高频换流器及应用该高频换流器的感应加热烹调器的制作方法

文档序号:8018148阅读:327来源:国知局
专利名称:高频换流器及应用该高频换流器的感应加热烹调器的制作方法
技术领域
本发明涉及对多个感应加热烹调器用有效的固定频率动作的高频换流器,以及应用该高频换流器的感应加热烹调器。
在以往的高频换流器中,伴随加热负载(锅)的种类的不同或是输入电压的变化,工作频率是变化的。应用多个这样的高频换流器的多个感应加热烹调器时,出现由于加热器间的频率差产生锅的干扰噪声。作为解决该问题的高频换流器,有图71所示的美国专利USP5,571,438号所公开的高频换流器。在该图中,高频换流器包括直流电源101、将来自直流电源101的直流变换成高频电流的换流器电路102及控制该换流器电路102的控制电路103。并且,换流器电路102是由反向电流截止型的第一开关元件104、反向电流导通型的第二开关元件105、加热用的线圈106、第一振荡电容器107、第二振荡电容器108及二极管109构成。控制电路103包括在一定频率f0交互导通第一开关元件104和第二开关元件105的驱动部分110。
图72表示这样构成的高频换流器各部分的动作波形。
如图72所示,驱动电路110在一定周期t0,通过分别交替在时间ton1期间导通第一开关元件,在时间ton2期间导通第二开关元件,驱动换流器电路102。由图72得知该高频换流器实现过零(伏)切换。图73表示该高频换流器的输入功率控制特性。如该图所示,通过第一开关元件的导通时间ton1控制输入高频换流器的功率。也就是说,用高频换流器,在一定工作频率f0下,用变化对一定周期t0的第一开关元件104的导通时间ton1的比(ton1/t1),进行输入功率Pin的控制。
这样的以往高频换流器由于用一定工作频率可控制输入功率,在应用了多个感应加热烹调器时,可解决由加热器间频率差引起的锅干扰噪声。并且,由于可实现在2个开关元件中过零伏切换动作,能够减少开关动作时的功率损失及产生的噪声。
今后,在多个感应加热烹调器中,由于其显著的便利性,更不用说出于普及的考虑,即使在被应用于与此相应的感应加热烹调器的高频换流器中,当然期待着改良,希望实现更小型化、低成本化的高频换流器。
为解决上述问题,本发明提供一种用简单电路组成的可实现一定频率工作的高频换流器,及应用了该高频换流器的感应加热烹调器。
有关本发明的高频换流器包括,连接直流电源一端的线圈;和与所述直流电源相对串联连接所述线圈的第一开关元件;和与所述线圈形成振荡电路那样连接的第一振荡电容器;和与所述线圈或第一开关元件并联连接,与所述线圈形成振荡电路的第二振荡电容器和第二开关元件的串联电路,和控制导通所述第一开关元件和所述第二开关元件的控制电路,所述控制电路,用一定频率交互控制导通所述各开关元件同时,变更应控制输入功率的各开关元件的导通比。
另外,在高频换流器中,所述第一振荡电容器的一端可被连接在所述第二开关元件和所述第二振荡电容器的节点上。并且,第一振荡电容器的容量也可是比第二振荡电容器的容量小得多的值。还有,第一开关元件可用内装反向导通二极管的IGBT(Insulated Gate Bipolar Transister绝缘栅双极晶体管)构成。并且,第一开关元件也可是反向导通截止型的。
用以上那样构成的高频换流器通过第二开关元件和第二振荡电容器的串联电路的动作,由于可过零伏切换,能够减少切换动作时开关元件的功率损失及发热,并且,由于可按一定频率动作,在应用多个感应加热烹调器时,可防止加热器间的干扰噪声的产生。与以往的高频换流器相比有以下优点,可实现用简单电路构成,且由于可用因增加功率效率,额定值小的元件构成,可实现小型化及低成本化。
关于本发明的感应加热烹调器应用了所述高频换流器,检测出输入高频换流器的电流,根据该输入电流,通过控制开关元件的导通比,进行输入功率的反馈控制。
关于本发明的另一感应加热烹调器,检测出向高频换流器输入的电流,根据该输入电流值和所输入的设定值,通过控制开关元件的导通比,进行高频换流器的输入功率的反馈控制。
关于本发明的其他的感应加热烹调器是在按照第一及第二开关元件的导通时间在被设定的输入电流的规定范围内,控制开关元件的导通比。开关元件的导通时间和换流器的输入电流的特性,依靠被感应加热的负载的种类。因此,上述感应加热烹调器即使在换流器损失大的负载的情况下,也能够在不破坏换流器的输入范围内控制,可防止换流器的破坏。
关于本发明的其他的感应加热烹调器检测出第一开关元件的两端电压或是第二开关元件的两端电压,根据该检测出的电压控制开关元件的导通比,因此,在被感应加热的负载是特定的负载时,可用简易的低成本的方法进行输入的控制,并且,能够限制开关元件的电压不超过耐压。
关于本发明的其他的感应加热烹调器检测出第一及第二开关元件的两端电压,根据该检测出的电压,在按照所述第二开关元件的电压被设定的第一开关元件的两端电压的范围内,控制两开关元件的导通比。由于开关元件的导通时间和换流器的输入电流的特性依靠被感应加热的负载的种类,上述的感应加热烹调器即使在不同负载使换流器损失大的情况下,也能够在不破坏换流器的输入范围内控制,可防止换流器损坏。
关于本发明的其他的感应加热烹调器分别检测出第一及第二开关元件的两端电压,使第一开关元件的两端电压和第二开关元件的两端电压的电压差为规定值以下,用这样的方法控制两开关元件的导通比。由于开关元件的导通时间和换流器的输入电流的特性依靠被感应加热的负载的种类,上述的感应加热烹调器即使在不同负载使换流器损失大的的情况下,也能够在不破坏换流器的输入范围内控制,可防止换流器损坏。
关于本发明的其他的感应加热烹调器检测出线圈的电流、第一开关元件的电流或第二开关元件的电流,根据该检测出的电流,控制开关元件的导通比。因此,被感应加热的负载是特定的负载时,可根据线圈的电流、第一开关元件的电流或第二开关元件的电流,反馈控制输入功率,并且,由于能够限制线圈电流、第一开关元件的电流或第二开关元件的电流不超过规定值,构成换流器电路的元件,特别是开关元件的功率损失可在规定值以下。
关于本发明的其他的感应加热烹调器的在按照第一及第二开关元件的导通时间被设定的第二开关元件的电流的范围内,控制其导通比。由于开关元件的导通时间和第二开关元件的电流的特性依靠被感应加热的负载的种类,而上述的感应加热烹调器即使在不同负载使换流器损失大的情况下,也能够不超出换流器的输入控制范围,可防止换流器损坏。
关于本发明的其他的感应加热烹调器检测出不适宜的负载,在检测出不适宜负载时,使两开关元件的驱动停止。因此,刀、叉、勺子等不适宜负载不被加热,能够提高安全性。
关于本发明的其他的感应加热烹调器检测出高频换流器的动作状态,根据动作状态检测出不适宜负载。因此,可容易地检测出不适宜负载。
关于本发明的其他的感应加热烹调器检测出高频换流器的输入电流,和第一开关元件或第二开关元件的电压,根据高频换流器的输入电流值和第一或第二开关元件电压值检测出不适宜负载。由于高频换流器的输入电流和开关元件的电压的特性依靠负载的种类,用上述的感应加热烹调器,可容易地检测出不适宜负载。
关于本发明的其他的感应加热烹调器输出为使高频换流器起动的起动信号和为使高频换流器停止的停止信号,高频换流器输入起动信号之后,延迟规定时间起动开关元件。由此,感应加热烹调器的起动开始后,由于是从稳定状态开始,起动换流器,可提高可靠性。
并且,向换流器提供功率的直流电源也可由市用电源,将市用电源整流的整流器,以及连接整流器的输出的滤波电容器构成。这时,关于本发明的其他的感应加热烹调器监视市电的电压状态,当检测出市电的异常状态时,停止开关元件的驱动。因此,在供给换流器功率的直流电源异常时,可停止动作,能够防止换流器的损坏。
关于本发明的其他的感应加热烹调器,在高频换流器起动时,从规定的最小输入功率输出慢慢增加输入功率的信号,根据该信号控制开关元件的导通比。因此,能够将换流器的电压、电流从小负载的动作状态开始,慢慢增加,可实现安全动作。
关于本发明的其他的感应加热烹调器,输入高频换流器的输入功率的设定值,根据该输入设定值到被设定的电压为止其基准电压值是慢慢变化的,与规定的三角波电压比较,根据按比较结果生成的输出电压,控制开关元件的导通比。因此,能够将换流器的电压、电流从小负载的动作状态开始,慢慢增加,可实现安全动作。
关于本发明的其他的感应加热烹调器,在切换第一及第二开关元件的轮流导通过程中,设置无信号时间,存在两开关元件都非导通时间。因此,能够防止两开关元件同时导通,可提高可靠性。
并且,上述感应加热烹调器根据高频换流器的动作状态设定两开关元件的无信号时间,用分别适合开关元件的定时的切换动作是可能的,可实现最适合的换流器动作。
关于本发明的其他的感应加热烹调器在规定时间设定无信号时间。因此,能够容易地设定无信号时间。
关于本发明的其他的感应加热烹调器使从第一开关元件的导通期间的结束时开始到第二开关元件的导通期间的开始为止期间的无信号时间,和从所述的第二开关的导通期间的结束开始到所述第一开关元件的导通期间开始为止期间的无信号时间不同。因此,可用容易的方法,就各开关元件,用分别适合的定时的切换动作,可实现最适合的换流器动作。
关于本发明的其他的感应加热烹调器按照用线圈被加热的负载,切换改变第一振荡电容器的容量。因此,可实现换流器的适合被感应加热负载的动作。
关于本发明的其他的感应加热烹调器按照用被线圈加热的负载,切换第二振荡电容器的容量。因此,可实现适合被感应加热负载的换流器的动作。
关于本发明的其他的感应加热烹调器按照用线圈被加热的负载切换线圈的电感。因此,可实现适合被感应加热的负载的换流器的动作。
关于本发明的其他的感应加热烹调器按照用线圈被加热的负载,切换线圈和负载的间隙的长度。因此,可实现适合被感应加热负载的换流器的动作。
关于本发明的其他的感应加热烹调器也可检测出被感应加热的负载,因此,可实现适合负载的换流器的动作。
下面简要说明附图。


图1是实施例1的高频换流器的电路构成图。
图2是实施例1的高频换流器的各部分的工作波形图。
图3是实施例1的高频换流器的导通比与输入功率的特性图。
图4是实施例1的高频换流器的变换例的电路构成图。
图5是实施例1的高频换流器的另一变换例的电路构成图。
图6是实施例1的高频换流器的又一变换例的电路构成图。
图7是实施例1的高频换流器的又一变换例的电路构成图。
图8是实施例2的高频换流器的电路构成图。
图9是实施例2的高频换流器的各部分的工作波形图。
图10是实施例2的高频换流器的变换例的电路构成图。
图11是实施例2的高频换流器的另一变换例的电路构成图。
图12是实施例2的高频换流器的又一变换例的电路构成图。
图13是实施例2的高频换流器的又一变换例的电路构成图。
图14是实施例3的感应加热烹调器的电路构成图。
图15是实施例3的感应加热烹调器的换流器电路的各部分工作波形图。
图16是实施例4的感应加热烹调器的电路构成图。
图17是实施例4的感应加热烹调器的输入功率与Voutl的特性图。
图18是表示在实施例4的感应加热烹调器的输入设定部分的设定值与输入功率的关系图。
图19是表示在实施例4的感应加热烹调器的输入设定部分的设定值和Vout2的关系图。
图20是实施例5的感应加热烹调器的电路构成图。
图21是实施例5的感应加热烹调器的第一开关元件的导通时间与输入功率的特性图。
图22是实施例5的感应加热烹调器的第一开关元件的导通时间与输入功率的另一特性图。
图23是实施例6的感应加热烹调器的电路构成图。
图24是实施例6的感应加热烹调器的输入功率和第一开关元件的两端电压的特性图。
图25是实施例7的感应加热烹调器的电路构成图。
图26是实施例7的感应加热烹调器的输入功率和第一开关元件的两端电压的特性图。
图27是实施例8的感应加热烹调器的电路构成图。
图28是实施例8的感应加热烹调器的输入功率和第二开关元件的两端电压的特性图。
图29是实施例9的感应加热烹调器的电路构成图。
图30是实施例9的感应加热烹调器的第二开关元件的两端电压和第一开关元件的两端电压的特性图。
图31是实施例10的感应加热烹调器的电路构成图。
图32是实施例10的感应加热烹调器的输入功率和两开关元件的两端电压的电压差的特性图。
图33是实施例11的感应加热烹调器的电路构成图。
图34是实施例11的感应加热烹调器的输入功率和加热线圈电流的特性图。
图35是实施例11的感应加热烹调器的输入功率和加热线圈电流的另一特性图。
图36是实施例12的感应加热烹调器的电路构成图。
图37是实施例12的感应加热烹调器的输入功率和第一开关元件电流的特性图。
图38是实施例12的感应加热烹调器的输入功率和第一开关元件电流的另一特性图。
图39是实施例13的感应加热烹调器的电路构成图。
图40是实施例13的感应加热烹调器的输入功率和第二开关元件电流的特性图。
图41是实施例13的感应加热烹调器的输入功率和第二开关元件电流的另一特性图。
图42是实施例14的感应加热烹调器的电路构成图。
图43是实施例14的感应加热烹调器的第一开关元件的导通时间和第二开关元件电流的特性图。
图44是换流器电路的变换例的电路构成图。
图45是换流器电路的另一变换例的电路构成图。
图46是换流器电路的又一变换例的电路构成图。
图47是换流器电路的又一变换例的电路构成图。
图48是换流器电路的又一变换例的电路构成图。
图49是实施例15的感应加热烹调器的电路构成图。
图50是实施例15的感应加热烹调器的输入电流和第一开关元件的两端电压的特性图。
图51是实施例16的感应加热烹调器的电路构成图。
图52是实施例16的感应加热烹调器的输入电流和第二开关元件的两端电压的特性图。
图53是实施例17的感应加热烹调器的电路构成图。
图54是实施例18的感应加热烹调器的电路构成图。
图55是表示实施例18的比较电路的输入电压和输出电压的图。
图56是实施例19的感应加热烹调器的电路构成图。
图57是为说明实施例19的感应加热烹调器的工作的同步波形图。
图58是实施例20及实施例21的感应加热烹调器的电路构成图。
图59是为说明实施例20的感应加热烹调器的工作的同步波形图。
图60是为说明在实施例21的感应加热烹调器中,在输入功率小的情况下的同步波形图。
图61是为说明在实施例20的感应加热烹调器中,在输入功率小的情况下的同步波形图。
图62是实施例22的感应加热烹调器的电路构成图。
图63是为说明在实施例22的感应加热烹调器中,在额定耗电的工作的情况下的工作的同步波形图。
图64是为说明在实施例22的感应加热烹调器中,在继电器闭合的情况下工作的同步波形图。
图65是为说明在实施例22的感应加热烹调器中,在继电器断开的情况下工作的同步波形图。
图66是实施例23的感应加热烹调器的电路构成图。
图67是实施例24的感应加热烹调器的电路构成图。
图68是实施例25的感应加热烹调器的电路构成图。
图69是实施例26的感应加热烹调器的电路构成图。
图70是实施例27的感应加热烹调器的电路构成图。
图71是以往的感应加热烹调器的电路构成图。
图72是为说明以往的感应加热烹调器的工作的同步波形图。
图73是以往的感应加热烹调器的导通比和输入功率的特性图。
下面,参照附图,说明本发明的高频换流器及应用该高频换流器的感应加热烹调器的实施例。
实施例1图1表示在实施例1中使用了高频换流器的感应加热烹调器的电路构成图。在图1中,感应加热烹调器是由将直流电源1的直流变换成高频电流的换流器电路2和控制换流器电路2的控制电路3所组成。换流器电路2包括,由连接直流电源1的正极端的加热用的线圈的加热线圈4、在加热线圈4的另一端和直流电源1的负极端之间连接为第一开关元件的装有反向导通二极管的IGBT(Insulated Gate Bipolar Transister绝缘栅双极晶体管)5和与加热线圈4并联连接的第一共振电容器6构成的一个换流器100和与为第二开关元件的装有反向导通二极管1GBT7和的第二振荡电容器8的串联电路。IGBT7和第二振荡电容器8的串联电路并联连接加热线圈4。该串联电路,通过将第一开关元件对高电压箝位,作为实现一定频率动作的辅助开关动作。控制电路3包括驱动IGBT5和IGBT7的驱动电路9。驱动电路9在一定工作频率f0下交互导通IGBT5和IGBT7。还有,设定第一振荡电容器8的容量大幅度减小的值。
下面说明关于该构成的高频换流器的工作。
图2表示换流器电路2的各部分的动作波形。在图2中,当IGBT5的控制极-发射极间的电压Vge1为高电平时,IGBT5导通,当IGBT7的控制极-发射极间的电压Vge2为高电平时,IGBT7导通。并且,在图2中,分别表示Vce1是IGBT5的集电极-发射极间的电压,Vce2是IGBT7的集电极-发射极间的电压,ic1是IGBT5的集电极电流,ic2是IGBT7的集电极电流。驱动电路9通过使IGBT5导通的时间tonl变化,进行输入功率的控制。也就是说,驱动电路9对第一开关元件5的导通时间ton1与换流器电路2的动作周期t0的比即导通比D1(tonl/t0)进行输入功率控制。图3是换流器电路2的导通比和输入功率的特性图,如该图所示,通过使导通比D1增加,也能够使输入功率Pin增加。
本高频换流器的一周期的动作如图2所示,可区别考虑6种状态。下面,参照说明稳定状态中不同的状态。
状态1在该状态,当第一开关元件5为导通,第二开关元件7为截止。这时,电流路线为直流电源1→加热线圈4→第一开关元件5→直流电源1。导通时间ton1完了后,第一开关元件5截止,进入状态2。
状态2在该状态,第一及第二开关元件5、7均为截止状态。这时,加热线圈4和第一振荡电容器6构成振荡电路。第一振荡电容器6的两端电压vc1上升,当第一振荡电容器6的两端电压vc1比第二振荡电容器8的两端电压vc2大时,第二开关元件7的反向导通二极管导通,进入状态3 a。
状态3a在该状态,第一开关元件5截止,第二开关元件7导通。电流路线为加热线圈4→第二振荡电容器8→第二开关元件7的反向导通二极管→加热线圈4及加热线圈4→第一振荡电容器6→加热线圈4。在本状态中,由于在电流流过第二开关元件7的反向导通二极管期间,第二开关元件导通,第二开关元件7两端电压可零伏导通。通过加热线圈4和第一及第二振荡电容器6、8,振荡电流反向,进入状态3b。
状态3b在该状态,第一开关元件5截止,第二开关元件7导通。电流路线为加热线圈4→第二开关元件7→第二振荡电容器8→加热线圈4及加热线圈4→第二振荡电容器6→加热线圈4。导通时间ton2完了后,第二开关元件7截止,同时,进入状态4。
状态4在该状态,第一及第二开关元件5、7均为截止状态。电流路线为加热线圈4→第一振荡电容器6→加热线圈4。这时,加热线圈4和第一振荡电容器6形成振荡电路。当vc1<-E(E是直流电源1的电压)时,第一开关元件5的反向导通二极管导通,进入状态5。
状态5在该状态,第一开关元件5导通,第二开关元件7截止。这时,电流路线为直流电源1→第一开关元件5的反向导通二极管→加热线圈4→直流电源1。当流过第一开关元件5的电流ic1反向,进入状态1。
如以上那样,本实施例的高频换流器,在1个电压振荡换流器电路,由于能够用连接导通电流、外加电压都比较小的作为辅助开关动作的第二开关元件连接第二振荡电容器的串联电路组成,可实现简易构成。另外,本实施例的高频换流器由于能够实现过零伏切换动作,可以减少在切换动作时2个开关元件的功率损失、发热及噪声。并且,本高频换流器,由于用一定工作频率驱动换流器电路,在使用了多个感应加热烹调器时,由于能够保证各加热器的工作频率相同,可解决加热器间的干扰噪声。
另外,通常由于在电路内的各元件的功率损失,我们所希望在这里使用的高频换流器的感应元件(这里是加热线圈4)的电感值较大。为了确保规定的输入功率,限制其上限。与以往的高频换流器相比较,能够使加热线圈4的电感值的上限值增加20-30%。由此,与以往的高频换流器相比较,为得到相同输入功率,可减小在电路内的电流。因此,在换流器电路2中,能够使用额定值较小的元件,并且,由于能够使用可减少发热的散热片等小型散热元件,可实现换流器电路整体的小型化及伴随其低成本化。
还有,在换流器电路2中,如图4所示那样IGBT7与第二振荡电容器8的位置关系也可与图1的情况相反那样改换构成,得到与所述换流器电路同样的效果。
并且,在换流器电路2中,也可改变第一振荡电容器的连接,如图5所示那样,第一振荡电容器6并联连接是第一开关元件的IGBT5。还有,在换流器电路2中,将第一振荡电容器6分成2个电容器6a、6b,如图6所示那样,也可分别将电容器6a、6b与IGBT7、5并联连接。
而且,在换流器电路2中,也可如图7所示那样,用反向电流截止型的元件构成第一开关元件。
实施例2图8表示在实施例2中使用了高频换流器的感应加热烹调器的电路构成图。在图2中,感应加热烹调器由把来自直流电源1的直流变换成高频电流的换流器电路2和控制换流器电路2的控制电路3组成。换流器电路2由以下元件构成,连接直流电源1的正极侧一端的加热线圈4;和连接加热线圈4的另一端和与直流电源1的负极侧连接的为第一开关元件的装有反向导通二极管的IGBT5;和与加热线圈4并联连接的为第二开关元件的装有反向导通二极管的IGBT7和第二振荡电容器8的串联电路;在IGBT7和第二振荡电容8的节点和IGBT5与直流电源1的低电位侧的一端之间连接的第一振荡电容器6。
IGBT7与第二振荡电容器8的串联电路,通过将第一开关元件5的两端电压在高电位箝位,为实施一定频率控制,作为辅助开关动作。控制电路3包括驱动IGBT5和IGBT7的驱动电路9。驱动电路9在一定工作频率f0下交互导通IGBT5和IGBT7,通过改变对IGBT5的导通时间ton1与电路2的一定工作周期t0(=1/f0)的比即导通比D1=ton1/to,进行输入功率控制。
图9表示换流器电路的各部分的动作波形。在图9中,分别表示为Vge1是IGBT5的控制极--发射极间电压,vge2是IGBT7的控制极--发射极间电压,vce1是IGBT5的集电极--发射极间电压,vce2是IGBT7的集电极--发射极间电压,ic1是IGBT5的集电极电流,ic2是IGBT7的集电极电流。
本高频换流器的一个周期的动作如以下所示,可考虑分成6种状态。以下说明稳定状态中的每个状态。
状态1在该状态,当第一开关元件5为导通,第二开关元件7为截止。这时,电流路线为直流电源1→加热线圈4→第一开关元件5→直流电源1。导通时间ton1完了后,第一开关元件5截止,进入状态2。
状态2在该状态,第一及第二开关元件5、7均为截止状态。这时,加热线圈4和第二振荡电容器8和第一振荡电容器6构成振荡电路,振荡电流流动。也就是说,电流路线为加热线圈4→第二振荡电容器8→第一振荡电容器6→直流电源1→加热线圈4。第一振荡电容器6的两端电压vc1升高,当第一振荡电容器6的两端电压vc1比直流电源1的电压E大时,第二开关元件7的反向导通二极管导通,进入状态3a。
状态3a在该状态,第一开关元件5截止,第二开关元件7导通。电流路线为加热线圈4→第二振荡电容器8→第一振荡电容器6→直流电源1→加热线圈4及加热线圈4→第二振荡电容器8→第二开关元件7的反向导通二极管→加热线圈4。在该状态,具有状态2的振荡,而且增加了由加热线圈4和第二振荡电容器8形成的振荡。在本状态中,由于在电流流过第二开关元件7的反向导通二极管期间,第二开关元件导通,第二开关元件7两端电压为零伏导通。振荡电流反向,进入状态3b。
状态3b在该状态,第一开关元件5截止,第二开关元件7导通。电流路线为加热线圈4→直流电源1→第一振荡电容器6→第二振荡电容器8→加热线圈4及加热线圈4→第二开关元件7→第二振荡电容器8→加热线圈4。也就是说,通过加热线圈4和第一及第二振荡电容器6、8的振荡,振荡电流流动。导通时间ton2完了后,使第二开关元件7截止,进入状态4。
状态4在该状态,第一及第二开关元件5、7均为截止状态。电流路线为加热线圈4→直流电源1→第一振荡电容器6→第二振荡电容器8→加热线圈4。当第一振荡电容器6的电压vc1<0时,第一开关元件5的反向导通二极管导通进入状态5。
状态5在该状态,第一开关元件5导通,第二开关元件7截止。这时,电流路线为加热线圈4→直流电源1→第一开关元件5的反向导通二极管→加热线圈4。当流过第一开关元件的电流ic1反向,进入状态1。
如以上那样,即使在本实施例的高频换流器中,也与实施例1的高频换流器同样动作。因此,本实施例的高频换流器,得到与实施例1同样的效果。
还有,在图8所示的换流器电路2中,将第一振荡电容器6连接在IGBT7和第二振荡电容器8的节点和直流电源1的负极之间,也可如图10所示那样,连接在IGBT7和第二振荡电容器8的节点与直流电源1的正极之间那样构成。并且,在换流器电路2中,也可如图11所示那样,将第一振荡电容器6分成2个电容器6a、6b,将电容器6a连接在IGBT7与第二振荡电容器8的节点和直流电源1的负极之间,也可将电容器6b连接在IGBT7与第二振荡电容器8的节点和直流电源1的正极之间。
并且,在图10所示出的换流器电路2中,也可将第二振荡电容器8如图12所示那样,插入IGBT7的集电极端和直流电源1与加热线圈4的节点之间构成。
而且,在换流器电路2中,也可用图13所示那样,用反向电流截止型元件构成第一开关元件5。
实施例3图14表示实施例3的感应加热烹调器的电路构成图。在图14中,感应加热烹调器包括,将来自直流电源1的直流变换成高频电流的换流器电路2;和控制换流器电路2的驱动电路9;和检测输入换流器电路2的电流的电流互感器10;和根据电流互感器10的输出而输出电压的iin检测电路11。这里,电流互感器10和iin检测电路11构成检测向换流器电路2输入电流的输入电流检测手段。
换流器电路2由以下构成,在直流电源1的正极,通过电流互感器10的初级的一端连接加热线圈4;和在加热线圈4的另一端与直流电源1的负极之间连接是装有反向导通二极管的第一开关元件的IGBT5;与IGBT5并联连接,与加热线圈4形成振荡电路的第一振荡电容器6;与加热线圈4并联连接,装有反向导通二极管的第二开关元件IGBT7和第二振荡电容器8的串联电路。
而且,电流互感器10的次级一侧连接iin检测电路11,iin检测电路11的输出连接驱动电路9,驱动电路9分别连接IGBT5的控制端和IGBT7的控制端。
下面,说明这样构成的感应加热烹调器的动作。
图15表示在感应加热烹调器的换流器电路2的各部分的动作波形。在图15中,vge1是IGBT5的控制极--发射极间电压,vge2是IGBT7的控制极--发射极间电压,vce1是IGBT5的集电极--发射极间电压,vce2是IGBT7的集电极--发射极间电压,ic1是IGTB5的集电极电流,ic2是IGBT7的集电极电流,ic1是第一振荡电容器6的电流,vc2是第二振荡电容器8的电压,iL是加热线圈4的电流。另外,t0表示换流器电路2的动作周期,ton1表示IGBT5的导通时间,ton2表示IGBT7的导通时间,td1、td2表示IGBT5和IGBT7共同非导通时间的「无信号时间」。换流器电路2的动作周期t0常被恒定控制。
该换流器电路2的一个周期的动作如下所示可考虑分成6种状态。下面说明在稳定状态中的各状态。
状态1在该状态,第一开关元件5导通,第二开关元件7截止。这时,电流路线为直流电源1→加热线圈4→第一开关元件5→直流电源1。导通时间ton1完了后,第一开关元件5截止,进入状态2。
状态2在该状态,第一及第二开关元件5、7均为截止状态。电流路线为加热线圈4→第一振荡电容器6→直流电源1→加热线圈4。这时,加热线圈4和第一振荡电容器6构成振荡电路。第一开关元件5的两端电压vce1上升,当第一开关元件5的两端电压vce1比直流电源1的电压与第二振荡电容器8的两端电压vcs的差大时,第二开关元件7的反向导通二极管导通,进入状态3a。
状态3a在该状态,第一开关元件5截止,第二开关元件7导通。电流路线为加热线圈4→第二开关元件7的反向导通二极管→第二振荡电容器8→加热线圈4及加热线圈4→第一振荡电容器6→直流电源1→加热线圈4。通过加热线圈4和第一及第二振荡电容器6、8的振荡,当振荡电流反向,进入状态3b。
状态3b在该状态,第一开关元件5截止,第二开关元件7导通。电流路线为加热线圈4→第二振荡电容器8→第二开关元件7→加热线圈4及加热线圈4→直流电源1→第一振荡电容器6→加热线圈4。在本状态中,通过加热线圈4和第→及第二振荡电容器6、8的振荡,振荡电流流动。导通时间ton2完了后,通过第二开关元件7截止,进入状态4。
状态4在该状态,第一及第二开关元件5、7均为截止状态。电流路线为加热线圈4→直流电源1→第一振荡电容器6→加热线圈4。这时,通过加热线圈4和第一振荡电容器6的振荡,电流流动,第一开关元件5的两端电压vce1下降。当第一开关元件5的两端电压vce1<0时,第一开关元件5的反向导通二极管导通,进入状态5。
状态5在该状态,第一开关元件5导通,第二开关元件7截止。这时,电流路线为加热线圈4→直流电源1→第一开关元件5的反向导通二极管→加热线圈4。当流入第一开关元件的电流ic1反向时,进入状态1。
当通过这样的换流器电路2动作,感应加热烹调器动作时,电流互感器10检测换流器电路2的输入电流iin,iin检测电路11根据来自电流互感器10的输出,按照输入电流iin的大小输出检测结果。驱动电路9根据由iin检测电路11输出的检测结果,检测输入电流iin,按照其值设定导通比D1(=ton1/t0)驱动IGBT5和IGBT7。
当直流电源1的电压为E时,以下式求出输入功率Pin。pin=1t0∫0t0Eiindt=E1t0∫0t0iindt=Eiin(ave)----(1)]]>这里,iin(ave)表示输入电流iin的平均值。因此,通过检测换流器电路2的输入电流iin,可检测出输入功率Pin。驱动电路9根据输入电流iin检测出输入功率Pin,将该输入功率Pin的检测值与输入功率的控制目标值相比较,根据其差,控制输入功率接近控制目标值那样的导通比D1。也就是说,当输入功率的检测值Pin比控制目标值大时,向减小方向控制导通比D1,当输入功率pin的检测值比控制目标值小时,向增大方向控制导通比D1。这样,由于驱动电路9在一定工作频率fo(=1/to)下交互导通IGBT5和IGBT7,可实现换流器电路2的一定频率工作。这里,控制目标值,例如,由使用者输入的设定值和使用在加热烹调器内部设定的规定值等。
象这样,用本实施例,检测出输入电流iin,根据该检测出的输入电流iin,通过控制输入功率Pin接近控制目标值那样的导比D1,可反馈控制换流器电路2的输入功率,能够正确控制输入功率Pin。
还有,在本实施例或以下的实施例中,作为换流器电路2,也可使用在实施例1或实施例2示出的其他的电路。
实施例4图16表示实施例4中的感应加热烹调器的电路构成图。在图16所示的电路中,由市用电源12供给的交流电压,用二极管桥式电路13整流,通过将二极管桥式电路13的输出用滤波电容器14滤波,得到直流电压。也就是说,滤波电容器14起到向换流器电路2供给直流电压的直流电源的作用。
本实施例的换流器电路2与实施例3所示的换流器电路构成相同。在市用电源12和二极管桥式电路13的负极之间,连接电流互感器10的初级一侧,电流互感器10的次级一侧连接iin检测电路11的输入。iin检测电路11的输出和输入设定部分17的输出连接比较电路18的输入,比较电路18的输出连接驱动电路9,驱动电路9连接IGBT5和IGBT7的各控制极。
用图17~图19说明关于以上那样构成的本实施例的感应加热烹调器的工作过程。
在输入设定部17,当设定任意的输入功率Pin时,感应加热烹调器开始动作,输入设定部17按照输入功率Pin的设定值输出所定的电压vout2。电流互感器10检测出由市用电源12向感应加热烹调器输入的输入电流iin,通过iin检测电路11,按照输入电流iin的大小输出作为vout1的电压。由于由上述的输入电流可检测出输入功率,输出电压vout1为与输入功率相对应的值。图17表示在iin检测电路16中,输入功率Pin与输出电压vout1的关系。如该图所示,根据输出电压vout1确定输入功率Pin的大小。另外,图18表示在输入设定部17的输入功率的设定值和对于各设定值的输入设定部17的输出电压vout2的值的关系。这里,设定值的设定段数分为5段,也可设定比该设定段数多或少的段数。还有,图19表示在输入设定部17中的输入功率的设定值和对于其设定值的输出电压vout2的关系。从图18及图19所示的关系,我们明白在输入设定部17中的输入功率的设定值与输出电压vout2的关系。比较电路18比较iin检测电路11的输出电压vout1与输入设定部17的输出电压vout2,按照这些输出电压的差,向驱动电路9输出电压。驱动电路9通过比较电路18的输出检测,根据输入设定部17被设定的设定值和检测出的输入电流值的差的大小,控制导通比D1减小其差,用该导通比D1驱动IGBT5和IGBT7。具体地说,驱动电路9根据输入电流的输入功率的检测值,当输入电流的输入功率的检测值比输入功率的设定值大时,控制减小导通比D1,当输入电流的输入功率的检测值比输入功率的设定值小时,控制加大导通比D1。
这样,通过检测出输入电流iin,比较输入设定值,可反馈控制输入功率,能够正确控制符合产品说明书的任意大小的输入功率。
实施例5图20表示实施例5的感应加热烹调器的电路构成图。在图20中,感应加热烹调器包括,将来自直流电源1的直流变换成高频电流的换流器电路2;和检测出输入电流的电流互感器10及iin检测电路11;控制换流器电路2的驱动电路9;和检测出换流器电路2的第一开关元件的导通时间ton1的检测电路19。直流电源1、换流器电路2、电流互感器10及iin检测电路11与实施例3中的相同。
电流互感器10连接在直流电源1的负极和换流器电路2的低电压一侧输入端之间。并且,iin检测电路11的输出连接驱动电路9。检测出IGBT5的导通时间ton1的导通时间检测手段的ton1检测电路19连接驱动电路9。
下面说明关于以上构成的本实施例的感应加热烹调器的动作。
驱动电路9与实施例3的情况同样,根据用电流互感器10和iin检测电路11构成的输入电流检测手段,设定导通比D1,用该导通比D1分别驱动IGBT5和IGBT7。也就是说,根据输入电流iin进行输入功率Pin的反馈控制。
ton1检测电路19检测出IGBT5的导通时间ton1,按照导通时间ton1的长度输出电压。驱动电路9根据上述那样的输入电流iin进行输入功率Pin的反馈控制时,驱动电路根据由ton1检测电路19检测出的IGBT5的导通时间ton1,输入电流iin,即输入功率Pin不超过按照IGBT5的导通时间ton1决定的上限值那样,控制导通比D1。
图21表示负载为磁性锅或非磁性锅时的IGBT5的导通时间ton1和输入功率Pin的特性图。图中的粗线a表示输入功率Pin的上限值,该图所示的输入功率Pin的上限值根据导通时间ton1变化。也就是说,导通时间ton1为17μs以上时,上限值设定为2000W,导通时间ton1比17μs小时,上限值设定为1600W。这种情况,当感应加热负载为非磁性锅时,输入功率Pin控制在1600W以下的范围,为磁性锅时,输入功率Pin控制在2000W以下的范围。
构成换流器电路2的各元件的功率损失,用同样的输入功率Pin相比较,非磁性锅比磁性锅大。因此,通过按图21所示那样的导通时间ton1设定输入功率Pin的最大值为2000W,非磁性锅的输入功率Pin的最大值为1600W,不管负载是磁性锅、非磁性锅,在进行加热工作时,不使换流器电路2的各元件损失过大。
还有,按IGBT5的每导通时间ton1值决定的输入功率Pin的上限值,可按图22所示那样设定,也可设定为其他值。例如,对导通时间ton1平滑变化那样设定了图22所示那样的输入功率的上限值时,对负载的导通时间ton1一输入功率Pin特性为非磁性锅和磁性锅的中间特性的负载A,在考虑了换流器电路2的元件的损失和输入功率pin的上限值的两方的最适合的动作点,进行加热。
实施例6图23表示关于实施例6的感应加热烹调器的电路构成图。
在图23中,感应加热烹调器包括将来自直流电源1的直流变换成高频电流的换流器电路2,和检测出换流器电路2的第一开关元件的两端电压vce1的检测电路21,和控制换流器电路2的驱动电路9。在图23中,直流电源1和换流器电路2与实施例3同样。第一开关元件的IGBT5的集电极连接vce1检测电路21,vce1检测电路21的输出连接驱动电路9,驱动电路9分别连接IGBT5和IGBT7的控制端。
下面说明关于以上那样构成的感应加热烹调器的动作。当感应加热烹调器工作时,vce1检测电路21检测出第一开关元件IGBT5的集电极--发射极间电压vce1,按照该电压vce1的大小输出电压。驱动电路9根据vce1检测电路21的输出电压的大小设定导通比D1,也就是,设定IGBT5和IGBT7分别的导通时间tonl和ton2,用这样的导通时间驱动IGBT5和IGBT7。
感应加热烹调器的输入功率Pin和IGBT5的集电极--发射极间电压vce1的特性为图24所示的特性。根据该特性,vce1检测电路21用检测出工作时的第一开关元件的两端电压即IGBT5的集电极--发射极间电压vce1,可间接地检测出输入Pin。驱动电路9由于根据用vce1检测电路21检测出的IGBT5的集电极--发射极间电压vce1的大小,使IGBT5和IGBT7的导通比变化,通过IGBT5的集电极--发射极间电压vce1,可反馈控制输入功率Pin,与实施例3同样,对输入功率控制目标值,可正确控制输入功率Pin。
实施例7图25表示关于实施例7的感应加热烹调器的电路构成图。
图25中,感应加热烹调器包括,将来自直流电源1的直流变换成高频电流的换流器电路2,和检测出换流器电路2的第一开关元件5的两端电压的vce1检测电路21,和检测出输入换流器电路2的输入电流的电流互感器10及iin检测电路11,和控制换流器电路2的驱动电路9。这里,直流电源1、换流器电路2、电流互感器10、iin检测电路11与实施例3中的同样,vce1检测电路21与实施例6中的同样。vce1检测电路21的输出和iin检测电路11的输出,共同连接驱动电路9。
下面说明关于以上构成的感应加热烹调器的工作。
用电流互感器10和iin检测电路11构成的输入电流检测手段,检测换流器电路2的输入电流iin,iin检测电路11按照输入电流iin的大小输出电压。并且,vce1检测电路21,检测出第一开关元件的两端电压即IGBT5的集电极--发射极间电压vce1,按照IGBT5的集电极--发射极间电压vce1的大小,输出电压。驱动电路9根据iin检测电路11的输出电压和vce1检测电路21的输出电压的两方面的值,驱动IGBT5和IGBT7。也就是说,通过vce1检测电路21检测出的IGBT5的集电极--发射极间电压vce1不足规定电压(这里是700V)时,驱动电路9根据iin检测电路11的输出控制换流器电路2。即,按照输入电流iin,进行输入功率Pin的反馈控制。另一方面,通过vce1检测电路21检测出电压vce1为700V时,驱动电路9根据vce1检测电路21的输出,控制换流器电路2。即,当用vce1检测电路23检测出的电压vce1为700V时,驱动电路9限制导通比D1,控制电压vce1象不超过700V那样。也就是说,当电压vce1为700V时,控制减小导通比D1,使电压vce1象不超过700V那样。
图26表示对各种负载的输入功率Pin和IGBT5的集电极--发射极间电压vce1的特性。如该图所示,无论负载是何种,由于IGBT5的集电极--发射极间电压vce1,即第一开关元件的两端电压不超过700V,换流器电路2可确保安全动作状态。
实施例8图27表示关于实施例8的感应加热烹调器电路构成图。
在图27中,感应加热烹调器包括,将来自直流电源1的直流变换成高频电流的换流器电路2,和检测出换流器电路2的第二开关元件7的两端电压vce2的检测电路24,和控制换流器电路2的驱动电器9。这里,直流电源1和换流器电路2与实施例3相同。IGBT7的集电极连接vce2检测电路24的输入,vce2检测电路24的输出连接驱动电路9,驱动电路9分别连接IGBT5和IGBT7的控制极。
下面说明关于以上那样构成的感应加热烹调器的工作。
当感应加热烹调器工作时,vce2检测电路24根据第二开关元件IGBT7的集电极电位,检测出IGBT7的集电极--发射极间电压vce2,按照电压vce2的大小输出电压。驱动电路9,根据vce2检测电路24的输出电压的大小,设定IGBT5和IGBT7的导通时间ton1、ton2,用其导通时间tonl和ton2分别驱动IGBT5和IGBT7。
图28表示本感应加热烹调器的输入功率Pin和IGBT7的集电极--发射极间电压vce2的特性。驱动电路9由通过vce2检测电路24检测出的电压vce2的大小,可间接检测输入Pin,通过第二开关元件7的两端电压vce2,可反馈控制输入功率Pin,与实施例3同样,可正确控制感应加热烹调器的输入功率Pin。
实施例9图29表示关于实施例9的感应加热烹调器的电路构成图。
在图29中,感应加热烹调器包括,将来自直流电源1的直流变换成高频电流的换流器电路2,和检测出换流器电路2的第一开关元件5的两端电压的vce1的检测电路21,和检测换流器电路2的第二开关元件7的两端电压vce2的检测电路24,和控制换流器电路2的驱动电路9。这里,直流电源1和换流器电路2与实施例1中的相同,vce1检测电路21与实施例6中的相同,vce2检测电路24与实施例8中的相同。
第一开关元件IGBT5的集电极连接vce1检测电路21的输入,第二开关元件IGBT7的集电极连接vce2检测电路24的输入,vce1检测电路21的输出和vce2检测电路24的输出共同连接驱动电路9,驱动电路9分别连接IGBT5和IGBT7的控制极。
下面说明关于以上那样构成的感应加热烹调器的工作。
vce1检测电路21检测出IGBT5的集电极--发射极间的电压vce1,按照电压vce1的大小,输出电压。另外,vce2检测电路24检测出IGBT7的集电极--发射极间的电压vce2,按照电压vce2的大小输出电压。驱动电路9输入vce1检测电路21的输出和vce2检测电路24的输出,根据运2个输出,分别设定IGBT5和IGBT7的导通时间ton1和ton2,在该导通时间ton1和ton2,分别驱动IGBT5和IGBT7。
图30表示对各负载,第二开关元件的两端电压vce2和第一开关元件的两端电压vce1的特性。在该图中,粗线a表示第一开关元件5的两端电压的上限值。驱动电路9监视电压vce1和电压vce2,当电压vce1超过图30所表示的上限值时,控制减小导通费D1。
如图30所示,关于磁性锅与非磁性锅t0.5,不需要通过本控制限制,关于非磁性锅t1和非磁性锅t1.5和铝锅,需要用图30的粗线a的值限制。这里,「t」表示锅的厚度,t大时,表示锅的厚度。
还有,通过设定图30所示那样的电压vce1的上限值,换流器电路2的元件的损失比较小,关于磁性锅和锅底的厚度为0.5mm的非磁性锅t0.5,可不限制输入功率Pin使驱动电路9工作。并且,由于在电路内的各元件的功率损失随着输入功率增加,换流器电路2的各元件的功率损失比较大。关于铝锅、t1.5厚的非磁性锅、t1厚的非磁性锅,通过按电压vce2设定的电压vce1的上限值,限制输入功率Pin的上限,能够抑制各元件的损失。
实施例10图31表示关于实施例10的感应加热烹调器的电路构成图。
在图31中,感应加热烹调器包括,将来自直流电源1的直流变换成高频电流的换流器电路2,和检测出换流器电路2的第一开关元件5的两端电压vce1的检测电路21,和检测出换流器电路2的第二开关元件7的两端电压vce2的检测电路24,和输出第一开关元件5的两端电压和第二开关元件7的两端电压的差的减法运算电路27,和控制换流器电路2的驱动电路9。在图31中,直流电源1和换流器电路2与实施例3中的同样,vce1检测电路21和vce2检测电路24与实施例9中的同样。vce2检测电路24的输入连接IGBT7的集电极端,vce2检测电路21的输入连接IGBT5的集电极端,vce1检测电路21的输出和vce2检测电路24的输出共同连接减法运算电路27,减法运算电路27的输出连接驱动电路9。
下面说明关于以上那样构成的感应加热烹调器。
vce1检测电路21检测出IGBT5的集电极--发射极间的电压vce1,按照电压vce1的大小输出电压。vce2检测电路24检测出IGBT7的集电极--发射极间的电压vce2,按照电压vce2的大小输出电压。减法运算电路27按照vce1检测电路21的输出和vce2检测电路24的输出的差的大小输出其值,驱动电路9根据减法运算电路27的输出分别驱动控制IGBT5和IGBT7。图32表示各负载的输入功率Pin--开关元件电压差(vce1-vce2)的特性图。在该图中,粗线a表示对第一开关元件的两端电压vce1和第二开关元件的两端电压vce2的电压差(vce1-vce2)的上限值。如该图所示,对相同输入功率Pin的电压差(vce1-vce2)是非磁性锅比磁性锅大,即使是非磁性锅也是锅底厚的大。另一方面,换流器电路2的元件损失非磁性锅比磁性锅大,即使是非磁性锅也是锅底厚的大。本实施例的感应加热烹调器由于用上限值(110V)限制电压差(vce1-vce2),对于1.2t的非磁性锅和1.5t的非磁性锅,可抑制输入功率Pin,其结果,能够抑制换流器电路2的各元件的功率损失。
实施例11图33表示实施例11的感应加热烹调器的电路构成图。
在图33中,感应加热烹调器包括,将来自直流电源1的直流变换成高频电流的换流器电路2,和检测出流入加热线圈的电流的电流互感器29和iL检测电路30,和控制换流器电路2的驱动电路9。在图33中,直流电源1和换流器电路2与实施例3中的同样。电流互感器29串联连接加热线圈4,电流互感器29的次级一侧连接iL检测电路30,iL检测电路30的输出连接驱动电路9,驱动电路9分别连接IGBT5和IGBT7的控制极。
下面说明关于以上那样构成的感应加热烹调器的动作。
电流互感器29和iL检测电路30构成加热线圈电流检测手段。电流互感器29检测加热线圈4的电流,iL检测电路30用电流互感器29检测的加热线圈4的电流的大小,输出电压。驱动电路9根据iL检测电路30的输出电压的大小,设定IGBT5和IGBT7的导通时间ton1和ton2,在其导通时间分别驱动IGBT5和IGBT7。
图34表示对关于标准锅的输入功率的加热线圈4的电流iL的特性。驱动电路9通过用电流互感器29和iL检测电路30检测出的加热线圈4的电流iL的大小,能够检测间接的输入功率Pin,用根据加热线圈4的电流iL的大小,使IGBT5和IGBT7的导通比变化,根据电流iL,可反馈控制输入功率Pin,与实施例3同样,可正确控制感应加热烹调器的输入功率Pin。
驱动电路9根据加热线圈4的电流iL,检测出输入功率Pin,将该Pin的检测值与输入功率的控制目标值相比较,根据其差,控制输入功率接近控制目标值那样的导通比D1。也就是说,当输入功率的检测值Pin比控制目标值大时,向减小方向控制导通比D1,当输入功率的检测值Pin比控制目标值小时,向加大方向控制导通比D1。
图35表示对负载是磁性锅或非磁性锅时的输入功率Pin的加热线圈4的电流iL特性。如图所示,驱动电路9设定电流iL的上限值。也就是说,驱动电路9在输入功率Pin的反馈控制方面,由iL检测电路30的输出检测电流iL的大小,电流iL不超过用图35的粗线表示的上限那样控制导通比D1。因此,在本实施例的感应加热烹调器中如图35所示,由于电流iL的上限值被用70A所限制,可将非磁性锅的输入功率Pin抑制在1600W,能够抑制换流器电路2的损失。
实施例12图36表示关于实施例12的感应加热烹调器的电路构成图。
在图36中,感应加热烹调器包括,将来自直流电源1的直流变换成高频电流的换流器电路2,和检测出流入第一开关元件5的电流的电流互感器32及ic1检测电路33,和控制换流器电路2的驱动电路9。这里,直流电源1和换流器电路2与实施例3中的同样。电路互感器32串联连接IGBT5,电流互感器32的次级一侧连接ic1检测电路33的输入,ic1检测电路33的输出连接驱动电路9,驱动电路9分别连接IGBT5和IGBT7的控制极。电流互感器32和ic1检测电路33构成第一开关元件的电流检测手段。
象这样的构成的本实施例的感应加热烹调器,根据第一开关元件IGBT5的集电极电流检测出输入功率Pin,由此,进行输入功率Pin的反馈控制。下面,说明其动作。
电流互感器32检测出IGBT5的集电极电流ic1,ic1检测电路33根据电流互感器32的检测结果,按照电流ic1的大小,输出电压。驱动电路9,根据ic1检测电路33的输出电压的大小,设定IGBT5和IGBT7的导通时间ton1和ton2,在其导通时间分别驱动IGBT5和IGBT7,使换流器电路2动作。
图37表示关于标准负载的输入功率Pin和IGBT5的集电极电流ic1的特性。按图37所示的关系,驱动电路9根据用电流互感器32和检测电路33检测出的电流ic1的大小,可间接检测输入功率Pin,因此,根据第一开关元件的电流ic1,可反馈控制输入功率Pin,能够正确控制感应加热烹调器的输入功率Pin。
并且,驱动电路9由ic1检测电路33的输出检测电流ic1的大小,例如,可设定图38所示Pin--ic1特性图中的粗线a表示的电流ic1的上限为70A。在这种情况下,能够抑制非磁性锅的输入功率Pin为1600W,可抑制换流器电路2的损失。通常,为了IGBT5的集电极电流ic1比加热线图4的电流iL小,本实施例与实施例11那样的检测出加热线圈4的电流iL时相比较,能够使用额定值小的电流互感器。
实施例13图39表示关于实施例13的感应加热烹调器的电路构成图。
在图39中,感应加热烹调器包括,将来自直流电源1的直流变换成高频电流的换流器电路2,和检测出流入第二开关元件7的电流的电流互感器35及ic2检测电路36,和控制换流器电路2的驱动电路9。这里,直流电源1和换流器电路2与实施例3中的同样。电流互感器35串联连接IGBT7,电流互感器35的次级一侧连接ic2检测电路36的输入,ic2检测电路36的输出连接驱动电路9,驱动电路9分别连接IGBT5和IGBT7的控制极。电流互感器35和ic2检测电路36构成第二开关元件电流检测手段。
象这样构成的本实施例的感应加热烹调器根据第二开关元件IGBT7的集电极电流,检测出输入功率Pin,由此,进行输入功率Pin的反馈控制。下面说明其动作。
电流互感器35检测出IGBT7的集电极电流ic2,ic2检测电路36根据电流互感器的输出,按照IGBT7的集电极电流ic2的大小,输出电压。驱动电路9根据ic2检测电路36的输出电压的大小,设定IGBT5和IGBT7的导通时间ton1和ton2,在其导通时间分别驱动IGBT5和IGBT7,使换流器电路2动作。
图40表示关于标准锅的输入功率Pin和IGBT7的电流ic2的特性。从该图所示的关系来看,驱动电路9根据用电流互感器35和ic2检测电路36检测出的电流ic2的大小,可间接检测输入功率Pin,根据电流ic2可反馈控制输入功率Pin,与实施例3同样,能够正确控制感应加热烹调器的输入功率Pin。
另外,驱动电路9由ic2检测电路36的输出可检测第二开关元件的电流ic2的大小,例如,可设定图41所示Pin--ic2特性图中的粗线a表示的电流ic2的上限为40A。在这种情况下,能够抑制非磁性锅的输入功率Pin为1600W,可抑制换流器电路2的损失。与所述的实施例12同样,本实施例的情况也能够使用额定值小的电流互感器。
实施例14图42表示关于实施例14的感应加热烹调器的电路构成图。
在图42中,感应加热烹调器包括,将来自直流电源1的直流变换成高频电流的换流器电路2,和检测出流入第二开关元件7的电流的电流互感器35及ic2检测电路36,和检测出第一开关元件5的导通时间的ton1检测电路19,和控制换流器电路2的驱动电路9。这里,直流电源1和换流器电路2与实施例3中的同样,ton1检测电路19与实施例5中的同样,用电流互感器35和ic2检测电路36构成的第二开关元件电流检测手段与实施例13中的同样。ic2检测电路36的输出和ton1检测电路19的输出共同连接驱动电路9,驱动电路9分别连接IGBT5和IGBT7的控制极。
下面说明关于以上那样构成的感应加热烹调器的动作。
电流互感器35检测出IGBT7的集电极电流ic2,ic2检测电路36根据电路互感器35的检测值,按照IGBT7的集电极电流ic2的大小输出电压。ton1检测电路19检测出IGBT5的导通时间ton1,按照导通时间ton1R长短输出电压。驱动电路9用根据ic2检测电路36的输出电压的大小被决定的IGBT5和IGBT7的导通比,使换流器电路2动作,这时,用ic2检测电路36检测出的电路ic2的大小不超过用ton1检测电路19检测出的按照ton1决定的上限值那样控制导通比D1。
也就是说,与实施例13同样,驱动电路9能够设定电流ic2的上限值。并且,本实施例根据ton1检测电路19的输出,按照导通时间ton1使该电流ic2的上限值变化。例如,在图43的所示ton1--ic2特性图中,用粗线a表示的电流ic2的上限值按照导通时间ton1被设定为2段。这时,对于多层锅的输入功率Pin、请看实施例13(图41)的情况,被限制在1800W,如按本实施例,由于电流ic2的上限值为45A,输入功率Pin可能到2000W为止。
还有,关于以上实施例3~12换流器电路2的构成,如图44所示,第一振荡电容器6可并联连接加热线圈4,同样也可实施。另外,如图45所示,也可在加热线圈4和IGBT5两个元件上并联连接振荡电容器。直流电源1和加热线圈4和IGBT5的连接如图46所示,在直流电源1的正极一侧连接IGBT5,也可在直流电源1的负极一侧连接加热线圈4。还有,IGBT7和第二振荡电容器8的串联电路的连接也可如图47所示并联连接IGBT5。也可用图48所示那样的反向电流截止型的元件构成第一开关元件。而且,也可用实施例2中表示的换流器电路构成。
实施例15图49表示关于实施例15的感应加热烹调器的电路构成图。在图49中,感应加热烹调器包括,将来自直流电源1的直流变换成高频电流的换流器电路2,和检测出第一开关元件5的两端电压vce1的检测电路21,和检测出输入电流的电流互感器35及iin检测电路11,和检测出不适宜负载的不适宜锅检测电路112,和控制换流器电路2的驱动电路9。这里,直流电源1、换流器电路2、vce1检测电路21、iin检测电路11与前述的电路等同。
换流器电路2由以下元件构成连接直流电源1的正极一端的加热线圈4,和连接加热线圈4的另一端和直流电源1的负极的装有反向导通二极的第一开关元件IGBT5,和与加热线圈4形成振荡电路并联连接IGBT5的第一振荡电容器6,和与加热线圈并联连接的装有反向导通二极管的第二开关元件IGBT7和第二振荡电容器8的串联电路。
在连接直流电源1的正极和换流器电路2的线路中连接电流传感器10,输出连接iin检测电路11。电流传感器10和iin检测电路11构成换流器电路2的输入电流检测手段。另外,在IGBT5的集电极端连接第一开关元件电压检测手段vce1检测电路21。电流传感器10和iin检测电路11和vce1检测电路21构成换流器电路2的动作状态检测手段。iin检测电路11和vce1检测电路21的输出共同连接是不适宜负载检测手段的不适宜锅检测电路112的输入,不适宜锅检测电路112的输出连接驱动电路9,驱动电路9分别连接IGBT5的控制极和IGBT7的控制极。
下面说明关于以上那样构成的感应加热烹调器的工作。
当感应加热烹调器工作时,电流传感器10检测出换流器电路2的输入电流iin,iin检测电路11根据电流传感器10的输出按照输入电流iin的大小输出电压。vce1检测电路21检测出IGBT5的集电极--发射极间电压vce1,按照电压vce1的大小输出电压。不适宜锅检测电路112根据换流器电路2的输入电流iin和IGBT5的集电极--发射极间电压vce1,检测出负载的适宜/不适宜。驱动电路9根据不适宜锅检测电路112的检测值,当负载适宜时,用一定频率交互驱动IGBT5和IGBT7,使用使换流器电路2动作。另一方面,当负载不适宜时,驱动电路9停止IGBT5和IGBT7的驱动,使换流器电路2的动作停止。
图50表示被感应加热的负载是标准锅、壶及餐刀时的换流器电路2的输入电流iin和IGBT5的集电极--发射极间电压vce1的特性。图中,粗线a表示负载的适宜/不适宜的界线,不适宜锅检测电路112根据输入电流iin和IGBT5的集电极--发射极间电压vce1决定的点是图50的界线以下的区域时,作为检测结果输出「适宜」,当根据输入电流iin和IGBT5的集电极--发射极间电压vce1决定的点是图50的界线以上的区域时,作为检测结果输出「不适宜」。这里,标准锅、壶及餐刀按此顺序其低面积变小。如图50所示,负载的底面积小的程度,对同一输入电流iin的值相对而言,电压vce1的值变大。因此,负载为标准锅和壶时被加热,为餐刀时不被加热。
这样的感应加热烹调器,不适宜锅检测电路112,关于各负载根据换流器电路2的输入电流iin和IGBT5的集电极-发射极间电压vce1的特性不同,进行负载的适宜/不适宜的检测,负载为适宜时,驱动电路9,在一定工作频率f0下,使IGBT5和IGBT7交互导通,并且,由于使其导通比D1变化,用一定频率使换流器电路2照旧动作,输入功率Pin的可变控制是可能的。另一方面,负载为不适宜时,驱动电路9停止IGBT5和IGBT7的驱动,由于停止换流器电路2的工作使加热工作停止,可防止对小件物品等不适宜负载加热。
实施例16图51表示关于实施例16的感应加热烹调器的电路构成图。在图51中,感应加热烹调器包括,将来自直流电源1的直流变换成高频电流的换流器电路2,和检测出第二开关元件7的两端电压的vce2检测电路24,和检测出输入电流的电流传感器10及iin检测电路11,和检测出不适宜负载的不适宜锅检测电路112,和控制换流器电路2的驱动电路9。这里,直流电源1、换流器电路2,iin检测电路11及vce2检测电路24与前面所述的相同。
换流器电路2由以下元件构成,连接直流电源1的正极一端的加热线圈4,和连接加热线圈4的另一端和直流电源1的负极的装有反向导通二极管的第一开关元件IGBT5,和与加热线圈4形成振荡电路并联连接IGBT5的第一振荡电容器6,和与加热线圈4并联连接的装有反向导通二极管的第二开关元件IGBT7和第二振荡电容器8的串联电路。
在连接直流电源1的正极和换流器电路2的线中连接电源传感器10,电流传感器10的输出连接iin检测电路11,电流传感器10和iin检测电路11构成换流器电路2的输入电流检测手段。
并且,在IGBT7的集电极端连接第二开关元件电压检测手段vce2检测电路24。电流传感器10和iin检测电路11和vce2检测电路24构成换流器电路2的动作状态检测手段。iin检测电路11和vce2检测电路24的输出共同连接不适宜负载检测手段的不适宜锅检测电路112的输入,不适宜锅检测电路112的输出连接驱动电路9,驱动电路9分别连接IGBT5的控制极端和IGBT7的控制极端。
下面说明关于以上那样构成的感应加热烹调器的动作。
在所述的实施例15中,通过输入电流iin和第一开关元件IGBT5的集电极--发射极间电vce1,进行负载的适宜/不适宜的检测,本实施例是通过输入电流iin和第二开关元件IGBT7的集电极--发射极间电压vce2,进行负载的适宜/不适宜的检测。因此,基本的动作与在实施例15所示出的同样。
图52表示被感应加热的负载是标准锅、壶及餐刀时的换流器电路2的输入电流iin和IGBT7的集电极--发射极间电压vce2的特性。图中,粗线a表示负载的适宜/不适宜的界线。感应加热烹调器的本实施例的不适宜锅检测电路112根据输入电流iin和IGBT7的集电极--发射极间电压vce2确定的点是在图52的界线以下的区域时,作为检测结果,输出「适宜」,当根据输入电流iin和IGBT7的集电极--发射极间电压vce2确定的点是在图52的界线以上的区域时,作为检测结果,输出「不适宜」。驱动电路9根据不适宜锅检测电路112的检出结果,当被检测出的负载为适宜时,使换流器电路2动作,当被检测出的负载为不适宜时,使换流器电路2停止。
由于通过这样的适宜锅检测电路112,可检测出餐刀等不适宜的负载,能够防止小件物品负载等不适宜负载的加热。
实施例17图53表示关于实施例17的感应加热烹调器的电路构成图。在图53中,感应加热烹调器包括将来自直流电源1的直流变换成高频的换流器电路2,和检测出电源电压的V+检测电路119,和输出为起动或停止的信号的起动停止电路120,和为使起动信号延迟的起动延迟电路121,和控制换流器电路2的驱动电路9。在图53中,12是市用电源,13是连接市用电源12的是整流器的二极管桥式电路,二极管桥式电路13的正极一侧的输出连接扼流线圈117的一端,在扼流线圈117的另一端连接滤波电容器14的一端,滤波电容器14的另一端连接二极管桥式电路13的负极一侧的输出,滤波电容器14具有向换流器电路2提供直流电源的作用。并且,扼流线圈117具有滤波作用。
换流器电路2由以下元件构成。连接滤波电容器14的正极端的加热线圈4,和连接加热线圈4的另一端和滤波电容器14的负极端的装有反向导通二极管的第一开关元件IGBT5,和与加热线圈4形成振荡电路与IGBT5并联连接的第一振荡电容器6,和与加热线圈4并联连接的装有反向二极管的第二开关元件IGBT7和与第二振荡电容器8串联的电路。
在二极管桥式电路13的正极输出端连接市用电源监检手段的V+检测电路119,V+检测电路119的输出连接起动停止手段的起动停止电路120,起动停止电路120的输出连接起动延迟手段的起动延迟电路121,起动延迟电路121的输出连接驱动电路9,驱动电路9的输出分别连接IGBT5和IGBT7的控制端。
下面说明关于以上那样构成的感应加热烹调器的动作。
本实施例的V+检测电路119输入市用电源12的电压,当其电压比规定值低时,作为「正常」输出检测结果,当电压为规定值以上时,作为「异常」输出检测结果。
下面,从市用电源12为正常状态,感应加热烹调器开始工作时,开始说明。这时,V+检测电路119根据市用电源12的电压,输出「正常状态」的检测结果。起动停止电路120当输入来自V+检测电路119的市用电源12的正常状态的检测结果时,输出为使换流器电路2开始工作的起动信号。起动延迟电路121当输入来自起动停止电路120的起动信号时,在经过规定时间(这里是2秒)之后,输出起动信号。驱动电路9接收来自起动延迟电路121的起动信号,开始IGBT5和IGBT7的驱动,使换流器电路2开始工作。
下面说明关于市用电源12为异常状态时的工作。
例如,当市用电源12遭受闪电冲击电压时,二极管桥式电路13的正极一侧输出的电压,由于闪电冲击的能量,较正常时的值升高,比规定值大。V+检测电路119检测出市用电源12异常升高加大,输出表示「异常状态」的检测结果。起动停止电路120当由V+检测电路119输入市用电源12的异常状态检测结果时,输出为使换流器电路的工作停止的停止信号。起动延迟电路121当输入由起动停止电路120来的停止信号时,瞬时输出停止信号。驱动电路9当输入来自起动延迟电路121的停止信号时,停止IGBT5和IGBT7的驱动,使换流器电路2的动作停止。
之后,当闪电冲击的能量消失,市用电源12恢复为正常状态时,V+检测电路119检测出市用电源已经为正常,将其输出。起动停止电路120输入来自V+检测电路119的市用电源12的正常状态的检测结果,输出为使换流器电路2再起动的起动信号。当起动延迟电路121输入来自起动停止电路120的起动信号时,经2秒钟后输出起动信号,当驱动电路9输入来自起动延迟电路121的起动信号后,再开始IGBT5和IGBT7的驱动,使换流器电路2的动作再开始。
这样,V+检测电路119能够监视市用电源12的状态,由于起动停止电路120按照V+检测电路119的检测结果,可控制换流器电路2的起动/停止,当市用电源12由于闪电冲击等成为异常状态时,停止换流器电路2的动作,可防止换流器电路2的破坏。
另外,起动延迟电路121当输入来自起动停止电路120的起动信号时,在经过规定时间(这里是2秒)后,向驱动电路9传送起动信号,当输入来自起动停止电路120的停止信号时,由于向驱动电路9传送瞬时停止信号,V+检测电路119当检测出市用电源12的异常时,立即停止换流器电路2的动作,之后,V+检测电路119当检测出市用电源12向正常状态恢复时,换流器电路2的动作在经过规定的时间之后,再开始工作,因此,假设,市用电源12遭雷击后,即使过渡的正常状态和异常状态反复进行时,通过规定的起动延迟时间,能够等到市用电源完全稳定下来为止,不管起动·停止·再起动,可防止换流器电路2的破坏。
实施例18图54表示关于实施例18的感应加热烹调器的电路构成图。在图54中,感应加热烹调器包括,将来自直流电源1的直流变换成高频电流的换流器电路2,和为使换流器电路2缓慢起动的软起动电路150,和控制换流器电路2的驱动电路9。
换流器电路2由以下元件构成。连接直流电源1的正极端的加热线圈4,和连接加热线圈4的另一端和直流电源1的负极的装有反向导通二极管的第一开关元件IGBT5,和与加热线圈4形成振荡电路那样的与IGBT5并联连接的装有反向导通二极管的第二开关元件IGBT7和第二振荡电容器8的串联电路。
软起动电路150由以下元件构成。设定换流器电路2的输入功率Pin的输入设定手段的输入设定电路123,和输入是连接输入设定电路123的输出的基准电压设定电路124,和振荡电路125,和将基准电压设定电路124的输出作为正输入将振荡电路125的输出作为负输入连接的比较器126。比较器126的输出连接驱动电路9,驱动电路9的输出分别连接IGBT5的控制极端和IGBT5的控制极端和IGBT5的控制极端。
下面说明关于以上那样构成的感应加热烹调器的动作。
当用输入设定电路123设定输入功率Pin时,输入设定电路123按照输入功率的设定值输出。振荡电路125产生一定频率的三角波。基准电压设定电路124由初始值的最小直流电压慢慢使其电位升高,输出按照最终的输入功率Pin的直流电压。比较器126比较振荡电路125输出的三角波电压和基准电压设定电路124输出的直流电压,直流电压在比三角波电压大的期间输出高电平信号,直流电压在比三角波电压小的期间输出低电平信号。由于基准电压设定电路124将其直流输出的电位如图55所示,由最小直流电压VS1慢慢升高,按照输入功率Pin使其变化为直流电压VS2,由比较器126输出的高电平信号的脉冲幅度慢慢变宽,低电平信号的脉冲幅度慢慢变窄。驱电路9按照比较器126输出的脉冲幅度,由最小值开始慢慢增加是对一定动作周期t0的IGBT5的导通时间ton1的比的导通比D1,控制可得到用最终的输入设定电路123设定的输入功率Pin的导通比D1,由此,驱动IGBT5和IGBT7。
这样,驱动电路9根据由基准电压设定电路124和振荡电路125和比较器126构成的软起动电路150的输出从最小值开始慢慢增加在一定工作频率t0(=1/t0)下的导通比D1(=ton1/t0),用该导通比D1驱动IGBT5和IGBT7。因此,输入功率Pin由最小值开始慢慢增加,经过规定时间后,为达到设定值,在起动时,比较达到通过由最初开始的输入设定电路123设定的值,能够做到换流器电路2的起动时的动作是安全的。例如,负载为使用铝锅时,由刚开始起动,对应用输入设定电路123设定的最终输入功率的导通比开始动作时,换流器电路2流过过大电流遭破坏。因此,在本感应加热烹调器中,另外设置铝锅检测电路,由最小值开始使输入功率慢慢增加、起动,因此,在换流器电路2被破坏前可检测出铝锅,在检测出铝锅时,使其停止动作,由此,可保护换流器电路2。
实施例19图56表示关于实施例19的感应加热烹调器的电路构成图。在图56中,感应加热烹调器由以下元件构成,将来自直流电源1的直流变换成高频电流的换流器电路2,和设定无信号时间的无信号时间设定电路130,和检测出直流电源1的电压的v+检测电路128,和检测出换流器电路内的第一开关元件5的电压的vce1检测电路129,和控制换流器电路2的驱动电路9。
换流器电路2由以下元件构成。连接直流电源1正极一端的加热线圈4,和连接加热线圈4的另一端和直流电源1的负极的装有反向导通二极管的第一开关元件IGBT5,和与加热线圈4形成振荡电路那样的与IGBT5并联连接的第一振荡电容器6,和与加热线圈4并联连接的内装反向导通二极管的第二开关元件IGBT7和第二振荡电容器8的串联电路。直流电源1的正极连接v+检测电路128,IGBT5的集电极连接vce1检测电路129,这些构成换流器电路2的动作状态检测手段。v+检测电路128的输出和vce1检测电路129的输出共同连接为无信号时间设定手段的无信号时间设定电路130,无信号时间设定电路130的输出连接驱动电路9,驱动电路9分别连接IGBT5的控制极端和IGBT7的控制极端。
下面说明关于以上那样构成的感应加热烹调器的动作。
计检测电路128检测出直流电源1的电压,vce1检测电路129检测出是第一开关元件的IGBT5的集电极--发射极间电压vce1。这时,无信号时间设定电路130输入v+检测电路128的输出和vce1检测电路129的输出,根据这时2个输入,设定无信号时间。具体说来,如图57所示那样,当IGBT7的控制极--发射极间电压vge2为ov,IGBT7截止时,IGBT5的集电极--发射极间电压vce1降低。其后,经过时间t1之后,当电压vce1的值成为与直流电源1的电压v+相同的值时,无信号时间设定电路130从该时开始经过规定时间t2之后,使IGBT5的控制极--发射极间电压vge1为高电平,IGBT5导通。之后,当IGBT5的控制极-发射极间电压vge1为ov,IGBT5截止时,IGBT5的集电极--发射极间电压vce1升高。经过时间t3之后,IGBT5的集电极--发射极间电压vce1的值成为与直流电源1的电压v+相同的值时,无信号时间设定电路130从该时开始经过规定时间t4之后,使IGBT7的控制极--发射极间电压vge2为高电平,IGBT7导通。这样的无信号时间设定电路130设定从IGBT7截止开始到IGBT5导通为止的无信号时间(td1=t1+t2)及从IGBT5截止开始到IGBT7导通为止的无信号时间(td1=t3+t4)。
以上的无信号时间设定电路130通过直流电源1的电压和第一开关元件的两端电压检测出换流器电路2的动作状态,根据换流器电路的动作状态,设定无信号时间。因此,1GBT5和IGBT7不会同时导通,能够防止换流器电路2的破坏。
并且,由于无信号时间td1是根据按负载变动的换流器电路2的动作状态被设定,其值是按照负载被设定的适当的值,得到IGBT5和IGBT7的稳定的切换动作。
实施例20图58表示关于实施例20的感应加热烹调器电路构成图。在图58中,感应加热烹调器由以下元件构成,将来自直流电源1的直流变换成高频电流的换流器电路2,和驱动换流器电路2的驱动电路9,和设定无信号时间的无信号时间设定电路132。关于换流器电路2的构成,由于和实施例19中的同样,在此省略说明。
无信号时间设定电路132的输出连接驱动电路9,驱动电路9分别连接换流器电路2内的IGBT5的控制极端和IGBT7的控制极端。
下面,用图59说明关于本实施例的感应加热烹调器的动作。
在图59中,当IGBT7的控制极--发射极间电压vge2为ov,IGBT7截止时,无信号时间设定电路132,从IGBT7的控制极--发射极间电压vge2为ov开始的规定时间td2间,向驱动电路9输出将IGBT5和IGBT7同时截止的截止信号。驱动电路9接收该截止信号,在时间td2间,将IGBT5和IGBT7共同截止。经过时间td2之后,无信号时间设定电路132停止截止信号的输出,因此,驱动电路9将IGBT5的控制极--发射极间电压vge1从ov开始到高电位使IGBT5导通,经过规定的导通时间之后,将IGBT5的控制极--发射极间电压vge1从高电位到ov,IGBT5截止。当IGBT5截止,IGBT5的控制极--发射极间电压vge1为ov时,无信号时间设定电路132从IGBT5的控制极--发射极间电压vge1为ov开始的规定时间td2间,向驱动电路9输出IGBT5和IGBT7共同截止的截止信号,驱动电路9接收该截止信号,在时间td2之后,无信号时间设定电路停止截止信号的输出,因此,驱动电路9将IGBT7的控制极--发射极间电压vge2从ov到高电位,IGBT7导通。之后,经过规定的导通时间之后,IGBT7的控制极--发射极间电压vge2从高电位到ov,IGBT7截止。然后,反复其动作。
这样的无信号时间设定电路132,不使用换流器电路2的动作状态检测手段,将从IGBT7截止到IGBT5导通的无信号时间设定为时间td2由于也可将IGBT5截止开始到IGBT7导通为止的无信号时间设定为td2,IGBT5和IGBT7不会同时导通,使用廉价的电路,也能够防止换流器电路2的破坏。
实施例21下面说明关于实施例21的感应加热烹调器。本实施例的感应加热烹调器与图58所示的实施例20的构成相同,所谓实施例20,无信号时间设定电路的动作是不同的。
下面用图60、图61说明感应加热烹调器的动作。
图60是当输入功率Pin小时,IGBT5和IGBT7的各部分的动作波形。如图60所示,当IGBT7的控制极--发射极间电压vge2为ov,IGBT7截止时,无信号时间设定电路132从IGBT7的控制极--发射极间电压vge2为ov开始的规定时间td3间,向驱动电路9输出IGBT5和IGBT7共同截止的信号,驱动电路9接收该信号共同截止IGBT5和IGBT7。当经过时间td3时,无信号时间设定电路132停止截止两开关元件IGBT5和IGBT7的信号的输出。驱动电路9将IGBT5的控制极--发射极间电压vge1从ov到高电位,导通IGBT5,在规定的导通时间之后,将IGBT5的控制极--发射极间电压vge1从高电位到ov,截止IGBT5。
这里,时间td3被设定如下。也就是说,如图60所示,在IGBT7的控制极--发射极间电压vge2为ov,IGBT7截止之后,IGBT5的集电极--发射极间电压vce1逐渐减少变小。当输入功率Pin小时,如图所示,IGBT5的集电极--发射极间电压vce1到ov为止不再减少,在减少过程中,保持极小值那样反向增加。时间td3是IGBT7的集电极--发射极间电压vge2为ov时开始到IGBT5的集电极--发射极间电压vce1的值为极小值时为止被设定的时间。
之后,当IGBT5的控制极--发射极间电压vge1为ov,IGBT5截止时,无信号时间设定电路134在IGBT5的控制极-发射极间电压vge1为ov开始的时间td2间,向驱动电路9输出IGBT5和IGBT7共同截止的信号。驱动电路9接收该信号,共同截止IGBT5和IGBT7。当经过时间td2时,驱动电路9将IGBT7的控制极-发射极间电压vge2从ov到高电位,导通IGBT7。之后,经过规定的导通时间后,将IGBT7的控制极-发射极间电压vge2从高电位到ov,截止IGBT7。以后,反复该动作。这里,时间td2是从IGBT5的控制极-发射极间电压vge1为ov时开始,到IGBT7的集电极-发射极间电流ic2为负电流(IGBT7内装的傍路二极管电流)期间的大致的中点为止的期间被设定的时间。
这样,无信号时间设定电路132不使用换流器电路2的动作状态检测手段,以从IGBT7截止开始到IGBT5导通为止的无信号时间设定为时间td3,以从IGBT5截止到IGBT7导通的无信号时间设定为时间td2,由于时间td2、td3分别定为不同的最合适的值,使用廉价的电路,能够防止由于IGBT5和IGBT7同时导通导致换流器电路2的破坏,同时,可实现IGBT5和IGBT7的分别最合适的切换动作。
图61表示当实施例20所示的感应加热烹调器的输入功率Pin小时,IGBT5及IGBT7的各部分的电压波形。当输入功率Pin小时,由于在IGBT5即将导通之前,电压vce1是不为ov的残存电压,成为短路该残存电压的动作状态。用本实施例由于可将该时的短路电压作为最小值,与图61所示情况相比,可减小IGBT5的功率损失和噪声的产生。
还有,关于以上的实施例15~实施例21中的换流器电路2的构成,第一振荡电容器6的连接可如图44所示并联连接加热线圈4,同样可实施。并且,如图45所示,也可将振荡电容器并联连接加热线圈4和IGBT5。并且,直流电源1和加热线圈4和IGBT5的连接,如图46所示,也可在直流电源1的正极一侧连接IGBT5,在直流电源1的负极一侧连接加热线圈4。并且,IGBT7和第二振荡电容器8的串联电路的连接也可如图48所示那样的反向电流截止型的元件构成第一开关元件。而且,也可如在实施例2中所示出的换流器电路那样构成。
实施例22图62表示关于实施例22的感应加热烹调器电路构成图。在图62中,感应加热烹调器包括,将来自直流电源1的直流变换成高频电流的换流器电路2,和驱动换流器电路2的驱动电路9,和检测出换流器电路2中的第一开关元件即将导通之前的电压的von1检测电路211。
换流器电路2由以下元件构成。连接直流电源1的正极一端的加热线圈4,和连接加热线圈4的另一端和直流电源1的负极的内装反向导通二极管的第一开关元件IGBT5,和与加热线圈4振荡电容器6,和与加热线圈4并联连接的内装反向导通二极管的第二开关元件IGBT7和第二振荡电容器8的串联电路,和并联连接第一振荡电容器6的第三振荡电容器209和与继电器(RL)210的串联电路。第三振荡电容器209和继电器210构成改变第一振荡电容器6的容量的第一振荡电容器转换手段。
在IGBT5的集电极连接是换流器电路的动作状态检测手段的von1检测电路211的输入,von1检测电路211的输出连接继电器210和驱动电路9。
下面说明关于以上那样构成的感应加热烹调器的动作。
以额定消耗功率,当感应加热烹调器的动作开始时,驱动电路9用一定频率下对应额定消耗功率的导通比,交互导通IGBT5和IGBT7,使换流器电路2动作,von1检测电路211检测出IGBT5即将导通之前的IGBT5的集电极-发射极间电压von1(以下称「残留电压」)。这时的换流器电路2的各部分的波形如图63所示。在这种情况下,残留电压von1为ov,von1检测电路211未检测出von1。当von1检测电路211未检测出残留电压von1时,继电器210继续导通。
该状态,当输入功率小时,换流器电路2的动作波形为图64所示那样。也就是说,在IGBT5即将导通之前的集电极-发射极间电压到残留电压von1为ov为止不降低。因此,von1检测电路211检测出残留电压von1。还有,负载是将锅表面被覆的磁性锅(以后称覆铜锅)等特定种类的负载时,也产生该残留电压von1。当von1检测电路211检测出残留电压von1时,von1检测电路211首先对驱动电路9输出为使换流器电路停止的控制信号,驱动电路9接收该控制信号使换流器电路2的动作停止。当换流器电路2停止时,von1检测电路211输出为断开继电器210的控制信号,断开继电器210。因此,第三振荡电容器9从换流器电路2上断开。其结果,与加热线圈4形成振荡电路的振荡电容器(以下称为「功能第一振荡电容器」)从并联连接第一振荡电容器6和第三振荡电容器209的电路开始,仅改变第一振荡电容器6。在这种情况下,由于功能的第一振荡电容器的容量小,换流器电路2的各部分的波形为图65所示那样,即使输入功率小,也不会产生残留电压von1。
这样,von1检测电路211当输入功率小时,检测出当负载是特定的种类的情况时的残留电压von1,将功能的第一振荡电容器、第一振荡电容器6和第三振荡电容器9并联连接的电路开始仅改变第一振荡电容器6,减小其容量。因此,换流器电路2能够在不发生残留电压、von1的状态动作,可降低IGBT5的功率损失和噪声。
实施例23
图66表示关于实施例23的感应加热烹调器的电路构成图。在图66中,感应加热烹调器包括,将来自直流电源1的直流变换三高频电流的换流器电路2,和驱动换流器电路2的驱动电路9,和检测出换流器电路2内的开关元件的导通时间的von1检测电路211。
换流器电路2由以下元件构成,连接直流电源1的正极一端的加热线圈4,和与加热线圈4的另一端和直流电源1的负极连接的内装反向导通二极管的第一开关元件IGBT5,和与加热线圈4形成振荡电路那样的与IGBT5并联连接的第一振荡电容器6,和与加热线圈4并联连接的内装反向导通二极管的第二开关元件IGBT7和第二振荡电容器8的串联电路,和并联连接第二振荡电容器8的第四振荡电容器212和继电器213的串联电路。
所谓第四振荡电容器212和继电器213构成改变第二振荡电容器8容量的第二振荡电容器切换手段。
下面说明关于以上那样构成的感应加热烹调器的动作。基本的动作与上述实施例22相同。
在换流器电路2的动作中,当与第二开关元件7构成串联电路的振荡电容器(以下称「功能的第二振荡电容器」)的容量变大时,残留电压von1变小。因此,本实施例的情况下,von1检测电路检测出产生的残留电压von1,在检测出产生的残留电压的情况下,使继电器213吸合那样,向继电器213输出控制信号,在未检测出产生的残留电压时,使继电器213断开那样,向继电器213输出控制信号。因此,当产生了残留电压时,第四振荡电容器212由于连接换流器电路2,功能的第二振荡电容器的容量是增加的,当没产生残留电压时,由于第四振荡电容器212从换流器电路2上断开,功能的第二振荡电容器的容量是减少的。
这样,von1检测电路211当输入功率小时和负载是覆铜锅等的特定的种类的情况等,检测出产生的残留电压时,仅对从第二振荡电容器8开始的第二振荡电容器8和第四振荡电容器212的并联连接的电路改变功能的第二振荡电容器,加大其容量。为此,换流器电路2能够在没产生残留电压von1的状态动作,可降低IGBT5的功率损失和噪声。
实施例24
图67表示关于实施例24的感应加热烹调器的电路构成图。在图67中,感应加热烹调器包括,将来自直流电源1的直流变换成高频电流的换流器电路2,和驱动换流器电路2的驱动电路9,和检测出换流器电路2内的开关元件即将导通之前的电压von1的检测电路211。
换流器电路2由以下元件构成,通过构成加热线圈切换手段的线圈214和继电器215连接直流电源1的正极一端的加热线圈4,和连接加热线圈4的另一端和直流电源1负极的内装反向导通二极管的第一开关元件IGBT5,和与加热线圈4形成振荡电路的与IGBT5并联连接的第一振荡电容器6,与加热线圈4并联连接的内装反向导通二极管的第二开关元件IGBT7和第二振荡电容器8的串联电路。
下面说明关于以上那样构成的感应加热烹调器的动作。基本的动作与上述的实施例22相同。
在换流器电路2的动作中,当振荡线圈的电感变大时,残留电压von1变小。因此,本实施例的情况,von1检测电路检测出残留电压von1的产生,当未检测出残留电压von1时,向继电器213输出继电器215吸合开关S1那样的控制信号,当检测出残留电压von1的产生时,向继电器213输出吸合开关S2那样的控制信号。因此,残留电压von1产生时,由于线圈214连接换流器电路2,振荡线圈的电感值变大。
这样,von1检测电路211当输入功率小时和在负载为覆铜锅等的特定种类时,当检测出产生的残留电压von1时,仅对从加热线圈4开始串联连接加热线圈4和线圈214的电路改变振荡线圈,加大其电感。因此,换流器电路2可在不产生残留电压von1的状态动作,能够减少IGBT5的损失和噪声。
实施例25图68表示关于实施例25的感应加热烹调器的电路构成图。在图68中,216是感应加热烹调器主体,217是感应加热烹调器216的顶板,在顶板217上载置是负载的锅218。
在感应加热烹调器216的内部,加热线圈204被固定在加热线圈底座219上,加热线圈底座219被安装在是改变间隙调整装置220上。间隙调整装置220用电动机驱动。
下面说明关于以上那样构成的感应加热烹调器的动作。基本的动作,与上述实施例22相同。
在换流器电路(无图示)的动作中,当是加热线圈204和锅218之间的间隙的间隙d变大时,残留电压von1变小。本实施例的情况,当残留电压von1产生时间隙调整装置220加大是加热线圈204和锅218之间的间隙的间隙d。
这样,在感应加热烹调器216的内部设置的von1检测电路(无图示)检测出当输入功率小时和负载是覆铜锅等特定的种类等时产生的残留电压von1,由于通过间隙调整装置220,间隙d被加大,换流器电路可在不产生残留电压von1状态下动作,能够减少开关元件(无图示)的损失和噪声。
实施例26图69表示关于实施例26的感应加热烹调器的电路构成图。在图69中,感应加热烹调器包括,将来自直流电源1的直流变换成高频电流的换流器电路2,和驱动换流器电路2的驱动电路9,和为输入输入功率的设定值的输入设定部分221。换流器电路2与上述实施例22相同。输入设定部221连接继电器210和驱动电路9。
下面说明关于以上那样构成的感应加热烹调器的动作。
当用输入设定部221设定的输入功率比预先设定的规定值大时,输入设定部分221闭合继电器210。因此,电容器209连接换流器电路,功能的第一振荡电容器的容量值变大。同时,输入设定部221对驱动电路9输出按输入设定值的电压。驱动电路9,根据输入设定部221的输出电压,对应在一定频率下用被设定的输入功率的导通比,交互导通IGBT5和IGBT7,由此,使换流器电路2动作。
当用输入设定部221设定的输入功率比预先设定的规定值小时,输入设定部221断开继电器210。因此,电容器209从换流器电路上被断开,功能的第一振荡电容器的容量值与输入功率比规定值大时相比变小。同时,对驱动电路9输出与输入设定值相对应的电压。驱动电路9根据输入设定部221的输出电压,对应在一定频率下用被设定的输入功率的导通比,交互导通IGBT5和IGBT7,由此,使换流器电路2动作。
如实施例22中所述那样,当输入功率小时,残留电压von1变大,另外,与加热线圈4形成振荡电路的功能的第一振荡电容器的容量小因此,可减小该时产生的残留电压von1的大小。所以,在本实施例中,当用输入设定电路221设定的输入功率小时,减小功能的第一振荡电容器的容量,因此,抑制残留电压von1的产生,或者即使产生残留电压von1,由于可抑制其大小,可减少IGBT5的损失和噪声。
实施例27图70表示关于实施例27的感应加热烹调器的电路构成图。在图70中,感应加热烹调器包括,将来自直流电源1的直流变换成高频电流的换流器电路2,和驱动换流器电路2的驱动电路9,和检测负载的负载检测电路226。
换流器电路2包括,在外侧有二个端头和在内侧有一个端头合计有三个端头的加热线圈223,加热线圈223外侧的两个端头分别通过继电器224和继电器225被连接在直流电源1的正极。加热线圈223内侧的一个端关,连接内装反向导通二极管的第一开关元件IGBT5的集电极端,IGBT5的发射极连接直流电源1的负极。第一振荡电容器6并联连接与加热线圈223形成振荡电路的IGBT5。内装反向导通二极管的第二开关元件IGBT7与第二振荡电容器8的串联电路并联连接加热线圈223。
负载检测电路226具有磁开关,连接驱动电路9的输入。驱动电路9的输出分别连接IGBT5的控制端和IGBT7的控制端。
下面说明关于以上那样构成的感应加热烹调器的动作。
用磁开关构成的负载检测电路226,判别负载的磁性/非磁性。当负载是磁性时,换流器电路2在继电器224闭合,继电器225断开的状态下动作,在非磁性负载时,在继电器224断开,继电器225闭合的状态下动作。
在加上负载的状态,负载是磁性负载时与非磁性时相比,加热线圈223的电感小。在本实施例的换流器电路2中,当磁性负载时,由于继电器224闭合,继电器225断开,连接换流器电路2的加热线圈223的电感变小。当非磁性负载时,由于继电器224断开,继电器225闭合,连接换流器电路2的加热线圈223的电感变大。也就是,即使负载是磁性负载、非磁性负载的任何一种情况,由于在加上负载的加热线圈223的电感被控制为大致相同的值,能够解决当负载是磁性负载时,不能充分得到输入功率的问题,当负载是非磁性负载时,能够解决换流器电路2的工作电压乘以电流过大的问题。
还有,在上述的实施例中,功能中第一振荡电容器的容量、功能中第二振荡电容器的容量,加热线圈的电感,所述间隙长度的换流器常数的切换,不必象以上实施例那样分二段切换,可分三段或三段以上切换。
并且,叙述了关于本发明特定的实施例,作为从业者,可利用其他多种变换例的改变,因此,本发明不受上述实施例公开内容的限制。
权利要求
1.一种高频换流器,其特征在于包括在直流电源一端连接的线圈;和对于所述直流电源串联连接所述线圈的第一开关元件;和与所述线圈形成振荡电路那样连接的第一振荡电容器;和与所述线圈或第一开关元件并联连接的第二振荡电容器和第二开关元件的串联电路;和用一定频率交互导通控制所述第一及第二开关元件,同时,为了控制输入功率,变化对一个周期长度的所述第一开关元件的导通时间的比的导通比的控制手段。
2.一种感应加热烹调器,其特征在于包括在直流电源一端连接的线圈;和对于所述直流电源串联连接所述线圈的第一开关元件;和与所述线圈形成振荡电路那样连接的第一振荡电容器;和与所述线圈或第一开关元件并联连接的,第二振荡电容器和第二开关元件的串联电路;和具有用一定频率交互导通控制所述第一及第二开关元件,同时,为了控制输入功率变化对一个周期长度的所述第一开关元件的导通时间的比的导通比的控制手段的高频换流器;和检测出输入该高频换流器的输入电流的输入电流检测手段;所述控制手段是按照所述输入电流检测手段的输出,控制所述第一及第二开关元件的所述导通比。
3.根据权利要求2所述的感应加热烹调器,其特征在于还包括设定所述输入电流的大小的输入设定手段;所述控制手段是按照所述输入设定手段的输出,控制所述第一及第二开关元件的所述导通比。
4.根据权利要求2所述的感应加热烹调器,其特征在于所述控制手段是当所述输入电流在按照所述第一及第二开关元件的导通时间被设定的规定范围内,控制所述导通比。
5.一种感应加热烹调器,其特征在于包括在直流电源一端连接的线圈;和对于所述直流电源串联连接所述线圈的第一开关元件;和与所述线圈形成振荡电路那样连接的第一振荡电容器;和与所述线圈或第一开关元件并联连接的,第二振荡电容器和第二开关元件的串联电路;和具有用一定频率交互导通控制所述第一及第二开关元件,同时,为了控制输入功率,变化对一个周期长度的所述第一开关元件的导通时间的比的导通比的控制手段的高频换流器;和检测出所述第一开关元件的两端电压的第一开关元件电压检测手段;所述控制手段是根据所述第一开关元件电压检测手段的输出,控制所述第一及第二开关元件的所述导通比。
6.一种感应加热烹调器,其特征在于包括在直流电源一端连接的线圈;和对于所述直流电源串联连接所述线圈的第一开关元件;和与所述线圈形成振荡电路那样连接的第一振荡电容器;和与所述线圈或第一开关元件并联连接的,第二振荡电容器和第二开关元件的串联电路;和具有用一定频率交互导通控制所述第一及第二开关元件,同时,为了控制输入功率,变化对一个周期长度的所述第一开关元件的导通时间的比的导通比的控制手段的高频换流器;和检测出所述第二开关元件的两端电压的第二开关元件电压检测手段;所述控制手段是根据所述第二开关元件电压检测手段的输出,控制所述第一及第二开关元件的所述导通比。
7.根据权利要求6所述的感应加热烹调器,其特征在于还包括检测出所述第一开关元件的两端电压的第一开关元件电压检测手段;所述控制手段是当所述第一开关元件的两端电压在按照所述第二开关元件的两端电压被设定的规定范围内,控制所述第一及第二开关元件的导通比。
8.根据权利要求6所述的感应加热烹调器,其特征在于还包括检测出所述第一开关元件的两端电压的第一开关元件电压检测手段;及检测出所述第一开关元件的两端电压和所述第二开关元件的两端电压的电压差的减法手段;所述控制手段是当所述减法手段的输出为规定值以下,控制所述第一及第二开关元件的导通比。
9.一种感应加热烹调器,其特征在于包括在直流电源一端连接的线圈;和对于所述直流电源串联连接所述线圈的第一开关元件;和与所述线圈形成振荡电路那样连接的第一振荡电容器;和与所述线圈或第一开关元件并联连接的,第二振荡电容器和第二开关元件的串联电路;和具有用一定频率交互导通控制所述第一及第二开关元件,同时,为了控制输入功率,变化对一个周期长度的所述第一开关元件的导通时间的比的导通比的控制手段的高频换流器;和检测出流入所述线圈的的电流的线圈电流检测手段;所述控制手段是根据所述线圈电流检测手段的输出,控制所述第一及第二开关元件的导通比。
10.一种感应加热烹调器,其特征在于包括在直流电源一端连接的线圈;和对于所述直流电源串联连接所述线圈的第一开关元件;和与所述线圈形成振荡电路那样连接的第一振荡电容器;和与所述线圈或第一开关元件并联连接的,第二振荡电容器和第二开关元件的串联电路;和具有用一定频率交互导通控制所述第一及第二开关元件,同时,为了控制输入功率,变化对一个周期长度的所述第一开关元件的导通时间的比的导通比的控制手段的高频换流器;和检测出所述第一开关元件的电流的第一开关元件的电流检测手段;所述控制手段是根据所述第一开关元件的电流检测手段的输出,控制所述第一及第二开关元件的导通比。
11.一种感应加热烹调器,其特征在于包括在直流电源一端连接的线圈;和对于所述直流电源串联连接所述线圈的第一开关元件;和与所述线圈形成振荡电路那样连接的第一振荡电容器;和与所述线圈或第一开关元件并联连接的,第二振荡电容器和第二开关元件的串联电路;和具有用一定频率交互导通控制所述第一及第二开关元件,同时,为了控制输入功率,变化对一个周期长度的所述第一开关元件的导通时间的比的导通比的控制手段的高频换流器;和检测出所述第二开关元件的电流的第二开关元件的电流检测手段;所述控制手段是根据所述第二开关元件的电流检测手段的输出,控制所述两开关元件的导通比。
12.根据权利要求11所述的感应加热烹调器,其特征在于所述控制手段是根据所述第一及第二开关元件的导通时间被设定的,在流入所述第二开关元件的电流的规定范围内,控制导通比。
13.一种感应加热烹调器,其特征在于包括在直流电源一端连接的线圈;和对于所述直流电源串联连接所述线圈的第一开关元件;和与所述线圈形成振荡电路那样连接的第一振荡电容器;和与所述线圈或第一开关元件并联连接的,第二振荡电容器和第二开关元件的串联电路;和具有用一定频率交互导通控制所述第一及第二开关元件,同时,为了控制输入功率,变化对一个周期长度的所述第一开关元件的导通时间的比的导通比的控制手段的高频换流器;和检测出不适宜负载的不适宜负载检测手段;所述控制手段是当不适宜负载检测手段检测出不适宜负载时,停止所述第一及第二开关元件的驱动。
14.根据权利要求13所述的感应加热烹调器,其特征在于具有检测出所述高频换流器的动作状态的动作状态检测手段;所述不适宜负载检测手段是根据从所述动作状态检测手段开始的输出检测出不适宜负载。
15.根据权利要求14所述的感应加热烹调器,其特征在于所述动作状态检测手段包括,检测出所述高频换流器的输入电流的输入电流检测手段,和检测出所述第一开关元件电压的第一开关元件电压检测手段;所述不适宜负载检测手段是根据用所述输入电流检测手段检测出的输入电流值和用是所述第一开关元件电压检测手段检测出的电压值,检测出不适宜负载。
16.根据权利要求14所述的感应加热烹调器,其特征在于所述动作状态检测手段包括,检测出所述高频换流器的输入电流的输入电流检测手段;和检测出所述第二开关元件电压的第二开关元件电压检测手段;所述不适宜负载检测手段是根据用所述输入电流检测手段检测出的输入电流值和用是所述第二开关元件电压检测手段检测出的电压值,检测出不适宜负载。
17.一种感应加热烹调器,其特征在于包括在直流电源一端连接的线圈;和对于所述直流电源串联连接所述线圈的第一开关元件;和与所述线圈形成振荡电路那样连接的第一振荡电容器;和与所述线圈或第一开关元件并联连接的,第二振荡电容器和第二开关元件的串联电路;和具有用一定频率交互导通控制所述第一及第二开关元件,同时,为了控制输入功率,变化对一个周期长度的所述第一开关元件的导通时间的比的导通比变化的控制手段的高频换流器;和输出为了使该高频换流器起动的起动信号及为了使该高频换流器停止的停止信号的起动停止手段;所述控制手段是从所述起动停止手段开始输入所述起动信号之后,延迟规定时间,使第一及第二开关元件起动。
18.一种感应加热烹调器,其特征在于包括在直流电源一端连接的线圈;和对于所述直流电源串联连接所述线圈的第一开关元件;和与所述线圈形成振荡电路那样连接的第一振荡电容器;和与所述线圈或第一开关元件并联连接的,第二振荡电容器和第二开关元件的串联电路;和具有用一定频率交互导通控制所述第一及第二开关元件,同时,为了控制输入功率,变化对一个周期长度的所述第一开关元件的导通时间的比的导通比的控制手段的高频换流器;所述直流电源是由市用电源、将该市用电源的输出整流的整流器、和连接该整流器的输出的滤波电容器构成;具有监视所述市用电源的市用电源监视手段;所述控制手段是当所述市用电源监视手段检测出所述市电的异常状态时,停止所述第一及第二开关元件的驱动。
19.一种感应加热烹调器,其特征在于包括在直流电源一端连接的线圈;和对于所述直流电源串联连接所述线圈的第一开关元件;和与所述线圈形成振荡电路那样连接的第一振荡电容器;和与所述线圈或第一开关元件并联连接的,第二振荡电容器和第二开关元件的串联电路;和具有用一定频率交互导通控制所述第一及第二开关元件,同时,为了控制输入功率,变化对一个周期长度的所述第一开关元件的导通时间的比的导通比的控制手段的高频换流器;还包括在该高频换流器起动时,输出为了从规定的最小输入功率使输入功率慢慢增加的信号的软起动手段;控制手段是根据所述软起动手段的输出,控制所述第一及第二开关元件的导通比。
20.根据权利要求19所述的感应加热烹调器,其特征在于所述软起动手段包括,设定所述高频换流器的输入的输入设定手段,和根据该输入设定手段的输出被设定的基准电压为止使输出电压缓慢变化的基准电压设定手段,和产生三角波的振荡手段,和比较所述基准电压设定手段的输出和所述振荡手段的输出的比较手段;所述控制手段是根据所述比较手段的输出,控制所述第一及第二开关元件的导通比。
21.一种高频换流器,其特征在于包括在直流电源一端连接的线圈;和对于所述直流电源串联连接所述线圈的第一开关元件;和与所述线圈形成振荡电路那样连接的第一振荡电容器;和与所述线圈或第一开关元件并联连接的,第二振荡电容器和第二开关元件的串联电路;和用一定频率交互导通控制所述第一及第二开关元件,同时,为了控制输入功率,变化对一个周期长度的所述第一开关元件的导通时间的比的导通比的控制手段;在所述第一及第二开关元件的导通期间改换时,设定在所述第一及第二开关元件都为非导通期间的无信号时间。
22.根据权利要求21所述的高频换流器,其特征在于具有根据高频换流器的动作状态,设定所述无信号时间的无信号时间设定手段。
23.根据权利要求21所述的高频换流器,其特征在于在规定时间设定所述无信号时间。
24.根据权利要求21所述的高频换流器,其特征在于使从所述第一开关元件的导通期间的结束时刻到第二开关元件的导通期间的开始时刻期间的无信号时间,与从所述第二开关元件的导通期间的结束时刻到所述第一开关元件的导通期间的开始时刻期间的无信号时间不同。
25.一种感应加热烹调器,其特征在于包括在直流电源一端连接的线圈;和对于所述直流电源串联连接所述线圈的第一开关元件;和与所述线圈形成振荡电路那样连接的第一振荡电容器;和与所述线圈或第一开关元件并联连接的,第二振荡电容器和第二开关元件的串联电路;和具有用一定频率交互导通控制所述第一及第二开关元件,同时,为了控制输入功率,变化对一个周期长度的所述第一开关元件的导通时间的比的导通比的控制手段的高频换流器;和按照用所述线圈加热的负载,使第一振荡电容器的容量变化的第一振荡电容器改换手段。
26.一种感应加热烹调器,其特征在于包括在直流电源一端连接的线圈;和对于所述直流电源串联连接所述线圈的第一开关元件;和与所述线圈形成振荡电路那样连接的第一振荡电容器;和与所述线圈或第一开关元件并联连接的,第二振荡电容器和第二开关元件的串联电路;和具有用一定频率交互导通控制所述第一及第二开关元件,同时,为了控制输入功率,变化对一个周期长度的所述第一开关元件的导通时间的比的导通比的控制手段的高频换流器;和按照用所述线圈加热的负载,使所述第二振荡电容器的容量变化的第二振荡电容器改换手段。
27.一种感应加热烹调器,其特征在于包括在直流电源一端连接的线圈;和对于所述直流电源串联连接所述线圈的第一开关元件;和与所述线圈形成振荡电路那样连接的第一振荡电容器;和与所述线圈或第一开关元件并联连接的,第二振荡电容器和第二开关元件的串联电路;和具有用一定频率交互导通控制所述第一及第二开关元件,同时,为了控制输入功率,变化对一个周期长度的所述第一开关元件的导通时间的比的导通比的控制手段的高频换流器;和按照用所述线圈加热的负载,使所述线圈的电感变化的线圈改换手段。
28.一种感应加热烹调器,其特征在于包括在直流电源一端连接的线圈;和对于所述直流电源串联连接所述线圈的第一开关元件;和与所述线圈形成振荡电路那样连接的第一振荡电容器;和与所述线圈或第一开关元件并联连接的,第二振荡电容器和第二开关元件的串联电路;和具有用一定频率交互导通控制所述第一及第二开关元件,同时,为了控制输入功率,变化对一个周期长度的所述第一开关元件的导通时间的比的导通比的控制手段的高频换流器;和按照用所述线圈加热的负载,使所述线圈和负载的间隙长度变化的间隙改换手段。
29.根据权利要求25至28中任何1项所述的感应加热烹调器,其特征在于具有检测出被感应加热负载的负载检测手段。
30.根据权利要求1至28中任何1项所述的高频换流器,其特征在于所述第一振荡电容器在所述第二开关元件和所述第二振荡电容器的节点被连接其一端。
31.根据权利要求1至28中任何1项所述的高频换流器,其特征在于所述第一振荡电容器的容量是比所述第二振荡电容器的容量小的值。
32.根据权利要求1至28中任何1项所述的高频换流器,其特征在于所述第一或第二开关元件是用内装反向导通二极管的IGBT构成。
33.根据权利要求1至28中任何1项所述的高频换流器,其特征在于所述第一开关元件是反向导通截止型的。
全文摘要
一种可一定频率动作及过零伏切换动作的用简易电路构成的高频换流器以及应用该高频换流器的感应加热烹调器。该高频换流器由将直流电源来的直流变换成高频电流的换流器电路和控制换流器电路的控制电路构成。换流器电路由连接直流电源一端的加热线圈,和与加热线圈的另一端和直流电源的另一端之间被串联连接的第一开关元件和与加热线圈形成振荡电路那样连接的第一振荡电容器构成的1换流器,和与加热线圈并联连接与第二开关元件和第二振荡电容器的串联电路组成。
文档编号H05B6/12GK1213484SQ9719297
公开日1999年4月7日 申请日期1997年3月13日 优先权日1996年3月13日
发明者川洁, 大森英树, 山下秀和, 绪方大象, 北泉武, 卡牟林·莫克塔 申请人:松下电器产业株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1