新的诱导型应激行为动物模型的制作方法_6

文档序号:9264126阅读:来源:国知局
Liu,N.A. et al. Proc Natl Acad Sci U S A 108,8414-8419, (2011).
[0182] Lowry, C. A. &Moore, F. L. General and comparative endocrinology 146, 19-27, (2006).
[0183] Lu A,Steiner M,Whittle N,Vogl A,Walser S,Ableitner M,Refo jo D,Ekker MjRubenstein JjStalla GjSingewald NjHolsboer FjWotjak CjWurst WjJM D(2008) Conditional mouse mutants highlight mechanisms of corticotropin-releasing hormone effects on stress-coping behavior Molecular Psychiatry,13,1028 - 1042
[0184] MacPhail RC,Brooks J,Hunter DL,Padnos B,Irons TD,Padilla S (2009) Locomotion in larval zebrafish:Influence of time of day, lighting and ethanol. Neurotoxicology 30:52-58
[0185] McEwenj B. S. &Sapolsky, R. M. Current opinion in neurobiology 5, 205-216,(1995).
[0186] Moore, F. L. &0rchinik, M. Hormones and behavior 28,512-519, (1994).
[0187] Muller MBjHolsboer F(2006)Mice with mutations in the HPA-system as models for symptoms of depression. Biol Psychiatry,59, 1104-1115.
[0188] Muller MB, Zimmermann S,Sillaber I,Hagemeyer TP,Deussing JM,Timpl PjKormann MSjDroste SKjKuhn RjReul JMjHolsboer FjWurst W(2003) Limbic corticotropin-releasing hormone receptor I mediates anxiety-related behavior and hormonal adaptation to stress. Nat Neurosci,6, 1100-1107.
[0189] Munck AjGuyre PMjHolbrook NJ (1984) Physiological functions of glucocorticoids in stress and their relation to pharmacological actions. Endocr Rev 5:25-44.
[0190] Nagel G,Ollig D,Fuhrmann M, Kateriya S,Musti AM, Bamberg E,Hegemann P.Channelrhodopsin-I:a light-gated proton channel in green algae. Science. 2002 Jun 28 ;296 (5577):2395-8.
[0191] Pfaff, D. , Ribeiro, A. , Matthews, J. &Kow, L. M. Annals of the New York Academy of Sciences 1129, 11-25, (2008).
[0192] Prober DAjZimmerman SjMyers BRjMcDermott BMj Jr. , Kim SHjCaron SjRihel J,Solnica-Krezel L,Julius D,Hudspeth AJ,Schier AF(2008)Zebrafish TRPAl channels are required for chemosensation but not for thermosensation or mechanosensory hair cell function. The Journal of neuroscience:the official journal of the Society for Neuroscience 28:10102-10110
[0193] Prut L. , Belzung C. . The open field as a paradigm to measure the effects of drugs on anxiety-1 ike behaviors: a review Eur J Pharmacol, 463(2003), pp. 3 - 33 ;
[0194] Raber J (1998) Detrimental effects of chronic hypothalamic-pituitary-adrenal axis activation. From obesity to memory deficits. Mol Neurobiol 18:1-22.
[0195] Raadsheer FCjHoogendijk WJGjStam FCjTilders FJHjSwaab DF 1994 Increased numbers of corticotropin-releasing hormone expressing neurons in the hypothalamic paraventricular nucleus of depressed patients. Neuroendocrinology 60:436 - 444
[0196] Refojo D, Schweizer M,Kuehne C,Ehrenberg S,Thoeringer C,Vogl AM, Dedic N,Schumacher M,von Wolff G, Avrabos C,Touma C,Engblom D, Schutz G,Nave KA,Eder MjWotjak CTjSillaber IjHolsboer FjWurst WjDeussing JM(2011)Glutamatergic and dopaminergic neurons mediate anxiogenic and anxiolytic effects of CRHRI. Science,333, 1903-1907.
[0197] Ryu MHjMoskvin OVjSiltberg-Liberles JjGomelsky M(2010)Natural and engineered photoactivated nucleotidyl cyclases for optogenetic applications. The Journal of biological chemistry 285:41501-41508
[0198] Sandi,C.&Pinel〇-Nava,M.T. Neural plasticity 2007,78970,(2007).
[0199]Sandi,C.,Venero, C. &Guaza,C. Eur J Neurosci 8, 794-800,(1996)?
[0200] Sapolsky RM,Romero LM,Munck AU(2000)How do glucocorticoids influence stress responses ? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr Rev 21:55-89
[0201] Schroder-Lang S, Schwarzel M,Seifert R,Strunker T, Kateriya S,Looser J,Watanabe M,Kaupp UB,Hegemann P,Nagel G(2007)Fast manipulation of cellular cAMP level by light in vivo. Nature methods 4:39-42.
[0202] Smith GWjAubry JMjDellu FjContarino AjBilezikjian LMjGold LHjChen R,Marchuk Y,Hauser C,Bentley CA,Sawchenko PE,Koob GF,Vale W,Lee KF (1998) Corticotropin releasing factor receptor 1-deficient mice display decreased anxiety, impaired stress response, and aberrant neuroendocrine development. Neuron,20, 1093-1102.
[0203] Stierl MjStumpf PjUdwari DjGueta RjHagedorn RjLosi AjGartner WjPetereit L, Efetova M, Schwarzel M,Oertner TG,Nagel G,Hegemann P(2011)Light modulation of cellular cAMP by a small bacterial photoactivated adenylyl cyclase, bPAC, of the soil bacterium Beggiatoa. The Journal of biological chemistry 286:1181-1188
[0204] Swanson LWjSawchenko PEjRivier JjVale WW(1983) Organization of ovine corticotropin-releasing factor immunoreactive cells and fibers in the rat brain:an immunohistochemical study. Neuroendocrinology 36:165-186
[0205] Timpl P,Spanagel R,Sillaber I,Kresse A,Reul JM,Stalla GK,Blanquet V,Steckler T,Holsboer F,Wurst W(1998)Impaired stress response and reduced anxiety in mice lacking a functional corticotropin-releasing hormone receptor I. Nat Genet,19, 162-166.
[0206] To TT,Hahner S,Nica G,Rohr KB,Hammerschmidt M,Winkler C,Allolio B(2007)Pituitary-interrenal interaction in zebrafish interrenal organ development. Mol Endocrinol 21:472-485.
[0207] Tsigos C,Chrousos GP (2002) Hypothalamic-pituitary-adrenal axis,neuroendocrine factors and stress. Journal of psychosomatic research 53:865-871
[0208] Wang JjOzden IjDiagne MjWagner FjBorton DjBrush BjAgha NjBurwell R,Sheinberg D,Diester I,Deisseroth K,Nurmikko A. Approaches to optical neuromodulation from rodents to non-human primates by integrated optoelectronic devices. Conf Proc IEEE Eng Med Biol Soc.2011 ;2011:7525-8.
[0209] Weissenberger S,Schultheis C,Liewald JF,Erbguth K,Nagel G,Gottschalk A (2011) PAC a - an optogenetic tool for in vivo manipulation of cellular cAMP levels, neurotransmitter release, and behavior in Caenorhabditis elegans. Journal of neurochemistry 116:616-625.
[0210] Wendelaar Bonga SE (1997)The stress response in fish. Physiol Rev 77:591-625.
[0211] Weninger SCjDunn AJjMuglia LJjDikkes PjMiczek KAjSwiergiel AH,Berridge CWj Majzoub JA (1999)Stress-induced behaviors require the corticotropin-releasing hormone (CRH)receptor, but not CRH. Proc Natl Acad Sci U S A,96, 8283-8288.
[0212] Westerfield M (2000)The zebrafish book. A guide for the laboratory use of zebrafish (Danio rerio). Eugene:Univ.of Oregon Press.
[0213] Wolkowitz, 0. M. , Burke, H. , Epelj E. S. &Reus, V. I. Annals of the New York Academy of Sciences 1179, 19-40, (2009).
[0214] Wyart CjDel Bene FjWarp EjScott EKjTrauner DjBaier HjIsacoff EY(2009) Optogenetic dissection of a behavioural module in the vertebrate spinal cord. Nature 461:407-410.
【主权项】
1. 一种产生诱导型应激动物模型的方法,所述方法包括遗传修饰非人脊椎动物以表达 可以在下丘脑-垂体-肾上腺轴细胞中通过光激活的一种或多种蛋白,其中可以通过光激 活的蛋白能够诱导 (i) 从下丘脑前区的室旁核中的神经元释放促皮质素释放激素(CRH)和/或精氨 酸-加压素(AVP); (ii) 从垂体前叶中的促肾上腺皮质激素细胞释放促肾上腺皮质激素(ACTH);和/或 (iii) 从肾上腺皮质中的细胞释放糖皮质激素。2. 权利要求1的方法,其中可以通过光激活的蛋白选自光激活腺苷酸环化酶(PAC)、 channelrhodopsin 1和 channelrhodopsin 2〇3. 权利要求1或2的方法,其中所述非人脊椎动物为鱼。4. 权利要求3的方法,其中所述鱼选自斑马鱼和青鏘。5. 通过权利要求1-4中任一项的方法获得的应激动物模型。6. 权利要求5的动物模型在筛选用于预防、改善或治疗应激和/或应激相关疾病的化 合物中的用途。7. -种筛选用于预防、改善和/或治疗应激和/或应激相关疾病的化合物的方法,所述 方法包括 (a) 向权利要求5的动物模型给予受试化合物; (b) 在步骤(a)之前、与步骤(a)同时和/或在步骤(a)之后在所述动物模型中诱导应 激;以及 (c) 分析步骤(b)中诱导的应激应答, 其中与不存在受试化合物的情况下观察到的应激应答相比,在存在受试化合物的情况 下于(c)中观察到的减少的应激应答指示化合物适合作为预防、改善和/或治疗应激和/ 或应激相关疾病的化合物。8. 权利要求7的方法,其中在步骤(b)中通过将所述动物暴露于光来诱导应激。9. 权利要求1-4中任一项的方法,权利要求5的动物,权利要求6的用途或者权利要求 7或8的方法,其中所述应激为慢性应激。10. -种分析鱼中的应激行为的方法,所述方法包括 (i) 将鱼置于游泳室中,并且将所述鱼暴露于刺激;以及 (ii) 在存在或不存在应激物的情况下分析所述鱼的刺激依赖性行为; 其中与不存在应激物的情况下在(ii)中观察到的行为相比,在存在应激物的情况下 于(ii)中观察到的行为的改变指示应激。11. 权利要求10的方法,其中所述刺激选自温度变化、照明变化或机械感觉刺激。12. 权利要求10或11的方法,其中所述刺激为食物。13. 权利要求10或11的方法,其中所述方法为主动回避测试。14. 权利要求10-13中任一项的方法,其中所述鱼选自斑马鱼和青鏘。15. 权利要求10-13中任一项的方法,其中所述鱼是通过权利要求3或4中任一项的方 法获得的动物模型。
【专利摘要】本发明涉及一种产生诱导型应激动物模型的方法,所述方法包括遗传修饰非人脊椎动物以表达在下丘脑-垂体-肾上腺轴细胞中可以通过光激活的一种或多种蛋白,其中可以通过光激活的蛋白能够诱导(i)从下丘脑前区的室旁核中的神经元释放促皮质素释放激素(CRH)和/或精氨酸-加压素(AVP);(ii)从垂体前叶中的促肾上腺皮质激素细胞释放促肾上腺皮质激素;和/或(iii)从肾上腺皮质中的细胞释放糖皮质激素。本发明进一步涉及通过本发明的方法获得的应激动物模型以及所述动物模型在筛选用于预防、改善或治疗应激和/或应激相关疾病的化合物中的用途。此外,本发明还涉及一种筛选用于预防、改善和/或治疗应激和/或应激相关疾病的化合物的方法以及在鱼中分析应激行为的方法。
【IPC分类】A61K49/00, A01K67/027, C12N9/88, C12N15/85
【公开号】CN104981150
【申请号】CN201380072299
【发明人】S·柳, R·德马尔科
【申请人】马克思-普朗克科学促进协会
【公开日】2015年10月14日
【申请日】2013年12月5日
【公告号】EP2740353A1, EP2928288A1, US20150282462, WO2014086938A1
当前第6页1 2 3 4 5 6 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1