一种轻质合金和复合材料高效异质接头及其制备方法与流程

文档序号:18667037发布日期:2019-09-13 20:18阅读:310来源:国知局
一种轻质合金和复合材料高效异质接头及其制备方法与流程

本发明涉及航空材料连接技术领域,特别涉及一种轻质合金和复合材料高效异质接头及其制备方法。



背景技术:

轻质合金和复合材料是航空领域最重要的两种结构材料;除起落架和发动机外,飞机的绝大多数结构是采用轻质合金和复合材料制造;因此,轻质合金和复合材料之间的连接是飞行器制造过程中不可避免的重要环节。机械紧固连接和胶接技术是目前最常用的两种异质材料连接技术。然而,机械紧固连接需要对轻质合金和复合材料钻孔,该过程中极易导致复合材料产生分层缺陷,降低复合材料的本体强度;另外,螺栓或铆钉使结构件整体重量增加,连接孔横截面积较小使得连接处的应力高度集中。轻质合金和复合材料的异质胶接技术能够克服机械紧固连接存在的问题,然而胶接技术需要长时间的固化,施工周期较长,成本高、效率低;另外,胶接头为难拆卸的结构,对施工过程精度要求高、容错率低。

为了克服金属和复合材料结构机械连接和胶接工艺存在的问题,近年来兴起了复合材料焊接(熔融粘接)技术,主要是将光、电、电磁、超声等能量转变成的热量,对两种或两种以上同种或异种材料加热使搭接区域热塑性树脂熔化,通过热塑性树脂和焊接母材间的原子、分子扩散结合或微观机械互锁等作用连接成一体的工艺。该技术非常适合飞行器复合材料零部件装配和修复的一项方便快捷、短周期的连接技术。

电阻熔融粘接(熔接)技术,也称为原位植入电阻焊技术,已发展成为金属与复合材料结构传统连接的可替代连接技术;具有工艺流程简单,设备灵活简便,效率高,费用低廉,能连续焊接大面积区域,并且在焊接过程中不需要移动焊件等诸多优势。然而,热塑性树脂与金属表面的粘结强度低,热塑性树脂与金属材料界面脱粘是金属和复合材料异质接头主要的失效模式。对金属材料表面进行磨损、喷砂、打磨、酸/碱/电化学/等离子/激光蚀刻等物理或化学粗化处理,能够改善金属材料表面张力、粗糙度或化学性质,有助于热塑性树脂与金属表面间机械互锁、物理吸附以及化学键合作用的增强,从而金属/复合材料异质接头力学性能的强化。然而,这些表面处理技术均为损伤处理,对连接件本身性能有一定的损害,另外需要昂贵的设备且有污染环境之虞。



技术实现要素:

针对现有技术存在的问题,本发明提供一种轻质合金和复合材料高效异质接头及其制备方法,本发明解决技术问题的主要途径是通过火焰法合成工艺(催化剂与火焰发生作用),在轻质合金表面原位生长cnt层,进而利用cnt层覆盖的轻质合金,绝缘热塑性纤维预浸料、加热元件、热塑性树脂薄膜、热塑性复合材料等通过电阻加热熔融粘接工艺构筑轻质合金和复合材料高效异质接头。cnt层的引入改善了热塑性树脂胶层与轻质合金界面粘结强度;绝缘热塑性纤维预浸料的引入避免了加热元件电流和产生的热量通过轻质合金泄漏;热塑性树脂薄膜的引入提供了更为丰富的粘接剂,能够密实填充接头区域空隙并粘结相关表面;三种设计均有助于轻质合金和复合材料高效异质接头的力学性能的改善。本发明的轻质合金和复合材料高效异质接头力学强度优异,实施过程简单、高效、快捷,绿色环保,成本极低,在航空、航天、汽车等金属/复合材料异质连接领域有广泛的应用前景。

本发明的一种轻质合金和复合材料高效异质接头包括待粘接区域表面覆盖cnt层的轻质合金、第一热塑性树脂薄膜、绝缘热塑性纤维预浸料、加热元件、第二热塑性树脂薄膜、热塑性复合材料;其中,轻质合金表面cnt层和热塑性复合材料之间设置有加热元件,加热元件和轻质合金表面cnt层之间设置有第一热塑性树脂薄膜、绝缘热塑性纤维预浸料,在加热元件和热塑性复合材料之间设置有第二热塑性树脂薄膜。

所述的待粘接区域表面覆盖cnt层的轻质合金中,轻质合金为铝合金、钛合金、铝锂合金、铝镁合金中的一种。

所述的待粘接区域表面覆盖cnt层的轻质合金中,cnt层为多壁cnt层,cnt平均长度为10~30μm。

所述的绝缘热塑性纤维预浸料为纤维和热塑性树脂复合制备的单层复合材料,厚度为0.15~0.2mm。

所述的纤维为玻璃纤维、芳纶纤维、pbo纤维、玄武岩纤维中的一种或几种。

所述的加热元件为不锈钢网、碳纤维织物中的一种。

所述的第一热塑性树脂薄膜、第二热塑性树脂薄膜、绝缘热塑性纤维预浸料中的热塑性树脂,其选用与待焊接复合材料基体一致或极性相近的热塑性树脂制备,具体为聚碳酸酯(pc)、聚丙烯腈-丁二烯-苯乙烯(abs)、尼龙(pa)、聚苯硫醚(pps)、聚醚酰亚胺(pei)、聚醚酮(pek)、聚醚醚酮(pekk)、聚醚醚酮(peek)、聚芳醚腈(pen)、含酞侧基聚醚酮(pek-c)、含酞侧基聚醚砜(pek-s)或含杂萘联苯结构聚芳醚砜酮(ppesk)中的一种,热塑性树脂薄膜的厚度为0.1~0.3mm。

所述的热塑性复合材料为无机颗粒、晶须、短纤维或连续纤维增强的热塑性树脂基复合材料;或者采用热塑性树脂薄膜或单层预浸料进行表面塑化处理的热固性复合材料。

本发明的一种轻质合金和复合材料高效异质接头的制备方法,包括以下步骤:

步骤1:轻质合金表面预处理

将轻质合金待粘接区域表面的氧化层去除,得到预处理后的轻质合金;

步骤2:火焰法制备cnt层

将催化剂溶液喷涂在预处理后的轻质合金粘接区域表面,烘干,得到负载催化剂的轻质合金;

将负载催化剂的轻质合金粘接区域置于燃烧火焰中,在800~1100℃保持3~20min,在轻质合金待粘接区域表面生成互相纠缠的cnt层,得到负载cnt层轻质合金;

步骤3:制备轻质合金和复合材料高效异质接头

将第一热塑性树脂薄膜、绝缘热塑性纤维预浸料、加热元件、第二热塑性树脂薄膜按照顺序铺叠,放置于负载cnt层轻质合金和热塑性复合材料搭接区域,其中绝缘热塑性纤维预浸料靠近负载cnt层轻质合金一侧,得到待加工焊接件;

向待加工焊接件施加0.1~0.5mpa压力,通电加热,调整电流或电压,使得焊接区域的最高温度为200~400℃,焊接时间为30s~180s,得到轻质合金和复合材料高效异质接头。

所述的步骤2中,所述的催化剂溶液中,催化剂为氯化铁、氯化镍、氯化钴、硝酸铁、硝酸镍、硝酸钴中的一种或几种,优选为硝酸镍。

所述的步骤2中,所述的催化剂溶液,其物质的量浓度为0.5~2mol/l,优选为1mol/l。

所述的步骤2中,燃烧火焰为乙醇火焰、甲醇火焰、甲烷火焰、丁烷火焰、庚烷火焰、丙酮火焰、乙炔火焰或乙烯火焰中的一种或几种,优选为乙醇火焰。

所述的步骤2中,燃烧温度优选为1000℃,保持时间优选为10min。

本发明中,制备的轻质合金和复合材料高效异质接头,根据焊接母材以及热塑性树脂薄膜种类的不同,各种轻质合金和复合材料高效异质接头的拉剪强度(lss)达7~30mpa。

本发明的一种轻质合金和复合材料高效异质接头及其制备方法,其有益效果为:

1)本发明采用原位植入电阻焊工艺制备轻质合金/复合材料高效异质接头,具有焊接工艺简单、施工周期短(仅需要几分钟)、无需昂贵设备、绿色环保等优点;另外电阻加热元件植入体保留在接头内部,采用二次通电的方式能够进行焊接接头的拆卸修复和二次焊接。

2)采用火焰法在轻质合金表面原位生长cnt层,cnt层的纳米增强效应能够增强轻质合金表面和热塑性树脂间的界面强度,以及有利于在电阻焊接中增强轻质合金和复合材料高效异质接头的力学强度,该工艺实施过程便捷、成本极低、绿色环保、灵活性大、适应性强、容易工业化推广。

3)绝缘热塑性纤维预浸料在熔融焊接加压过程中能够保持更好的完整性,有助于保护加热元件电流和产生的热量不损失,提高焊接效率;另外,也有助于解决碳纤维复合材料和铝合金异质接头间的电化学腐蚀。

附图说明

图1为本发明实施例1的一种轻质合金和复合材料高效异质接头的结构示意图:1-轻质合金;2-cnt层;3-第一热塑性树脂薄膜;4-绝缘热塑性纤维预浸料;5-加热元件;6-第二热塑性树脂薄膜;7-复合材料;

图2为本发明实施实例1钛合金表面cnt层的sem图;

图3为本发明实施实例1钛合金和玻璃纤维(gf)/pei复合材料接头焊接过程中采用的焊接装置示意图:1-轻质合金,本实施例为钛合金;2-cnt层;3-第一热塑性树脂薄膜,本实施例为第一pei薄膜;4-绝缘热塑性纤维预浸料,本实施例为gf/pei预浸料;5-加热元件,本实施例为不锈钢网;6-第二热塑性树脂薄膜,本实施例为第二pei薄膜;7-复合材料,本实施例为gf/pei复合材料;8-压力传感器;9-电源;。

具体实施方式

为使本发明实现的技术手段、创新特征、达成效果易于了解,下面结合具体的实施方式,进一步阐述本发明。

实施例1

一种轻质合金和复合材料高效异质接头的制备方法,包括以下步骤:

步骤1:轻质合金表面预处理

将钛合金样件用400目砂纸打磨,得到预处理后的钛合金;

步骤2:火焰法制备cnt层

将物质的量浓度为1mol/l的硝酸镍溶液通过喷枪均匀喷涂在打磨后的钛合金表面,烘干,得到负载催化剂的钛合金;

将负载催化剂的钛合金待焊接区域放在酒精火焰温度为1000℃的位置处,停留10分钟,在钛合金待粘接区域表面生成互相纠缠的cnt层,制备出负载cnt层钛合金;对制备的负载cnt层钛合金进行sem扫描分析,得到钛合金表面cnt层的sem图见图2。

步骤3:制备轻质合金和复合材料高效异质接头

将第一pei薄膜3、不锈钢网5、玻璃纤维(gf)/pei预浸料4以及第二pei薄膜6按顺序放置在负载cnt层钛合金和gf增强pei热塑性树脂基复合材料的搭接待焊区域(放置顺序见图1);其中,玻璃纤维(gf)/pei预浸料4靠近负载cnt层钛合金一侧,得到待加工焊接件。

向待加工焊接件放置于焊接装置中,装置图见图3,通过压力传感器8施加0.3mpa初始压力,接通电源9,调整电压或电流使焊接区域的最大温度达360℃,焊接时间为90s,冷却,得到钛合金-gf/pei热塑性树脂基复合材料高效异质接头。

实施例2

一种轻质合金和复合材料高效异质接头的制备方法,包括以下步骤:

步骤1:轻质合金表面预处理

将铝合金样件用400目砂纸打磨,得到预处理后的铝合金;

步骤2:火焰法制备cnt层

将物质的量浓度为1mol/l的硝酸镍溶液通过喷枪均匀喷涂在打磨后的铝合金表面,烘干,得到负载催化剂的铝合金;

将负载催化剂的铝合金待焊接区域放在酒精火焰温度为800℃的位置处,停留10分钟,在铝合金待粘接区域表面生成互相纠缠的cnt层,制备出负载cnt层铝合金。

步骤3:制备轻质合金和复合材料高效异质接头

将第一pei薄膜、不锈钢网、gf/pei预浸料以及第二pei薄膜按顺序放置在铝合金和gf/pei复合材料的搭接待焊区域;其中,gf/pei预浸料靠近负载cnt层铝合金一侧,得到待加工焊接件。

向待加工焊接件施加0.3mpa初始压力,接通电源,调整电压或电流使焊接区域的最大温度达360℃,焊接时间为90s,冷却,得到铝合金-gf/pei复合材料高效异质接头。

实施例3

一种轻质合金和复合材料高效异质接头的制备方法,包括以下步骤:

步骤1:轻质合金表面预处理

将钛合金样件用400目砂纸打磨,得到预处理后的钛合金;

步骤2:火焰法制备cnt层

将物质的量浓度为1mol/l的硝酸镍溶液通过喷枪均匀喷涂在打磨后的钛合金表面,烘干,得到负载催化剂的钛合金;

将负载催化剂的钛合金待焊接区域放在酒精火焰温度为1000℃的位置处,停留20分钟,在钛合金待粘接区域表面生成互相纠缠的cnt层,制备出负载cnt层钛合金。

步骤3:制备轻质合金和复合材料高效异质接头

将第一peek薄膜、不锈钢网、gf/peek预浸料以及第二peek薄膜按顺序放置在负载cnt层钛合金和gf/peek复合材料的搭接待焊区域;其中,gf/peek预浸料靠近负载cnt层钛合金一侧,得到待加工焊接件。

向待加工焊接件施加0.3mpa初始压力,接通电源,调整电压或电流使焊接区域的最大温度达380℃,焊接时间为90s,冷却,得到钛合金-gf/peek复合材料高效异质接头。

实施例4

一种轻质合金和复合材料高效异质接头的制备方法,包括以下步骤:

步骤1:轻质合金表面预处理

将钛合金样件用400目砂纸打磨,得到预处理后的钛合金;

步骤2:火焰法制备cnt层

将物质的量浓度为1mol/l的硝酸镍溶液通过喷枪均匀喷涂在打磨后的钛合金表面,烘干,得到负载催化剂的钛合金;

将负载催化剂的钛合金待焊接区域放在酒精火焰温度为1000℃的位置处,停留5分钟,在钛合金待粘接区域表面生成互相纠缠的cnt层,制备出负载cnt层钛合金。

将第一ppesk薄膜、碳纤维织物、gf/ppesk预浸料以及第二ppesk薄膜按顺序放置在钛合金和gf/ppesk复合材料的搭接待焊区域;其中,gf/ppesk预浸料靠近负载cnt层钛合金一侧,得到待加工焊接件。

向待加工焊接件施加0.5mpa初始压力,接通电源,调整电压电流使焊接区域的最大温度达390℃,焊接时间为90s,冷却,得到钛合金-gf/ppesk复合材料焊接件。

实施例5

一种轻质合金和复合材料高效异质接头的制备方法,包括以下步骤:

步骤1:轻质合金表面预处理

将铝合金样件用400目砂纸打磨,得到预处理后的铝合金;

步骤2:火焰法制备cnt层

将配置好的物质的量浓度为1mol/l的硝酸镍溶液通过喷枪均匀喷涂在打磨后的铝合金表面,烘干,得到负载催化剂的铝合金;

将负载催化剂的铝合金待焊接区域放在酒精火焰温度为800℃的位置处,停留10分钟,在铝合金待粘接区域表面生成互相纠缠的cnt层,制备出负载cnt层铝合金。

步骤3:制备轻质合金和复合材料高效异质接头

将第一pa薄膜、不锈钢网、短切芳纶纤维/pa预浸料以及第二pa薄膜按顺序放置在铝合金和短切碳纤维/pa复合材料的搭接待焊区域;其中,从铝合金向短切碳纤维/pa复合材料方向,依次为负载cnt层、短切芳纶纤维/pa预浸料、第一pa薄膜、不锈钢网、第二pa薄膜,得到待加工焊接件。

向待加工焊接件施加0.1mpa初始压力,接通电源,调整电压电流使焊接区域的最大温度达250℃,焊接时间为30s,冷却,得到铝合金-短切碳纤维增强pa复合材料高效异质接头。

实施例6

一种轻质合金和复合材料高效异质接头的制备方法,包括以下步骤:

步骤1:轻质合金表面预处理

将钛合金样件用400目砂纸打磨,得到预处理后的钛合金;

步骤2:火焰法制备cnt层

将物质的量浓度为2mol/l的氯化铁和氯化钴的混合溶液(按摩尔比1:1)通过喷枪均匀喷涂在打磨后的钛合金表面,烘干,得到负载催化剂的钛合金;

将负载催化剂的钛合金待焊接区域放在乙炔火焰温度为1100℃的位置处,停留5分钟,在钛合金待粘接区域表面生成互相纠缠的cnt层,制备出负载cnt层钛合金。

将第一pei薄膜、碳纤维织物、gf/pei预浸料以及第二pei薄膜按顺序放置在钛合金和pei薄膜进行表面塑化处理的环氧树脂热固性复合材料的搭接待焊区域;其中,gf/pei预浸料靠近负载cnt层钛合金一侧,得到待加工焊接件。

向待加工焊接件施加0.3mpa初始压力,接通电源,调整电压电流使焊接区域的最大温度达400℃,焊接时间为30s,冷却,得到钛合金-pei薄膜进行表面塑化处理的环氧树脂热固性复合材料焊接件。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1