷含量为重量的约3%或更低,更优选为重量的约1.2%或更低,并且最优选为重量的约0.8%或更低。如本文所用,“极性”是指预聚物主链中极性基团的存在的影响。还应理解,可以使用少量其它多元醇来形成聚醚预聚物,例如聚酯多元醇,例如本领域已知的那些。通常,此类其它多元醇的存在量可以是用于制备所述预聚物的多元醇的约高达5重量%。然而,所述预聚物可以在不存在这种多元醇的情况下制备。

所述混合物还包含希望形成多孔增材制造部件的无机微粒,并且理想地它们显示上述一些所需的流变性质。示例性的无机微粒可以是任何无机微粒,例如金属、陶瓷或碳。无机颗粒的平均粒径通常小于100微米、50微米、20微米、10微米,并且可以小于1微米。在特定的实施例中,基本上所有的颗粒都小于1微米(基本上,意味着可能存在一些非常少量的大于1微米的颗粒,但它们通常占颗粒数量的不到1%),但是优选地,所有颗粒都小于1微米。颗粒可以是任何金属和金属合金,例如铝、铜、钛、铁或镍。同样,陶瓷微粒可以是多孔增材制品中所需的任何有用的陶瓷微粒,例如氧化物、氮化物、碳化物、这些的组合或它们的混合物。陶瓷的实例包括但不限于二氧化硅、氧化铝、沸石、氧化钙、碳酸钙、滑石、二氧化钛、氧化锆、氮化硅、粘土(包括例如高岭土、表面处理的高岭土、煅烧高岭土)、硅酸铝和表面处理过的无水硅酸铝和碳化硅。

无机颗粒可以是任何有用的形状,例如晶须、短纤维、片晶、不规则形状的颗粒、等轴颗粒或其混合物。在一个实施例中,微粒的尺寸可以是小的(小于1微米),但是它们可以具有小颗粒结合在一起的结构,例如炭黑或气相二氧化硅所示,然后可以通过碳结合相进一步结合,碳结合相由无机反应性材料反应形成热固性材料后形成的。在所需的实施例中,无机微粒包含短碳纤维或碳晶须,其中平均长度为约2至3微米至约150、200、250或甚至300微米,长径比至少为3、5或10至100。

取决于它们的结构和预聚物的分子量,无机微粒可以包含颗粒,所述颗粒可以在吸油值(astmd-2414-09)给出的宽范围的结构范围内。例如,当预聚物的mz为约65,000时,无机微粒理想地具有每100克约80至200ccs的吸油值(oan)。优选地,填料的吸油量为至少约90,更优选至少约100,最优选至少约110至优选至多约180,更优选至多约165,最优选至多约150ccs/100克。

此外,无机微粒理想地具有至少80的碘值。碘值与无机微粒的表面积有关,但也与存在挥发性物质如不饱和油和炭黑情况下含硫化合物有关。碘值使用astmd1510-11测定。

例如,所需的无机微粒的量可以由预聚物分子量和常规实验确定。通常,无机微粒的量至少在上升的合意性中,以上升的合意性为10%、15%、18%、23%或25%,以混合物的重量计,为80%、55%、50%。

当使用炭黑时,它可以是标准炭黑,其未经过特殊处理以使其不导电。标准炭黑是未经特别表面处理或氧化的炭黑。或者,一种或多种非导电炭黑可以单独使用或与标准炭黑结合使用。合适的标准炭黑包括raventm790、ravetm450、raventm500、raventm430、raventm420和raventm410炭黑,其可从自colombian获得,csx炭黑例如elftexs5100和s7100以及monarch120、570和590,其可从cabot获得,以及printextm30炭黑,其可从亚拉巴马州莫比尔的赢创工业集团(evonikindustries)获得。合适的非导电炭黑包括可从佐治亚州玛丽埃塔的georgianchemicalscompany获得的raventm1040和raventm1060炭黑。

混合物也可以包含反应性硅。反应性硅可以作为单独的分子存在,例如硅烷。它可以存在于主链内或作为上述预聚物中的末端基团。反应性硅通常是可以进行水解的反应性硅,如美国专利第6,613,816号第4栏第25至55行所述。其他说明性的反应性硅可以在美国专利公开2002/0100550第0055至0065段和hsieh的美国专利第6,015,475号第5栏第27行至第6栏第41行中找到,通过引用并入本文。

当存在于混合物中时,反应性硅的量通常为有机反应性材料总重量的约0.001重量%至2重量%,无论其是否以一种或多种组分提供。反应性硅的量(注意,硅本身的重量,并且不包括例如附加的有机基团)可以是材料的至少0.005%、0.01%、0.02%、0.04%、0.06%、0.08%或0.1%至至多1.8%、1.6%、1.4%、1.2%、1%、0.8%、0.5%。

所述混合物也可以包含分散在其中的一种或多种有机基聚合物。优选地,通过包括其中分散有机基聚合物颗粒的分散三醇,有机基聚合物包括在预聚物中。分散三醇通常被理解为使至少一部分颗粒与多元醇接枝。优选的分散三醇在zhou的美国专利第6,709,539号的第4栏第13行至第6栏第18行中公开,通过引用并入本文。优选地,用于分散有机颗粒的三醇是聚醚三醇,更优选基于聚氧化烯的三醇。优选地,这种聚氧化烯氧化物三醇包含具有聚氧乙烯封端的聚氧丙烯链。优选地,所用三醇的分子量为约4,000或更高,更优选地约5,000或更高,并且最优选地约6,000或更高。优选地,这种三醇的分子量为约8,000或更低,并且更优选地约7,000或更低。应理解,分散多元醇的多元醇(例如三醇)包括在多元醇中以制备本文所述的预聚物,其中分散多元醇的共聚物颗粒应理解为组合物中的填料。

优选地,分散在分散三醇中的颗粒包含热塑性聚合物、橡胶改性的热塑性聚合物或分散在三醇中的聚脲。聚脲优选包含多胺和聚异氰酸酯的反应产物。优选的热塑性聚合物是基于单亚乙烯基芳族单体和单亚乙烯基芳族单体与共轭二烯、丙烯酸酯、甲基丙烯酸酯、不饱和腈或其混合物的共聚物的那些。共聚物可以是嵌段或无规共聚物。更优选地,分散在三醇中的颗粒包含不饱和腈、共轭二烯和单亚乙烯基芳族单体的共聚物、不饱和腈和单亚乙烯基芳族单体的共聚物或聚脲。甚至更优选地,颗粒包含聚脲或聚苯乙烯-丙烯腈共聚物,最优选聚苯乙烯-丙烯腈共聚物。分散在三醇中的有机聚合物颗粒优选具有足够大的粒径,以改善最终固化的增材制造部件的一种或多种性能,例如冲击性能和弹性体性能。如果不是全部,颗粒可以分散在三醇中或接枝到主链上至三醇至少一部分。优选地,粒径为约10微米或更大,并且更优选地,粒径为约20微米或更大。

多元醇的存在量足以与异氰酸酯的大多数异氰酸酯基团反应,留下足够的异氰酸酯基团以与预聚物的所需游离异氰酸酯含量相对应。优选地,多元醇的存在量为预聚物重量的约30%或更高、更优选为重量的约40%或更高,并且最优选为重量的约55%或更高。优选地,多元醇的存在量为预聚物重量的约75%或更低、更优选为重量的约65%或更低,并且最优选为重量的约60%或更低。

通常,掺入说明性预聚物的混合物说明在加热时形成碳的有机反应性材料通常具有二醇与三醇和分散三醇的比例,以实现在制造多孔无机制品时(即,在分解由有机反应性材料形成的热固性材料之前)形成的热固性材料的所需固化速率和强度。如果存在,二醇与三醇和分散三醇的重量比优选为约0.8或更高,并且更优选为约0.85或更高,并且最优选为约0.9或更高。如果存在,二醇与三醇和分散三醇的重量比优选为约3.0或更低;更优选约2.0或更低,最优选约1.75或更低。在多元醇包含二醇和三醇的混合物的实施例中,存在的二醇的量优选为预聚物重量的约15%或更高、更优选重量的约25%或更高,并且最优选重量的约28%或更高;并且优选为预聚物重量的约40%或更少、更优选重量的约35%或更少,并且最优选重量的约30%或更少。在多元醇包含二醇和三醇的混合物的实施例中,存在的三醇(非分散三醇和分散三醇)的总量优选为预聚物的重量的约15%或更高、更优选为重量的约18%或更高,并且最优选为重量的约20%或更高;并且优选为重量的约45%或更低、更优选为重量的约35%或更低,最优选为重量的约32%或更低。

有机聚合物颗粒在三醇中的分散体在预聚物中的存在量可为预聚物重量的约10%或更高,更优选为约重量的12%或更高,并且为预聚物重量的约18%或更低,并且更优选为约重量的15%或更低。

混合物可进一步包含增塑剂。可以使用增塑剂以将流变性质改变为所需的稠度。当使用说明性预聚物时,这些增塑剂应该不含水并且对异氰酸酯基团呈惰性。增塑剂可以是用于聚氨酯的常用增塑剂,并且是本领域技术人员公知的,并且在下文中称为低极性增塑剂。增塑剂的存在量足以分散材料的预聚物。可以在制备预聚物期间或在放入第一隔室之前混合预聚物期间将增塑剂加入预聚物中。优选地,增塑剂的存在量为预聚物配方(预聚物加增塑剂)重量的约1%或更高,更优选为重量的约20%或更高,并且最优选为重量的约30%或更高。优选地,增塑剂的存在量为预聚物配方重量的约45%或更低,并且更优选为重量约35%或更低。

优选使用两种增塑剂,其中一种是高极性增塑剂,一种是低极性增塑剂。高极性增塑剂是极性大于芳族二酯极性的增塑剂,例如邻苯二甲酸酯。低极性增塑剂是极性与芳族二酯相同或更低的增塑剂。

合适的高极性增塑剂包括磺酸烷基酯、烷基烷基醚二酯、聚酯树脂、聚二醇二酯、聚合物聚酯、三羧酸酯、二烷基醚二酯、二烷基醚芳族酯、芳族磷酸酯和芳族磺酰胺中的一种或多种。更优选的高极性增塑剂包括芳族磺酰胺、芳族磷酸酯、二烷基醚芳族酯和磺酸烷基酯。最优选的高极性增塑剂包括磺酸烷基酯和甲苯磺酰胺。磺酸的烷基酯包括购自lanxess的商标为mesamoll的烷基磺酸苯酯。芳族磷酸酯包括31l异丙基化三苯基磷酸酯、dpo二苯基-2-乙基己基磷酸酯和tkp三甲苯基磷酸酯。二烷基醚芳族酯包括2-45二乙二醇二苯甲酸酯。芳族磺酰胺包括8o和p,n-乙基甲苯磺酰胺。

合适的低极性增塑剂包括一种或多种芳族二酯、芳族三酯、脂族二酯、环氧化酯、环氧化油、氯化烃、芳香油、烷基醚单酯、环烷油、烷基单酯、甘油酯油、石蜡油和硅酮油。优选的低极性增塑剂包括邻苯二甲酸烷基酯(如邻苯二甲酸二异壬酯、邻苯二甲酸二辛酯和邻苯二甲酸二丁酯)、以“hb-40”市售的部分氢化萜烯、环氧增塑剂、氯化石蜡、己二酸酯、蓖麻油、甲苯和烷基萘。最优选的低极性增塑剂是邻苯二甲酸烷基酯。

材料中低极性增塑剂的量是提供所需流变性能的量。本文公开的量包括在制备预聚物期间和在材料配混期间添加的量。优选地,基于材料的重量,低极性增塑剂的用量为约5重量份或更多、更优选约10重量份或更多,并且最优选约18重量份或更多。基于材料的总量,低极性增塑剂的用量优选为约40重量份或更少、更优选约30重量份或更少,并且最优选约25重量份或更少。

材料中高极性增塑剂的量是这样的量,其赋予所需的流变性能和所分配的反应性材料的可接受的下垂和拉丝性能。优选地,基于材料的重量,高极性增塑剂在材料中的用量为约0.2重量份或更多、更优选约0.5重量份或更多,并且最优选约1重量份或更多。基于材料的总量,高极性增塑剂的用量优选为约20重量份或更少、更优选约12重量份或更少,最优选约8重量份或更少。

预聚物可以通过任何合适的方法制备,例如通过使多元醇如二醇、三醇和任选的分散三醇如共聚物多元醇或接枝三醇在足以形成预聚物的反应条件下与过量的一种或多种聚异氰酸酯的化学计量比反应来制备,具有异氰酸酯官能度和游离异氰酸酯含量的预聚物满足上述标准。在用于制备预聚物的优选方法中,聚异氰酸酯与一种或多种二醇、一种或多种三醇和任选的一种或多种分散三醇反应。制备预聚物的优选方法公开于美国专利第5,922,809号第9栏第4至51行,通过引用并入本文。预聚物的存在量足以使得当所得的分配材料分配和固化时,通过所述方法形成增材制造部件。优选地,聚氨酯预聚物的存在量为混合物的约20重量份或更多、更优选约30重量份或更多,并且最优选约35重量份或更多。优选地,预聚物的存在量为材料的约60重量份或更少、更优选约50重量份或更少,并且甚至更优选约45重量份或更少。

所述混合物可进一步包含多官能异氰酸酯,例如,以改善固化形式的组合物的模量或挤出物彼此的粘合性。在异氰酸酯的上下文中使用的“多官能”是指官能度为2或更大的异氰酸酯。聚异氰酸酯可以是标称官能度为约2.5或更高的任何单体、低聚或聚合异氰酸酯。更优选地,多官能异氰酸酯具有约2.7或更高的标称官能度。优选地,多官能异氰酸酯的标称官能度为约5或更低,甚至更优选约4.5或更低,并且最优选约3.5或更低。多官能异氰酸酯可以是任何异氰酸酯,其可与组合物中使用的异氰酸酯聚异氰酸酯预聚物反应并且改善固化组合物的模量。聚异氰酸酯可以是单体的;三聚异氰脲酸酯或单体异氰酸酯的缩二脲;低聚或聚合的,几种单元的一种或多种单体异氰酸酯的反应产物。优选的多官能异氰酸酯的实例包括六亚甲基二异氰酸酯的三聚体,例如可从拜耳(bayer)以商标和名称desmodurn3300和n100获得的那些,和聚合的异氰酸酯如聚合mdi(亚甲基二苯基二异氰酸酯),例如由陶氏化学公司以商品名papi出售的那些,包括papi20聚合的异氰酸酯。当存在时,多官能异氰酸酯通常以足以影响本发明的固化组合物的模量或改善对上述某些基材的粘合性的量存在。当存在时,多官能异氰酸酯优选以基于材料重量的约0.5重量份或更多的量存在,更优选约1.0重量份或更多,并且最优选约2重量份或更多。基于材料的重量,多官能异氰酸酯优选以约8重量份或更少的量存在,更优选约5重量份或更少,并且最优选约4重量份或更少。

所述混合物还可含有催化剂,所述催化剂催化异氰酸酯部分与水或含活性氢的化合物的反应,所述化合物可以是第二组分。这些化合物是本领域熟知的。催化剂可以是本领域技术人员已知的任何用于异氰酸酯部分与水或含活性氢的化合物的反应的催化剂。其中优选的催化剂是有机锡化合物、金属链烷酸酯和叔胺。可以使用各类催化剂的混合物。优选叔胺和金属盐的混合物。甚至更优选的是叔胺,例如二吗啉基二乙醚,和金属链烷酸酯,例如辛酸铋。有用的催化剂中包括有机锡化合物,例如烷基锡氧化物、链烷酸亚锡、二烷基锡羧酸盐和硫醇锡。链烷酸亚锡包括辛酸亚锡。烷基锡氧化物包括二烷基锡氧化物,例如二丁基氧化锡及其衍生物。有机锡催化剂优选为二烷基锡二羧酸酯或二烷基锡二硫醇酯。具有较低总碳原子的二烷基锡二羧酸盐是优选的,因为它们是本发明组合物中更活泼的催化剂。优选的二羧酸二烷基酯包括1,1-二甲基锡二月桂酸酯、1,1-二丁基锡二乙酸酯和1,1-二甲基二马来酸酯。优选的金属链烷酸盐包括辛酸铋或新癸酸铋。基于材料的重量,有机锡或金属链烷酸盐催化剂的存在量为约百万分之60份或更高,并且更优选为百万分之120份或更高。基于材料的重量,有机锡催化剂的存在量为约1.0%或更少、更优选为重量的0.5%或更少,并且最优选为重量0.1%或更少。

有用的叔胺催化剂包括二吗啉基二烷基醚、二((二烷基吗啉基)烷基)醚、双-(2-二甲基氨基乙基)醚、三乙烯二胺、五甲基二亚乙基三胺、n,n-二甲基环己胺、n,n-二甲基哌嗪4-甲氧基乙基吗啉、n-甲基吗啉、n-乙基吗啉及其混合物。优选的二吗啉基二烷基醚是二吗啉基二乙基醚。优选的二((二烷基吗啉基)烷基)醚是(二-(2-(3,5-二甲基吗啉基)乙基)醚)。基于材料的重量,叔胺的用量优选为约0.01重量份或更多、更优选约0.05重量份或更多、甚至更优选约0.1重量份或更多,并且最优选约0.2重量份或更多;并且约2.0重量份或更少、更优选约1.75重量份或更少、甚至更优选约1.0重量份或更少,并且最优选约0.4重量份或更少。

所述混合物可进一步包含稳定剂,其起到保护预聚物免受水分作用的作用,从而抑制前进并防止材料中异氰酸酯的过早交联。可以使用本领域技术人员已知的用于湿固化聚氨酯组合物的稳定剂。这些稳定剂包括丙二酸二乙酯、烷基酚烷基化物、对甲苯磺酸异氰酸酯、苯甲酰氯和邻烷基甲酸酯。基于材料的总重量,这种稳定剂的用量优选为约0.1重量份或更多、优选约0.5重量份或更多,并且更优选约0.8重量份或更多。基于材料的重量,这种稳定剂的用量为约5.0重量份或更少、更优选约2.0重量份或更少,并且最优选约1.4重量份或更少。

当混合物包含第二组分时,其可以是与第一组分的有机反应性材料反应的任何混合物。例如,当第一组分包含说明性预聚物时,第二组分可以包含反应性氢,例如上述多元醇或水。

在一个实施例中,第二组分是含有水或反应性成分的糊剂,其增强材料的第一组分的固化。存在含有水或反应性成分的糊剂以加速第一组分材料的固化(即,与第一组分中的异氰酸酯基团反应)。当制造需要在形成时支撑更多重量的较大部件时,使用这种糊剂特别有用。与异氰酸酯预聚物反应的这种第二组分的实例描述于共同拥有的共同未决的美国申请第61/990136号中,其发明人是lirongzhou,和wo/2014/098935,各自通过引用并入本文。在特定的实施例中,第二组分包含具有包含胺基的主链的多元醇,其在wo/2015/171307中进一步描述。

在双组分体系的另一个实施例中,所述材料包含丙烯酸酯单体,其中用于形成聚丙烯酸物或聚丙烯酸酯的催化剂在两个单独的组分中构成所述材料。所述材料经历两种固化模式以形成增材制造部件。具有这2个组分的示例性材料描述于美国公开第2012-0279654号和国际公开第wo/2012/151085号和第wo/2012/087490号。

可能期望使用具有2个组分的材料,例如,当制造较大的部件或更快的制造和使用时,由于材料固化时模量的更快增加,因此需要使用。通常,在完全固化至任何有用模量时,模量至少为0.1mpa,但通常小于约50mpa。理想地,完全固化的模量为至少约0.5mpa或1mpa至至多约25mpa、10mpa或5mpa。模量可以通过astmd4065描述的方法在25℃下测量。理想地,在环境条件(约23℃和相对湿度5%至95%)下在不到几天内获得50%的最终固化。优选地,在少于一天、12小时、3或4小时、1小时或甚至30分钟内获得50%固化。

转到图1,所述方法包括通过连接到喷嘴组件110的喷嘴100分配混合物,其中如果混合物公告多于一种的组分提供,则混合物可以在线混合。在分配时,混合物形成挤出物120,其在基部150形成初始层130和连续层140。喷嘴组件110被描绘为与基部正交,但可设定在任何有用的角度以形成挤出物,由此挤出物120和喷嘴组件110形成钝角,其中挤出物120平行于基部。另外,喷嘴组件110可以围绕其纵向轴线旋转,例如,以调整喷嘴100中的开口的形状,以产生与基部150具有不同关系的挤出物120。

还示出基部150和喷嘴组件110的相对运动,但是应当理解,可以移动基部150、喷嘴组件110或两者以在任何水平方向或垂直方向上引起相对运动。以预定的方式进行运动,这可以通过任何已知的cad/cam方法和装置来完成,例如本领域公知的那些和容易获得的机器人或计算机化的机床接口。例如,在美国专利第5,121,329中描述了这种图案形成。

挤出物120可以连续分配或破碎以形成初始层130和连续层140。如果需要破碎的挤出物120,则喷嘴可以包含阀(未以图示出)以切断材料的流动。这种阀机构可以是任何合适的,例如任何已知的机电阀,其可以通过任何cad/cam方法结合图案容易地控制。

当混合物包含多于一种组分时,喷嘴组件110也可以包含混合器,例如在线静态或动态混合器,以及用于容纳两种组分的单独隔室。可能合适的双组分分配装置和方法的实例包括美国专利第6,129,244号和第8,313,006号以及发明人huidezhu的共同未决的美国申请第61/977668号中描述的那些,以及苏尔寿化工(sulzerchemtech)《mixpacpeelerii产品手册(mixpacpeeleriiproductbrochure)》和craigblum,《双组分胶粘剂盒系统(twocomponentadhesivecartridgesystems)》,fast,2008年7月描述的那些。

因为混合物可以是粘合剂,所以基底150可以是低表面能材料,例如聚烯烃(例如聚乙烯或聚丙烯)或氟化聚合物例如特氟隆等。或者,基底可以具有脱模剂,例如在聚氨酯反应注射成型领域中已知的脱模剂,或者基底可以在分配和形成增材制造部件之前在其上放置一张纸或低能量材料的薄膜。

可以采用多于一个的喷嘴组件110以在增材制造部件内制造复合或梯度结构。同样地,可以采用第二喷嘴组件110来分配支撑结构,所述支撑结构可以稍后被移除,以允许形成更复杂的几何形状,如美国专利第5,503,785中所述。支撑材料可以是任何增加支撑并且易于移除的支撑材料,例如本领域已知的那些,例如蜡。

在形成增材制造部件之后,允许有机反应性材料充分交联以形成在加热时形成碳的热固性材料。时间和气氛的量可以是任何合适的,并且可以通过使用的起始有机反应性材料来确定。例如,当使用示例性的异氰酸酯封端的预聚物时,可以使增材制品在室温(约23℃)下在具有典型相对湿度的空气中固化几分钟或几天,例如从5%到基本上100%。或者,可以通过加热使制品固化。这种加热也可以在加热以分解热固性材料时进行,例如,在热固性材料分解或保持在低于热固性材料分解发生的温度之前缓慢加热,然后加热到更高的温度,其时热固性材料分解。

在增材制造部件已经充分固化以形成热固性材料之后,将其在气氛中加热至分解温度,使得热固性材料分解并形成将无机微粒粘合在一起的碳相,以形成增材制造的多孔无机部件。气氛可以是任何足够非氧化以实现碳结合相的气体。通常,这意味着在热固性材料分解形成碳的温度下,气氛中的氧气量至多为百万分之100重量份(ppm)。通常,气氛可以是任何惰性气体、氮气、还原性气体(例如含co或氢气的气体)或其混合物。气氛也可以是真空或降低或升高的压力的上述气体。

分解温度可以任何合适的方式取决于,例如,待形成的特定多孔无机制品和所用的热固性材料。通常,分解温度至少约400℃至任何可行的温度。通常,分解温度为至少约500℃、600℃或700℃至约1500℃、1200℃或1000℃。温度下的时间可以是任何合适的时间,例如暂时或几秒至2至3天、2至3小时或30分钟。加热可以通过已知的加热方法完成,例如在可以控制气氛的电阻加热炉中。

所形成的多孔无机制品是多孔增材制品,其包含至少两层无机微粒,所述两层无机微粒通过碳结合相在整个增材制品中结合在一起。通常,所述制品的孔隙率为至少35%、40%、45%、50%或甚至60%至80%或75%。孔隙率可以通过任何已知技术确定,例如使用阿基米德原理、hg孔隙率测定法或显微技术。尽管多孔制品可以是高度多孔的,但它通常具有至少约0.5mpa、1mpa或2mpa的压缩强度,并且易于手动处理而不会破裂。可以如实例中所述测定压缩强度。

如上所述的无机微粒由热固性材料分解产生的碳结合相结合。通常,碳结合相的量需要为足以使多孔无机制品具有足够的强度以手动处理的量。碳结合相的量通常为多孔无机制品的约0.1重量%、0.5重量%或1重量%至10重量%、5重量%或4重量%,并且可以根据例如无机微粒本身的量或质量(密度)、混合物中无机微粒的量和来自热固性材料的碳的产率而变化。碳相的量可通过已知的显微技术测定,例如,当结合本文所述的无机颗粒如炭黑时。或者,如果无机微粒在含氧气氛中加热期间不经历重量变化,则可以通过热重分析测定碳结合相的量,或者可以使用燃烧分析,例如可从密西根州圣约瑟夫城的力可公司(lecocorporation)获得。

在多孔无机制品中,无机微粒形成连续基质,其中无机颗粒被碳相结合。通常,碳结合相在无机微粒之间具有无序的碳晶界相,并且通常小于约200纳米厚,并且可以仅为几纳米厚(即,从一个无机颗粒的表面到相邻结合无机颗粒表面的表面)。无机颗粒形成由碳结合相结合的连续基质,其中孔隙率在整个多孔无机制品中也是连续的(即,除了可能在起始无机微粒本身内的微量之外,基本上没有封闭孔隙)。

然后可将多孔无机制品用于制备其它复合制品,所述复合制品可基本上致密或进一步烧结或反应以制备随后的多孔制品。说明性地,无机多孔制品可以通过任何已知的渗透技术(例如真空或压力渗透)通过液体(例如,金属或有机树脂或热塑性聚合物)渗透,并且液体随后固化以形成其中有两个连续相的复合制品,在形成的复合制品内,无机微粒可以被包封并分散在固化液体的连续基质中。例如,多孔无机制品可以包含碳纤维,所述碳纤维渗入有机树脂、单体、预聚物、聚合物或其混合物,例如环氧树脂或酚醛树脂,以形成碳-热固性树脂复合材料,特别是碳-环氧复合材料。当使用聚合物时,聚合物可以是热塑性聚合物,例如本领域已知的任何聚合物,例如工程塑料(例如,聚碳酸酯、聚酰胺和聚酰亚胺)或聚烯烃(例如,聚乙烯、丙烯或这些的共聚物)或热塑性聚氨酯,仅举几例。

在另一个实施例中,多孔无机制品可以包含陶瓷碳化物(例如,碳化钛或碳化硼)或包含碳结合相结合的氧化物,并且任选地含有炭黑,然后用金属例如钛或铝渗透,其随后与任何碳和/或碳化物反应形成反应相,得到陶瓷金属复合物,例如铝碳化硼复合物或碳化钛-钛金属复合物。

在另一个实施例中,无机微粒可以包含前体,所述前体在不同的气氛中进一步加热时彼此反应并形成不同的相。例如,无机微粒可以包含金属或金属氧化物和炭黑,其中金属或氧化物可以渗碳以形成碳氧化物或碳化物,或者金属或氧化物可以在氮气下加热以形成氮化物、氮氧化物、碳氮化物或碳氮氧化物。另一个例子,无机微粒可以包含形成莫来石的前体(例如氧化铝、滑石、粘土、二氧化硅和氟黄玉)。在含氟气体中加热这些时,可形成氟黄玉,然后在不存在氟的情况下进一步加热以形成针状莫来石,其可直接用作过滤器等,或者多孔上述物体可进一步用液体渗透。并形成如上所述的后续复合体。

实例

预聚物形成:

如美国专利第8,729,168的对比例6中所述制备聚醚异氰酸酯封端的聚氨酯预聚物并用于所有实例。

实例1

使用dac400速度混合器(flacktekinc,landrumsc)将购自cabotcorp.的30克预聚物和10克s7100炭黑(炭黑填料)(39体积%)以2000rpm混合2分钟,形成可打印混合物。然后,加入0.35g催化剂2,2'-二吗啉基二乙基醚(dmdee)并将制剂再混合2分钟。填料的oan为约117cc/100g,碘值为189mg/g。然后将所述材料转移到塑料袋中,并挤出到10cc注射器筒中,用白色smoothflow活塞堵塞,并盖上efd卡扣式端盖,所有这些都购自俄亥俄州西湖区的诺信公司(nordsoncorporation)。

将高压分配工具俄亥俄州西湖区诺信公司的诺信hp4x安装在ultrattefd自动分配系统(俄亥俄州西湖区的诺信公司)上,所述系统用作可编程的xyz平台。将填充的注射器装入分配器中,并将材料推过0.41毫米鲁尔接口(luerlok)锥形喷嘴(7005009,俄亥俄州西湖区的诺信公司),在synaps数字xm聚酯涂布纸(威斯康星州尼库萨的nekoosacoatedproducts)上挤出成圆形挤出物,置在xyz台上。在环境温度约23℃下,使用20psi空气压力将材料以15毫米/秒的速度挤出到35%rh空气中。xyz台由掌上电脑控制,形成侧壁尺寸为50毫米的单壁方管。沿z方向打印40层挤出物,层间的台阶高度为0.20毫米。打印完成后,除去部件(与纸基材一起)并使其在35%rh空气中固化。没有观察到各层之间的分层并且粘合性非常好。没有观察到构建壁的弯曲或单个层的变形。

固化后(至少24小时),将固化的增材制造部件在氮气中以0.2℃/min的加热速率加热至900℃,保持3小时。通过断掉炉的电使炉和部件冷却至室温。在热解之后,形成多孔碳部分(多孔无机部件),其保留固化的增材制造部件的原始形状。与固化的增材制造部件相比,所述部件略小(缩小或烧结)。孔隙率为约62%,并且易于手动处理而不会破裂。所述部件的压缩强度为0.6mpa,测定如下。将部件置于具有500牛顿载荷传感器(马萨诸塞州诺伍德的英斯特朗(instron))的英斯特朗通用测试仪器542型中的两个固体板之间。将板以1mm/min的速度压缩,并且测量破坏时的压缩力并除以原始横截面积。图2是所形成的无机多孔部件的扫描电子显微照片,显示了固化的增材制造部件的保留层结构。所述部件具有约2重量%至3重量%的碳结合相。

实例2:

重复实例1,不同之处在于可打印混合物包含体积为14%的炭黑填料,30%的铜粉(产品#41205,马萨诸塞州黑弗里尔的阿法埃莎(alfaaesar),0.5-1.5μm),余量为预聚物和催化剂。以与实例1相同的方式,打印、固化和热解可打印的混合物。形成由碳结合相结合的多孔铜炭黑复合物,其保留固化的增材制造部件的形状。以与实例1的氮气热处理相同的方式,将此多孔无机体在空气中进一步加热至900℃。形成多孔氧化铜体。

实例3:

重复实例2,不同之处在于可打印混合物包含体积为16.9%的炭黑填料和32.9%的硅粉(产品#us1121,德克萨斯州休斯顿的usresearchnanomaterials,1-3μm,余量为预聚物和催化剂)。以与实例2相同的方式打印、固化和热解可打印混合物。形成由碳结合相结合的多孔硅炭黑复合物,其保留固化增材制造部件的形状。以与实例2相同的方式,将此多孔无机体在空气中进一步加热至900℃。形成多孔二氧化硅体。

实例4:

重复实例2,不同之处在于可打印混合物包含24.4%的二氧化钛粉末(产品#us1017m,德克萨斯州休斯顿的usresearchnanomaterials,锐钛矿1.5μm)和平均粒径,余量为预聚物和催化剂。以与实例2相同的方式打印、固化和热解可打印混合物。形成由碳结合相结合的多孔二氧化钛体,其保留固化的增材制造部件的形状。以与实例2相同的方式将此多孔无机体在空气中进一步加热至900℃。形成多孔二氧化钛体。

实例5(a)和(b):

重复实例2,不同之处在于可打印混合物包含体积为36.6%的炭黑填料和14.9%的二氧化钛粉末,余量为预聚物和催化剂。以与实例2相同的方式打印、固化和热解可打印混合物。形成由碳结合相结合的多孔二氧化钛炭黑复合体,其保持固化增材制造部件的形状。将此部件在氮气气氛下进一步加热至1500℃,进行碳热还原,形成多孔氮化钛(由x射线衍射测定)体,其保持固化增材制造部件的形状。

重复实例2,不同之处在于可打印混合物包含体积为36.6%的炭黑填料和14.9%的二氧化钛粉末,余量为预聚物和催化剂。以与实例2相同的方式打印、固化和热解可打印混合物。形成由碳结合相结合的多孔二氧化钛炭黑复合体,其保持固化增材制造部件的形状。将此部件在真空下进一步加热至1500℃,进行碳热还原,形成多孔氮化钛(由x射线衍射测定)体,其保持固化增材制造部件的形状。

实例6:

重复实例2,不同之处在于可打印混合物包含体积为24.2%的炭黑填料和10.1%的三氧化钨粉末(产品#11828,马萨诸塞州黑弗里尔的阿法埃莎,10-20μm),余量为预聚物和催化剂。以与实例2相同的方式打印、固化和热解可打印混合物。形成由碳结合相结合的多孔氧化钨炭黑复合体,其保持固化的增材制造部件的形状。

实例7

将30g预聚物和10g研磨的碳纤维(250μm,cf-mld250,新泽西州阿斯伯里的asburycarbon)加入容器中并以2000rpm混合2分钟。加入3.5gelftextms7100炭黑(cabotcorp.)并以2000rpm混合2分钟。加入0.35g催化剂2,2'-二吗啉基二乙基醚(dmdee),并以2000rpm混合2分钟。然后将混合物转移到塑料袋中,并挤出到用于3d打印的注射器中。

实例1中描述的efd分配系统用于打印侧壁尺寸为50毫米的单壁方管。沿z方向打印40层挤出物,喷嘴为0.41毫米,台阶高度为0.3毫米,速度为25毫米/秒,压力为45psi,如实例1所述进行固化。

然后将固化的增材制造部件在氮气气氛下以0.2℃/min的加热速率热解至900℃,保持3小时,然后冷却以形成由碳结合相结合的多孔碳纤维部件。成形部件保持打印形状,并具有少量收缩。

通过混合20g1,4-环己烷二甲醇二缩水甘油醚(chdm-dge,陶氏化学,148.5g/eq)和3.25g硬化剂d.e.h.24,(三亚乙基四胺,陶氏化学,24g/eq),形成低粘度室温固化的环氧树脂。使用标准真空渗透方法渗透多孔碳纤维部件。擦去过量的环氧树脂,并使所述部件在室温下在羊皮纸上固化过夜。渗透部件的重量增加,并且表面上留有一些环氧树脂。根据重量增加并在扫描电子显微镜下观察,将部件完全渗透。

实例8

以与实例1相同的方式混合46wt%的预聚物,46wt%的无机填料,7wt%的炭黑填料和1wt%的催化剂,其中使用的催化剂是2,2'-二吗啉基二乙基醚(jeffcatdmdee催化剂,可从德克萨斯州伍德兰兹的亨斯迈集团(huntsmancorp.)获得)。无机填料是氧化铝、二氧化硅、氧化镁和氧化铁的喷雾干燥混合物(法国萨林德(salindres)的ceramiquestechniquesetindustrielless.a.,平均粒径为14.3微米(d50)。氧化铝与二氧化硅的比例为3:1。氧化镁+氧化铁的量为无机填料总重量的2%,其中镁与铁的比例为1:1。将粉末加入容器中并以2000rpm混合2分钟。加入0.35g催化剂(dmdee)并以2000rpm混合2分钟。然后将混合物转移到塑料袋中,然后挤出到用于3d打印的注射器中。

实例1中描述的efd分配系统用于打印侧壁尺寸为50毫米的单壁方管。沿z方向打印40层挤出物,喷嘴为0.41毫米,台阶高度为0.3毫米,速度为25毫米/秒,压力为85psi,如实例1所述进行固化。

如实例7所述,将固化部件在氮气中热解,形成由碳相结合的多孔莫来石前体。

然后将多孔莫来石前体在空气中进一步煅烧,以10℃/分钟的速率加热至1025℃,然后保持3小时,形成煅烧的前体莫来石体。如下将煅烧的前体莫来石体转化为多孔针状莫来石体。将煅烧的前体莫来石体在石英管中以2℃/分钟加热至700℃,同时保持反应器压力小于2mmhg。当反应器温度保持在700℃时,在4小时内缓慢加入四氟化硅,将莫来石前体转化为氟黄玉。形成氟黄玉后,除去残留的四氟化硅气体。然后用新鲜的四氟化硅气体填充反应器至目标压力400mmhg,并通过连续供应四氟化硅来维持,同时将反应器以2℃/分钟从700加热至1040℃。在1040℃下,停止供应四氟化硅,并以1℃/分钟的速度将反应器连续加热至1120℃。在从1040℃加热到1120℃的过程中,将氟黄玉转化为莫来石,释放出四氟化硅气体。此过量的四氟化硅气体流出反应器,同时保持反应器中的四氟化硅压力在400mmhg的目标莫来化压力下。在没有释放出进一步的四氟化硅之后冷却反应器。所形成的针状莫来石体具有71%的孔隙率,易于用手处理并且如晶界相所示由陶瓷键结合,如扫描电子显微照片所示。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1