荧光灯点亮装置的制作方法

文档序号:8017573阅读:214来源:国知局
专利名称:荧光灯点亮装置的制作方法
技术领域
本发明关于一个荧光灯点亮装置。具体地说,本发明是关于一个使用多开关装置来点亮荧光灯的点亮装置。
图6所示的一个所谓的串联反相器是一个典型的已有技术的荧光灯点亮装置的例子。在图6所示的电路中,在荧光灯8被启动前,电流通过整流器电路3从一个交流电源1流出。该整流器电路3对交流电压进行整流。整流后的电压不仅给一个脉动滤波电容器4充电,而且还通过电阻11、23和电流互感器25的次级线圈25C来给一个触发电容器14充电。当触发电容器14的电压达至FET(场效应晶体管)6的栅极门限电压时,14中积累的电荷就加到FET6的栅极上,这样,FET6就导通了。
一旦FET6导通,电流就从交流电源1流出,流经整流电路3、谐振电容7、荧光灯8的一个电极8a、一个预热电容9、荧光灯8的另一个电极8b、电感24、电流互感器25的初级线圈25b及FET6的漏极,同时,电流的量增加。然后,电流再经过整流电路3回到交流电源1。
然后,通过电流流经电流互感器25的初级线圈25b在其次级线圈25c上产生一个电压,由此给FET6的栅极加上一个栅级电压并使之保持导通。同时,尽管流经电流互感器25的初级线圈25b的电流持续增大,电流互感器25的芯子会在某一时刻发生磁饱和,此时,电流互感器25就失去了其作为电感的功能。
当电流互感器25的芯子发生磁饱和时,其次级线圈25c就不再输出电压,其结果是加在FET6的栅极和源级间的电压下降至栅极的门限电压或以下,这样FET就截止了。
这里要清楚,电流互感器25的次级线圈的输出极性在其芯子达到磁饱和时就反转了,这是由于由存在电流互感器25中的能量产生的电流随时间有一个变化的量的原故。这就是说,由于加在FET5的栅极与源极间的电压增加了,所以FET5很快就导通了。
一旦FET5导通,电流就会流过谐振电容7、FET5、电流互感器25的初级线圈25b、电感器24、荧光灯8的一个电极8b、预热电容9和荧光灯8的另一个电极8a。
由于电流反转而使得电流互感器25的芯子再次达到磁饱和时,电流互感器25的次级线圈25a就不再有电压输出,其结果是加在FET5的栅极与源极间的电压降至栅极门限电压或以下,这样FET5就截止了。随后,当电流互感器25的次级线圈内的输出极性反转后,FET6就再次导通。以后这个操作就重复执行下去。
电流流经荧光灯8的电极8a和8b,由此给它们加热。另外,由于谐振而具有很大振幅的一个电压同时加至荧光灯8的电极上,电极的温度上升,这样就点亮了荧光灯8。
正如前面所描述的,已有技术的荧光灯点亮装置使用一个电流互感器来以一个无线电的频率切换荧光灯。然而由于在这样一个已有技术的荧光灯点亮装置中使用电流互感器使得该装置的尺寸不能减小。而且由于电流互感器很贵,所以这种点亮装置的生产成本就很高,这一点非常不利。
本发明的荧光灯点亮装置包括一个第一串联连接体,它包括一个第一开关装置和一个第二开关装置,它们与一个电源电路连接;一个第二串联连接体,它包括一个第一电感、一个第一电容器和一个荧光灯,它们连在电源电路的一端和第一与第二开关装置的中点之间;一个第三串联连接体,它包括一个第二电感、一个第二电容及一个第三电感,该电感与第一电感电磁耦合,第三串联连接体给第一开关装置的控制端或第二开关装置的控制端提供一个控制电压;和一个与第二电容并联的恒压装置。在荧光灯点亮装置中,该恒压装置给控制端提供一个正的控制电压和一个负的控制电压,正控制电压相对于与上述控制端相对应的阴极端来讲是正的,而负控制电压相对于上述阴极端而来讲是负的,正控制电压的绝对值要比负控制电压的绝对值大。
在一个实施例中,第二电感与第二电容的谐振频率要大于第一和第二接通装置开关的频率。
这样,这里所描述的发明就具有了以下优点它能提供一个能启动和点亮荧光灯的荧光灯点亮装置,其构形尺寸小,简单且成本低,并且不用电流互感器。
在阅读并理解了下面结合着附图对本发明进行的详细描述后,那些精通这方面技术的人就会明白本发明的这一优点及其它优点。


图1是本发明的第一实施例中荧光灯点亮装置的电路图。
图2是一个电路图,它显示出由两个齐纳二极管组成的串联对两端之间的电压VZD及流过这两个齐纳二极管的电流IZD的方向。
图3是通过电压VZD和电流IZD之间的关系来表示串联齐纳二极管的特性的曲线图。
图4所示是显示第一实施例中FET5和FET6的栅源电压VGS和漏极电流ID的曲线图。
图5所示是显示第二实施例中FET5和FET6的栅源电压VGS和漏极电流ID的曲线图。
图6所示的是一个已有技术的荧光灯点亮装置的电路图。
下面参照附图来说明本发明的实施例。
在本说明中,一个开关装置的“控制端”集体地代表FET(场效应管)的栅极、双极型晶体管的基极、IGBT(绝缘栅双极型晶体管)的栅极;一个开关装置的“阳极端”集体地代表FET的漏极、双极型晶体管的集电极和IGBT的集电极;一个开关装置“阴极端”集体地代表FET的漏极、双极型晶体管的集电极和IGBT的集电极;一个开关装置的“阴极端”则集体地代表FTE的源极、双极型晶体管的发射极和IGBT的发射极。
图1是本发明的第一实施例中荧光灯点亮装置的电路图。荧光灯点亮装置100从一个电源,例如交流电源1,接收用于点亮荧光灯8的电能。交流电源是一个典型的交流出口,它给整流电路3输出一个均方根值为100V的交流电压。在交流电源1和整流电路3之间有一个防噪声电容器2,用来防止由荧光灯点亮装置100产生的开关噪声泄漏到交流电源1。
整流电路3接收交流电流,对它进行全波整流并把所得的脉动电流输出给脉动滤波电容器4。该脉动滤波电容器4接收经过全波整流的脉动电流,并在内部积累电荷,由此就减小了电流的脉动性。其结果是在端子VIN和端子GND之间产生了一个已被转变为实际上是直流的电压。当交流电源的交流电压的均方根值为100V时,在端子VIN处相对于端子GND的电压大约为140V。
FET5的漏极(或阳极)与VIN端子相连,FET5的源极(或阴极)与FET6的漏极(或阳极)相连,FET6的源极(或阴极)与GND端子相连。即FET5与FET6是彼此串联的。
谐振电容7、荧光灯8的一个电极8a、预热电容9、荧光灯8的另一个电极8b及扼流线圈10的初级线圈10b在VIN端子和INT端子间依此顺序串接起来。端子INT是FET5和FET6间的中间点。即在这点上,FET5的源极与FET6的漏极相连。注意,在本说明中,“端子”并不总是需要有能用于对外连接的物理端子的结构。例如,在本电路图中,VIN、INT、GND等等这些端子中每一个都对应着实际产品中印刷电路板上一个铜镀层的一部分。
荧光灯点亮装置100,包括连在荧光灯8的一对电极8a和8b间的预热电容器9一起,构成一个无线电频率反转器电路。荧光灯点亮装置100包括一个交直流转换电路,或者把由交流电源1出来流向端子VIN和GND的交流电流转变为直流电流的电路。但既使不包括本电路的装置也属于本发明的范围。例如,从荧光灯点亮装置100中除去交直流转换电路,在端子VIN和GND间仍可获得直流电压。在这种情况下,所接受的直流电流从谐振电容7、荧光灯8和初级线圈10b流过,它们是通过交替导通的FET5和FET6串接在一起的,由此点亮荧光灯8。
下面描述一个驱动FET5和6的栅极的电路。扼流线圈10包括一个初级线圈10b和两个次级线圈10a、10c。当电流流经初级线圈10b时,次级线圈10a和10c就分别产生驱动FET5和6的栅极的电压,这样它们就能自振荡了。
串接起来的次级线圈10a和电感21、一对串接的齐纳二极管19和20及一个电容器22并联在FET5的栅极与INT端子间。电阻11和电容12并联在FET5的漏极与源极间。
串接起来的次级线圈10c和电感15、一对串接的齐纳二极管17、18及电容器16并联连接在FET6的栅极和一个端子VL间。电阻23连在FET6的栅极与端子INT间。一个触发电容器14连在端子VL和GND间。
经电阻11和23通过端子VIN提供的电荷在触发电容器14中积累。相反,电阻13对积累在触发电容器14中的电荷进行放电,它连在齐纳二极管对17、18的中点与端子GND之间。
下面描述齐纳二极管对17、18和19、20。图2是显示串联齐纳二极管对两端的电压VZD和流经该齐纳二极管对的电流IZD的方向的电路图。图3是表示串联的齐纳二极管的特性的曲线,这个特性用电压VZD与电流IZD间的关系来表示。当电压VZD、电流IZD如图2所示的那样时,在如图3所示的从一个正控制电压VP至一个负控制电压VN的范围内,电阻几乎是无穷大的。然而,一旦控制电压超过了VP或VN,电阻就几乎为零了。由此,如图3所示,稳压齐纳二极管17和18把将要加至FET6的栅极上的控制电压固定在正控制电压VP和负控制电压VN。换句话说,齐纳二极管17和18把负控制电压VN和正控制电压VP加到FET6的栅极上(即控制端)。电压VP相对于FET6的源极(即阴极)来讲是正的,而电压VN相对于FET6的源极来讲是负的。
在荧光灯点亮装置100中,尽管正控制电压的绝对值可能与负控制电压的绝对值相等,但象在后面将描述的第二实施例中那样,正控制电压的绝对值最好大于负控制电压的绝对值。另一个齐纳二极管对19和20的特性与齐纳二极管对17和18的特性相同。
下面描述荧光灯点亮装置100的操作。在荧光灯8启动前,由交流电源1(如一个交流出口)来的商用交流电压流过防噪声电容2、整流电路3和脉动滤波电容4以便把它实质上转变为直流电压。产生于端子VIN和GND之间的直流电压2使得电流流经谐振电容7、荧光灯8的电极8a、预热电容9、荧光灯8的另一个电极8b、扼流线圈10的初级线圈10b和FET6。其结果是,脉动滤波电容4被充电至交流电源1所提供的电压峰值(即140V)。接着,通过电阻11和13、电感15和扼流线圈10的次级线圈10c,触发电容14进行充电。
当触发电容14两端的电压达到FET6的栅极门限电压时,积累在触发电容14中的电荷就被提供到FET6的栅极以便使FET6导通。一旦FET6导通,端子VIN和GND间的电压就使流经谐振电容7、荧光灯8的一个电极8a、预热电容9、荧光灯8的另一个电极8b、扼流线圈10的初级线圈10b和FET6的电流的量增大。
由于电流流过扼流线圈10的初级线圈10b,在扼流线圈10的次级线圈10c的两端就产生了一个电压。其结果是FET6的栅极电压升高,FET6持续导通。
由于与扼流线圈10的次级线圈10c连在一起的电感15与电容16的谐振作用,流过次级线圈10c的电流很快就会以相反的方向流动。其结果是由于加在FET6的栅极和源极间的电压变得低于FET6的栅极门限电压,所以FET6截止。
如图1所示,轭流线圈10的次级线圈10a的缠绕方向与次级线圈10c的缠绕方向相反。所以,如果次级线圈10c两端的电压下降,则次级线圈10a两端的电压就增加,因此,FET6截止后,加在FET5的栅源极间的电压也上升,由此FET5导通。
一旦FET5导通,积累在谐振电容7中的电荷就在一个由FET5、扼流线圈10、荧光灯8的电极8b、预热电容9和荧光灯灯8的另一个电极8a组成的闭合电路中移动。电流在由扼流线圈10的初级线圈10b、谐振电容7和预热电容9组成的谐振电路中谐振。
电感21和电容22与扼流线圈10的次级线圈10a相连接,由于它们二者的谐振,流过次级线圈10a的电流很快就开始以相反的方向流动。其结果,由于加在FET5的栅源极间的电压变得低于FET5的栅极门限电压,FET5就截止。
如图1中所示,扼流线圈10的次级线圈10c的缠绕方向与次级线圈10a的缠绕方向相反。所以,如果次级线圈10a两端的电压下降,则相反次级线圈10c两端的电压就上升。结果在FET5截止后,加在FET6的栅、源极间的电压也上升,由此FET6导通。从此以后,重复上述操作,FET5和6就交替导通。
交替流过FET5和6的电流流过荧光灯8的电极8a和8b,由此对它们进行加热。另外,有一个因谐振而获得大振幅的电压也同时加在荧光灯8的电极8a和8b上。这样荧光灯8就被点亮,并且由于电极上所产生的热量及电极间的高压使得荧光灯8能够保持持续点亮状态。
在本发明的第一实施例的荧光灯点亮装置中,用无线电频率来驱动FET5和6的栅极,使之实现开关装置的功能,这一点分别是由电感21与电容22的谐振和电感15与电容16的谐振来实现的,所以,与已有技术的荧光灯点亮装置不同,荧光灯可以不用电流互感器就能被启动和点亮。其结果是,本发明可以提供一个其构形尺寸小、简单且成本低的荧光灯点亮装置。
荧光灯点亮装置100的举例性电路常数如下交流电源1的输出电压的均方根值100V初级线圈10b的电感量0.7mH初级线圈10b的匝数136匝次级线圈10a的匝数10匝次级线圈10c的匝数10匝谐振电容7的电容量0.1uF预热电容9的电容量9100PF脉动滤波电容4的电容量33uF触发电容14的电容量0.033uF,及齐纳二极管17到20的齐纳电压10.0V。(即正控制电压VP=+10.0V,负控制电压VN=-10.0V)。
本发明的第一实施例中的荧光灯点亮装置的电路常数并不限于上述举例值。然而,使用这些举例值足够启动并点亮荧光灯。
注意,电感15和电容16的谐振频率最好能大于FET5和6的开关频率。例如电感15和电容16的谐振频率大约为100KHZ而FET5和6的开关的频率在从大约10KHZ到75KHZ的范围内。对于电感21和电容22的谐振频率也有这个关系。
在本发明的第二实施例的荧光灯点亮装置中,不仅具有第一实施例的功能,而且还具有确保防止短路电流的功能。这个短路电流是由于荧光灯点亮装置100中FET5和6同时导通而将端子VIN和GND短路而引起的。在第一实施例的荧光灯点亮装置的构形中,理论上FET5和6是不能同时导通的。然而实际上,由于电路元件的常数、温度特性等的变化,FET5和6是有可能同时导通的。
图4是一个显示第一实施例中FET5和6的栅源极电压和漏极电流的曲线图。在图4中,横轴代表时间,纵轴代表栅源极电压VGS和漏极电流ID。在第一实施例中,正控制电压VP的绝对值(例如+10.0V)与负控制电压VN的绝对值相等(例如10.0V)。所以如图4所示,在FET5的导通周期TON5与FET6的导通周期TON6之间并不存在一个所谓的“死亡时间”TD。理论上在图4所示的时间里,没有短路电流流过。然而在实际产品中,由于电路元件的参数、温度特性等方面发生了某些变化,导通周期TON5和TON6可能会在时间轴上发生彼此重叠。在这种情况下,由于在某个时间周期中FET5和6同时导通,有一个短路电流流过,所以大量的电功率就通过FET5和6失去了。另外,由于FET5和6产生热量,所以它们损耗得比预期的要快。
图5是一个显示第二实施例的FET5和6的栅源极电压VGS和漏极电流ID的曲线图。在图5中,横轴代表时间,纵轴代表栅源电压VGS和漏极电流ID。在第二实施例中,正控制电压VP的绝对值(例如+10.0V)大于负控制电压VN的绝对值(例如-8.2V)。所以如图5中所示,在FET5的导通周期TON5和FET6的导通周期TON6之间,存在着一个所谓的“死亡时间”TD。
在第二实施例中,正控制电压VP的绝对值大于负控制电压VN的绝对值。即尽管第二实施例的荧光灯点亮装置与第一实施例中的荧光灯点亮装置100有着相同的电路构形,但齐纳二极管17到20的齐纳电压V17到V20都满足以下关系V17<V18和V19<V20。通过把齐纳二极管17到20齐纳电压设置得满足上述关系,就可以使图5所示的死亡时间存在。即,就一定能防止FET5和6同时导通。
正如上面所描述的,在第二实施例中,由于能防止开关装置同时导通,所以就有可能防止开关装置的性能损耗得比预期快。
除了齐纳二极管之外,第二实施例的电路常数与第一实施例的电路常数相同。举例性常数如下交流电源1的输出电压的均方根值为100V初级线圈10b的电感量0.7mH初级线圈10b的匝数136匝次级线圈10a的匝数10匝次级线圈10c的匝数10匝谐振电容7的电容量0.1uF预热电容9的电容量9100PF脉动滤波电容4的电容量33uF触发电容14的电容量0.033uF齐纳二极管17和19的齐纳电压8.2V。(即负控制电压VN=-8.2V),齐纳二极管18和20的齐纳电压10.0V(即正控制电压VP=+10.0V)。
本发明的第二实施例中的荧光灯点亮装置的电路常数并不限于上述的举例值。然而使用这些举例值足够使荧光灯启动并点亮,且一定能防止短路电流。
在上述第一、第二实施例中,FET被用作为带有控制端的开关装置。然而即使使用任何其它带有控制端的开关装置,如双极型晶体管和IGBT等时,也能达到同样的效果。再则,尽管使用了一个串联反转器作为点亮电路,但即使使用任何其它具有不同构形的电路也能达到同样的效果,如单晶体管反转器,只要开关装置的控制端被一个LC谐振电路驱动就行。另外,给荧光灯8设置预热电容9以使其离电源远些,但如果把预热电容9安排得离电源近些能达到同样的效果。
正如从前面的描述中已经知道的,本发明可以提供一个构形尺寸小、简单、成本低,不使用电流互感器的荧光灯点亮装置。
另外,按照本发明,可以对一对开关装置进行驱动,使其导通周期在时间轴上不重叠。这样本发明所提供的荧光灯点亮装置尺寸小、简单、成本低且能防止开关装置同时导通,抑制开关装置的损失,防止开关装置的元件因该装置产生的热而过早地损耗。
对于那些精于这方面技术的人来说,在不背离本发明的范围与精神的情况下对本发明进行修改是很明显且很容易的。所以,所附于此的权利要求的范围并不限于此处公布的说明书,而是更广泛地构建的内容。
权利要求
1.一个荧光灯点亮装置,包括一个第一串联连接体,它包括第一开关装置和第二开关装置,它们与一个电源电路相连;一个第二串联连接体,包括一个第一电感、一个第一电容和一个荧光灯,它们与电源电路的一端及第一与第二开关装置的中点相接;一个第三串联连接体,包括一个第二电感、一个第二电容和一个第三电感,第三电感与第一电感进行电磁耦合,第三串联连接体给第一开关装置的一个控制端子或第二开关装置的控制端子提供一个控制电压;及一个与第二电容并联起来的恒压装置;其中,该恒压装置中给控制端提供一个正控制电压或负控制电压,正控制电压相对于与该控制端相对应的阴极端而言是正的,负控制电压相对于该阴极而言是负的,正控制电压的绝对值大于负控制电压的绝对值。
2.按照权利要求1的荧光灯点亮装置,其中的第二电感和第二电容的谐振频率要高于第一和第二开关装置的开关频率。
全文摘要
本发明的荧光灯点亮装置包括:一个第一串联连接体,一个第二串联连接体;一个第三串联连接体;及一个与第二电容并联起来的恒压装置。其中,恒压装置给控制端提供一个正控制电压和一个负控制电压,前者相对于与上述控制端对应的阴极是正的,后者相对于上述阴极是负的,并且前者的绝对值要大于后者的绝对值。
文档编号H05B41/24GK1171717SQ9711222
公开日1998年1月28日 申请日期1997年7月11日 优先权日1996年7月12日
发明者中川博喜, 田原哲哉, 田代洋二, 小沢正孝 申请人:松下电器产业株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1