一种散热型自润滑轴承板材的制作方法

文档序号:16596365发布日期:2019-01-14 19:41阅读:131来源:国知局
一种散热型自润滑轴承板材的制作方法

本发明属于轴承生产技术领域,具体涉及一种散热型自润滑轴承板材。



背景技术:

自润滑轴承由于适合于润滑不可靠或不可能之处而开始受到人们的重视。单一材料的自润滑轴承一般有铜粉末治金和塑料两种结构。铜粉末冶金结构强度比较低,难以适合高载荷的工作条件,在跑合期还很容易造成拉伤。在钢板背面采用高分子保护可以提高自润滑轴承寿命,但是带来了散热难题。



技术实现要素:

本发明的目的是提供一种散热型自润滑轴承板材,通过结构设计以及思路创新的协同作用,使得散热型自润滑轴承板材具备良好的机械性能,同时具有优异的层间稳定性,尤其是散热性能优异,有效提高了散热型自润滑轴承板材的使用性能、应用范围,可用于高端自润滑轴承的制备。

为达到上述发明目的,本发明采用的技术方案是:一种散热型自润滑轴承板材,包括润滑铜粉层、钢板层、铜颗粒层、氟树脂层、导热胶层、散热层、氧化锌层;所述散热层包括多孔纤维、气凝胶;所述多孔纤维位于气凝胶中;所述多孔纤维包括带孔纤维、多孔纤维胶层;所述多孔纤维胶层位于带孔纤维外表面;所述多孔纤维胶层的孔中设有石墨烯层结构;所述润滑铜粉层、钢板层、铜颗粒层、氟树脂层、导热胶层、散热层、氧化锌层依次设置。

本发明中,导热胶层的厚度为0.6~0.7微米,一方面可以形成良好的粘接性,另一方面可以将热量传送。

本发明中,润滑铜粉层、钢板层、铜颗粒层、氟树脂层、导热胶层、散热层、氧化锌层依次设置是指这几层结构按次序设置,具体可以参见说明书附图;使用时,将润滑铜粉层置于最里边用于摩擦,将氧化锌层置于最外面,从而发热的热量通过铜颗粒层迅速传导至气凝胶结构,从而有效散去,因此本发明不仅为一个有效散热结构,而且对板材制备的轴承使用寿命有利,背层结构保证了轴承层应有的强度和稳定的尺寸,提高了耐磨性能,也避免了拉伤现象的发生。

本发明中,各材料都是现有产品,比如润滑铜粉层为常规结构,利用铜粉与润滑材料混合烧结即可得到;氟树脂层的厚度为6微米,这个结构的设计可以提高轴承板材背面硬度,卷曲时可与气凝胶提供一定的缓冲效果;氧化锌喷涂在散热层表面即可得到氧化锌层,可以起到保护作用;本发明创造性的设计此结构,首次应用在自润滑轴承的前料板材复合结构中,可以发挥自身性能效果以及提高复合材料的柔韧性,更主要的是与多孔纤维的结合,配合石墨烯提高散热能力自发热。

本发明中,散热层的厚度为60~62微米,除了本身的机械性能好的效果外,还可发挥散热效果,而且此厚度与铝板可提高整体弯曲能力;气凝胶为常规二氧化硅气凝胶,通过溶胶凝胶法结合干燥制备得到,在溶胶置换溶剂后,加入多孔纤维,最后进行程序升温,制备得到散热层。

本发明中,散热层包括多孔纤维、气凝胶,所述气凝胶结构的孔隙率为38~42%,将多孔纤维设置在低孔隙率气凝胶结构中,既可以利用现有气凝胶柔软舒适的特性缓解带孔纤维的刚性,特别是,气凝胶结构进一步保证石墨烯层稳定在胶层中,而且不会影响散热效果。

本发明中,多孔纤维胶层的孔隙率为68~70%,可以在带孔纤维外表面涂覆带有致孔剂/石墨烯复合物的柔性高分子溶液,热处理在带孔纤维表面形成多孔胶层,并且石墨烯层位于孔中,可以发挥散热性能,又能够保持稳定,纤维可为聚乙烯醇纤维等,尤其是本发明采用的结构不会对纤维本身产生影响,避免现有技术采用导热纤维带来的纤维本身性能有影响的问题。

本发明首次公开了一种散热型自润滑轴承板材,得到的产品具有较好的硬度以及弯曲性,保持自润滑性能的同时,可以发挥散热效果,利用复合结构卷成轴承套,内部发热(180度)一段时间后关闭,通过内外平衡测试散热能力;通过纤维以及多层结构的设计,有效保障了散热稳定高效、各层界面效果好的优势。

附图说明

图1为散热型自润滑轴承板材结构示意图;

图2为散热层结构示意图;

图3为多孔纤维结构示意图;

其中,润滑铜粉层1、钢板层2、铜颗粒层3、氟树脂层4、导热胶层5、散热层6、氧化锌层7、多孔纤维8、气凝胶9、带孔纤维10、多孔纤维胶层11、石墨烯层结构12。

具体实施方式

下面结合附图以及实施例对本发明作进一步描述:

实施例一

参见附图1-3,散热型自润滑轴承板材包括润滑铜粉层1、钢板层2、铜颗粒层3、氟树脂层4、导热胶层5、散热层6、氧化锌层7;散热层包括多孔纤维8、气凝胶9;多孔纤维位于气凝胶中;多孔纤维包括带孔纤维10、多孔纤维胶层11;多孔纤维胶层位于带孔纤维外表面;多孔纤维胶层的孔中设有石墨烯层结构12;润滑铜粉层、钢板层、铜颗粒层、氟树脂层、导热胶层、散热层、氧化锌层依次设置。

上述氟树脂层的厚度为6微米;气凝胶结构的孔隙率为40%;多孔纤维胶层的孔隙率为70%;散热层的厚度为60微米;导热胶层的厚度为0.6微米;铜颗粒的粒径为3~5微米;氧化锌层的厚度为25纳米。图中石墨烯结构、纤维等只标注一处,气凝胶的孔隙未标示,不影响本领域技术人员的理解。

对比例一

自润滑轴承板材包括润滑铜粉层、钢板层。

对比例二

自润滑轴承板材包括润滑铜粉层、钢板层、铜颗粒层、氟树脂层。上述氟树脂层的厚度为6微米;铜颗粒的粒径为3~5微米。

上述实施例中,氟树脂来自凯英薄膜,润滑铜粉层、钢板层的烧结为现有技术;以对比例一为基础比较,性能测试发现,实施例一的散热型自润滑轴承板材弯曲强度提高1.53倍,散热能力为0.95倍;对比例二的自润滑轴承板材弯曲强度提高1.12倍,散热能力为0.76倍;散热层厚度变大、变小时,散热性能、弯曲性能较实施例一下降;如果不设置铜颗粒层,氟树脂层剥离性能下降一半多。



技术特征:

技术总结
本发明公开了一种散热型自润滑轴承板材包括润滑铜粉层、钢板层、铜颗粒层、氟树脂层、导热胶层、散热层、氧化锌层;散热层包括多孔纤维、气凝胶;多孔纤维位于气凝胶中;多孔纤维包括带孔纤维、多孔纤维胶层;多孔纤维胶层位于带孔纤维外表面;多孔纤维胶层的孔中设有石墨烯层结构;润滑铜粉层、钢板层、铜颗粒层、氟树脂层、导热胶层、散热层、氧化锌层依次设置;提高自润滑轴承优异散热性能的同时,可以发挥弯曲效果。

技术研发人员:梁国正;韩建;王志龙
受保护的技术使用者:嘉兴立一新材料有限公司
技术研发日:2018.10.31
技术公布日:2019.01.11
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1