带有泡沫抗拉构件的充有流体的腔体及制造该腔体的方法

文档序号:720769阅读:210来源:国知局
专利名称:带有泡沫抗拉构件的充有流体的腔体及制造该腔体的方法
带有泡沬抗拉构件的充有流体的腔体及制造该腔体的方法
背景技术
常规的运动鞋制品包括两个主要组成部分-鞋面和鞋底结构。鞋面可以由多种材 料成分制成(如,纺织品、皮革以及泡沫材料),鞋面限定出一个空间以相对于鞋底结构牢 固地接收和固定脚。鞋底结构固定到鞋面的下表面上,并且通常定位于在脚部和地面之间 延伸。除了减弱地面反作用力以外,鞋底结构还可以提供抓地力并控制各种脚部动作,比如 旋前(pronation)。因此,鞋面和鞋底结构相配合地运作,以提供一种适用于各种不同的步 行运动(如走路和跑步)的舒适结构。运动鞋制品的鞋底结构通常表示出分层结构(layered configuration),该 分层结构包括增加舒适度的鞋内底(insole),至少部分由聚合物泡沫形成的弹性鞋中 底(midsole),以及提供耐磨性和抓地力的与地面接触的鞋外底(outsole)。适合用 于鞋中底的聚合物泡沫材料包括乙基醋酸乙烯酯(ethylvinylacetate)或聚亚胺酯 (polyurethane),其在外加负载的作用下弹性地压缩,以减弱地面的反作用力。常规的聚合 物泡沫材料弹性地压缩,部分归因于包含大量开放的或封闭的气胞(cell),其限定出实质 上被气体取代的内部体积。反复压缩之后,聚合物泡沫的气胞结构会损坏,因而导致鞋底结 构的可压缩性下降和力减弱特性下降。减少聚合物泡沫鞋中底的质量和降低反复压缩之后损坏影响的一种方式是,将充 有流体的腔体加入鞋中底内。一般而言,充有流体的腔体由密封并加压的聚合物材料制成。 然后,在鞋中底的聚合物泡沫中封装腔体,使得腔体和封装聚合物泡沫的组合起到鞋中底 的作用。在一些结构中,纺织品或泡沫抗拉构件可以设置在腔体内,或者加强结构可以结合 到腔体的外部以赋予腔体形状。适合鞋应用的充有流体的腔体可以通过双膜(two-film)技术来制造,其中,形成 两个独立的聚合物薄片(可以是弹性膜),以表示腔体的整体外形。然后,沿着聚合物薄片 各自的外围,将聚合物薄片结合在一起以形成密封的结构,并且在预定的内部区域也将聚 合物薄片结合在一起以给予腔体所需要的结构。换句话说,在加压后内部结合(即从外围 向内隔开的结合)提供给腔体预定的形状和尺寸。为了加压腔体,将与液压源相连的喷嘴 或注射针(needle)插入到腔体中形成的填充入口。腔体加压后,密封填充入口并移除喷 嘴。也可以使用与热成形工艺类似的工艺,其中,在制造过程中模具形成加热的聚合物薄片 或者以其它方式成形加热的聚合物薄片。在一些结构中,热成形工艺还包括在聚合物薄片 之间结合抗拉构件,同时形成聚合物薄片或成形聚合物薄片。当腔体因加压的流体而膨胀 时,抗拉构件就限制腔体相对侧的向外移动。腔体还可以通过吹塑技术来制造,其中,将熔化或要不然软化的管状弹性材料放 置在模具中,该模具具有所需要的腔体整体形状和结构。该模具在某一位置具有开口,通过 该开口提供压缩空气。压缩空气使得液化弹性材料与模具的内表面的形状相一致。然后,冷 却弹性材料,从而形成具有所需要形状和结构的腔体。与双薄膜技术一样,为了加压腔体, 将与液压源相连的喷嘴或注射针插入到在腔体中形成的填充入口。腔体加压之后,密封填 充入口并移除喷嘴。
发明内容
一种制造充有流体的腔体的方法,可以包括在聚合物材料的第一层和第二层之间 放置抗拉构件。该抗拉构件具有第一部分和第二部分,第一部分比第二部分的可压缩性更 大。另外,将抗拉构件、第一层和第二层置于具有凸起的模具中,该凸起位于接触第一层并 邻近抗拉构件的第一部分的区域。该方法还包括在模具内挤压抗拉构件、聚合物材料的第 一层,以及聚合物材料的第二层,以使(a)第一层结合到抗拉构件的第一表面,(b)第二层 结合到抗拉构件的第二表面,以及(c)第一层和第二层围绕抗拉构件的外围结合在一起。抗拉构件可以形成为包括空穴,该空穴位于该抗拉构件的第一部分。在一些结构 中,抗拉构件可以形成为包括通道,该通道延伸穿过该抗拉构件并位于该抗拉构件的第一 部分中。在其它结构中,抗拉构件可以由不同密度的泡沫材料制成,其中较低密度泡沫材料 位于该抗拉构件的第一部分中。抗拉构件和各层还可以由直接互相结合的热塑性材料制 成。在各种应用中,腔体可以合并到鞋制品中。另一方面涉及制造具有有凸起的抗拉构件的充有流体的腔体的方法。该抗拉构件 具有第一部分和第二部分,第一部分比第二部分的可压缩性更大,并且具有凸起的抗拉构 件的表面位于第一部分。将抗拉构件、第一层和第二层置于模具中,该模具在将各层挤压到 抗拉构件的第二部分之前,将各层挤压到凸起中。本发明新颖之处的优点和特征具体在权利要求书中指出。但是,为了更好地理解 新颖之处的优点和特征,可以参照下述描述性内容和附图,其描述和图解了与本发明有关 的各种实施例和概念。


结合附图进行阅读时,可以更好的理解发明内容和具体实施方式
。图1为加入第一腔体的鞋制品的侧视图。图2为第一腔体的透视图。图3为第一腔体的俯视图。图4为第一腔体的侧视图。图5A和5B为由图3中剖面线5A和5B界定的第一腔体的剖面图。图6为第一腔体的抗拉构件的透视图。图7为用于制造第一腔体的模具的透视图。图8A-8C为由图7中剖面线8界定的模具的剖面示意图,其描绘了制造第一腔体 的工艺中的步骤。图9为制造工艺中的第一腔体的透视图。图10为模具的可选结构的透视图。图11A-11C为由图10中剖面线11界定的模具的可选结构的剖面示意图,其描绘 了第一腔体的可选制造工艺中的步骤。图12为第二腔体的透视图。图13为第二腔体的俯视图。图14为第二腔体的侧视图。
图15A和15B是由图13中剖面线15A和15B界定的第二腔体的剖面图。图16是第二腔体的抗拉构件的透视图。图17A-17C是由图7中剖面线8界定的模具的剖面示意图,其描绘了制造第二腔体的工艺中的步骤。图18为第三腔体的透视图。图19为第三腔体的侧视图。图20为第三腔体的主视图。图21为第三腔体的后视图。图22为第三腔体的俯视图。图23A和23B为由图22中剖面线23A和23B界定的第三腔体的剖面图。图24为第三腔体的抗拉构件的透视图。图25A-25C为模具的剖面示意图,其描绘了制造第三腔体的工艺中的步骤。图26为第四腔体的透视图。图27为第四腔体的俯视图。图28为第四腔体的侧视图。图29A和29B为由图27中剖面线29A和29B界定的第四腔体的剖面图。图30为第四腔体的抗拉构件的透视图。图31A-31C为模具的剖面示意图,其描绘了制造第四腔体的工艺中的步骤。图32A-32E为各种抗拉构件的透视图。
具体实施例方式下述讨论和附图公开了各种充有流体的腔体和制造该腔体的方法。尽管腔体是以 应用在鞋制品中进行的讨论,但是该腔体也可以加入到各种其它产品中,比如,包括用于承 载背包和高尔夫球袋的带子,缓冲垫或者用于足球或曲棍球的头盔,或者自行车座。另外, 腔体可以加入到各种非运动产品中,比如,可充气床垫和座垫。因此,下面相对于鞋公开的 各种充有流体的腔体可以与各种产品一起使用。图1表示了包括鞋面20和鞋底结构30的鞋制品10。鞋面20具有实质上常规的结 构,它包括多种组成部分,如纺织品、泡沫以及皮革材料,这些组成部分缝合或粘合在一起, 以形成用于牢固和舒适地接收脚的内部空间。鞋底结构30位于鞋面20的下方,它包括两 个主要组成部分,即鞋中底31和鞋外底32。鞋中底31固定在鞋面20的下表面上(比如通 过缝合或粘合),并在鞋底结构30在脚和地面之间受到挤压时,用来减弱地面的反作用力。 换句话说,鞋中底31被构造用来在走路、跑步或其它步行活动时向脚提供缓冲。鞋外底32 固定在鞋中底31的下表面上,并由适合接合地面的耐用的、抗磨材料制成。另外,鞋底结构 30可以包括鞋内底或鞋垫(图中未示出),其为薄的缓冲部件,位于鞋面20的空间内并靠 近脚的脚底(即,下)表面,以增加鞋10的舒适性。鞋中底31主要由聚合物泡沫材料制成,如聚亚胺酯或乙基醋酸乙烯酯,该聚合物 泡沫材料封装充有流体的腔体40。尽管图1中表示了腔体40设置在鞋中底31的脚后跟区 域,但是腔体40也可以设置在鞋中底31的任意区域,以提供附加的缓冲。而且,鞋中底31 可以封装多个具有腔体40或其它类型腔体通常结构的充有流体的腔体。腔体40可以仅部分封装在鞋中底31中或全部封装在鞋中底31中。例如,腔体40的部分可以从鞋中底31 的侧面向外突出,或者腔体40的上表面可以与鞋中底31的上表面重合。可选地,鞋中底31 可以在腔体40上方延伸并完全围绕腔体40,由此完全封装腔体40。另外,如图1所示,通 过鞋中底31中的孔或开口,可以看到腔体40。尽管腔体40具有适合与鞋底结构30 —起使 用的结构,但是类似的腔体可以加入到鞋面20。因此,腔体40相对于鞋10的位置以及腔体 40加入到鞋10中的方式可以显著地变化。第一腔体结构如图2-5B所示,腔体40的主要组成部分是外障壁50和抗拉构件60。障壁50包 括第一障壁层51和第二障壁层52,其实质上不能渗透腔体40中包含的加压流体。因此,加 压流体总体上会在腔体40内保持密封一段时间,该段时间包括鞋10的预期使用年限,或者 流体可以扩散到腔体40中以在鞋10的预期使用年限维持压力。第一障壁层51和第二障 壁层52围绕它们各自的外围结合在一起,以形成外围结合(peripheral bond) 53并相配合 地形成密封的外壳,在该外壳中设置有抗拉构件60和加压流体。抗拉构件60可以由聚合物泡沫材料制成,其位于障壁50中并结合在障壁50上。 如图6所示,抗拉构件60包括第一表面61和相对的第二表面62,它们总体上都为平坦的并 相互平行。第一表面61结合在第一障壁层51上,而第二表面62结合在第二障壁层52上。 抗拉构件60还界定出五个空腔63,其完全穿过抗拉构件60的泡沫材料并在与表面61和 62中的每个相平行的方向上延伸,因而形成贯穿抗拉构件60延伸的通道。空腔63界定出 四个泡沫材料的立柱64,其分开空腔63并在表面61和62之间延伸。在腔体40的进一步 结构中,空腔63可以仅部分穿过抗拉构件60延伸,或者可以在不同的方向上延伸。另外, 形成抗拉构件60不同部分的泡沫材料的密度和可压缩性可以不同。例如,抗拉构件60位 于鞋10的外侧区域的部分与抗拉构件60位于鞋10的内侧区域的部分可以呈现不同的密 度。各种常规的模塑(molding)技术都可以用来制造抗拉构件60。腔体40中包含的加压流体在障壁50上导致向外的力,并且倾向于分开或向外挤 压第一障壁层51和第二障壁层52。在没有抗拉构件60的情况下,加压流体导致的向外的 力会使腔体变为圆形或隆起的结构。然而,将抗拉构件60结合到第一障壁层51和第二障 壁层52的每个上,以限制障壁层51和52的分离。更具体地,例如,流体向空腔63的内部 施加向外的力,立柱64限制腔体40因向外的力而发生的变形。因此,抗拉构件60的部分 处在由流体导致的拉紧状态中,并且抗拉构件60保持图中所示的腔体40的大体平坦的结 构。如上述讨论,抗拉构件60结合到第一障壁层51和第二障壁层52中的每个上。可 以采用各种结合方法将障壁50和抗拉构件60固定在一起,并且结合方法可以至少部分由 所选择的用于障壁50和抗拉构件60中的每个的材料来决定。例如,可以利用粘合剂来结 合障壁50和抗拉构件60。然而,当障壁50和抗拉构件60中的至少一个是由热塑性聚合物 材料制成时,直接结合可能是一种固定障壁50和抗拉构件60的有效方法。本申请中所使 用的术语“直接结合(direct bond)”或者其变化定义为在障壁50和抗拉构件60之间的固 定技术,包括障壁50和抗拉构件60中的至少一个的熔化或者软化,以使障壁50和抗拉构 件60的材料在冷却时相互固定。总体上讲,直接结合可以包括障壁50和抗拉构件60两者 的熔化或软化,以使材料穿过障壁50和抗拉构件60之间的边界层扩散,并在冷却时固定在一起。直接结合还可以包括仅障壁50和抗拉构件60中的一个的熔化或软化,以使熔化的 材料延伸至由另一种材料形成的裂缝或空腔中,从而在冷却时将组件固定在一起。因此,障 壁50和抗拉构件60之间的直接结合一般不包括粘合剂的使用。相反,障壁50和抗拉构件 60是直接相互结合的。可以适用于障壁50的聚合物材料的例子包括热塑性氨基甲酸乙酯 (thermoplastic urethane)、聚亚胺酯、聚酯纤维(polyester)、聚酯型聚亚胺酯 (polyester polyurethane),以及聚醚型聚亚胺酉旨(polyetherpolyurethane)。另夕卜, 如Mitchell等人的专利号为5,713,141和5,952,065的美国专利所公开的,障壁50 可以由包括热塑性聚亚胺酯(thermoplasticpolyurethane)和乙烯-乙烯醇共聚物 (ethylene-vinyl alcohol copolymer)的交替层的材料制成。也可以采用基于该材料的 变型,其中中间层由乙烯-乙烯醇共聚物制成,邻接中间层的层由热塑性聚亚胺酯制成,外 层由热塑性聚亚胺酯和乙烯_乙烯醇共聚物的再研磨材料制成。如Bonk等人的专利号为 6,082,025和6,127,026的美国专利所公开的,用于压缩构件50的另一种合适的材料是 柔韧的微表层薄膜,其包括气障材料和弹性材料的交替层。另外的合适的材料在Rudy的 专利号为4,183,156和4,219,945的美国专利中公开。如Rudy的专利号为4,936,029和 5,042,176的美国专利所公开的,进一步的适合的材料包括含有结晶材料的热塑性膜,并且 如Bonk等人的专利号为6,013,340,6, 203,868和6,321,465的美国专利所公开的,聚亚胺 酯包括聚酯型多元醇(polyester polyol)。热塑性和热固性聚合物材料都可以用于障壁50。相比热固性聚合物材料,使用热 塑性聚合物材料制造障壁50的好处是,第一障壁层51和第二障壁层52可以通过在外围结 合53的位置应用加热来结合在一起。另外,可以加热和拉伸第一障壁层51和第二障壁层 52,以符合所需要的障壁50的形状。第一障壁层51形成腔体40的上表面,第二障壁层52 形成腔体40的下表面和大部分侧壁。这种结构将外围结合53置于邻接上表面的位置,并 提高了透过侧壁的可见度。可选地,外围结合53可以置于邻接下表面或者在上表面和下表 面之间的位置。因此,外围结合53可以延伸穿过侧壁,以使第一障壁层51和第二障壁层52 两者形成实质上相等同的侧壁部分。因此,在本发明的范围内,障壁50的具体结构和外围 结合53的位置可以显著地变化。多种泡沫材料适用于抗拉构件60。热固性聚合物泡沫,包括聚亚胺酯和乙基醋酸 乙烯酯,可以与粘合剂一起使用或者当直接结合包括障壁50的熔化和软化时使用,以使熔 化的材料延伸到抗拉构件60的泡沫气胞所形成的空腔中。当障壁50和抗拉构件60都由 热塑性聚合物泡沫制成时,可以熔化或软化制成该两个组件的材料,以使材料扩散穿过障 壁50和抗拉构件60之间的边界层,并在冷却时固定在一起。因此,无论抗拉构件60是由 热固性还是塑性聚合物泡沫制成,直接结合都可以发生在障壁50和抗拉构件60之间。热 塑性聚合物泡沫还呈现出这样的优势比热固性聚合物泡沫具有更好的撕裂和剪切性能, 并且热塑性聚合物泡沫是可再利用的或可循环的。对于热塑性聚合物泡沫,一种适合的材料是由亨兹曼国际有限公司(Huntsman International,L. L. C.)以SMARTLITE商标制造的。该热塑性聚亚胺酯泡沫的合适的形式 呈现的密度为0.65克每立方厘米、硬度为邵氏A级(Shore A scale) 57度。在本发明进一 步实施例中,可以使用呈现密度为0.50克每立方厘米、硬度为邵氏A级(Shore A scale) 85度的热塑性聚亚胺酯泡沫。因此,在本发明的保护范围内,适合的聚合物泡沫的密度和硬度 可以显著地变化。另一种适合的材料是通过Trexel研发的工艺生产的,Trexel以MUCELL 商标组成公司并进行市场销售。该工艺包含向热塑性聚亚胺酯中注入超临界流体,比如二 氧化碳或者氮气。大量的成核位置随后通过实质上的和快速的压力下降在热塑性聚亚胺酯 中形成。压力下降之后,通过监测压力和温度可以控制气胞的增长,并且,向模具中注入热 塑性聚亚胺酯,以形成抗拉构件60。腔体40含有的流体可以是授予Rudy的专利号为4,340,626的美国专利申请中所 公开的气体中的任意气体,如六氟乙烷和六氟化硫,这里通过参考引用该文件至此。此外, 流体可以包括加压的八氟丙烷、氮气、以及空气。流体的压力例如可以在每平方英寸0到50 磅的表压范围内或者更大。参照图1,腔体40至少部分由鞋中底31的聚合物泡沫封装。在走路、跑步或其它 步行运动中,在脚后跟和地面之间挤压鞋中底31和腔体40,从而减弱地面的反作用力。如 上所述,抗拉构件60结合到第一障壁层51和第二障壁层52中的每一个,并且处于由加压 流体导致的拉紧状态中。由于在脚和地面之间压缩腔体40,因而腔体40被压缩并且释放了 抗拉构件的60的张力。一旦除去脚和地面产生的挤压力,由流体导致的向外的力就使抗拉 构件60恢复拉紧状态。因此,腔体40的压缩提供了鞋底结构30减弱地面反作用力的一部 分。第一腔体制造工艺尽管可以采用多种制造工艺制成腔体40,但是此处将讨论适合的热成形工艺的例 子。参照图7,热成形工艺中可以使用的模具70表示为包括第一模具部分71和第二模具 部分72。模具70用来将一对聚合物薄片(即,第一障壁层51和第二障壁层52)和抗拉构 件60制成腔体40。具体地,模具70通过以下步骤促进热成形(a)赋予第一障壁层51和 第二障壁层52形状,(b)连接第一障壁层51和第二障壁层52的外围以形成外围结合53, 以及(c)将抗拉构件60结合到第一障壁层51和第二障壁层52。在制造腔体40的过程中,加热第一障壁层51、第二障壁层52以及抗拉构件60中 的一个或多个至有利于这些组件之间结合的温度。根据第一障壁层51、第二障壁层52以 及抗拉构件60所使用的具体材料,适合的温度可以在120到200摄氏度(248到392华氏 度)的范围内。例如,具有热塑性聚亚胺酯和乙烯-乙烯醇共聚物的交替层的材料,可以加 热至149到188摄氏度(300到370华氏度)温度范围以利于结合。可以使用各种辐射加 热器或其它装置来加热腔体40的组件。在一些制造工艺中,可以加热模具70,以使模具70 和腔体40组件之间的接触将组件的温度提高至便于结合的程度。如图8A所示,加热之后,将腔体40的组件置于模具部分71和72之间。为了适当 地放置组件,可以采用往复框架(shuttle frame)或其它装置。如图8B所示,一旦放置好, 模具部分71和72相向移动并在组件上合拢,以使(a)第一模具部分71的平坦的表面73 接触第一障壁层51以及(b)第二模具部分72的凹下的表面74在抗拉构件60的区域内接 触第二障壁层52,从而在模具部分71和72之间挤压组件。平坦的表面73和凹下的表面 74的挤压力,伴随着挤压的组件的温度升高,开始将抗拉构件60结合至障壁层51和52中 的每一个。在将抗拉构件60结合至障壁层51和52的时候或之后,空气可以部分地从平坦的表面73和凹下的表面74之间的区域中通过模具部分71和72的不同真空口排出。排出空 气的目的是使障壁层51和52与模具70的不同部分相接触。这确保了障壁层51和52按 照模具70的轮廓准确成形。另外,将障壁层52吸至凹下的表面74中主要是为了成形囊40 的侧壁,以及确保囊40的侧壁有足够的高度以使外围结合53定位在第一障壁层51的平面 上。应当注意的是,第二障壁层52可以延展以延伸至凹下的表面74中并形成囊40的侧壁。 层51和52的原始厚度之间的差别可以补偿第二障壁层52的变薄,该变薄发生在拉伸第二 障壁层52并将其吸至凹下的表面74中的时候。也就是说,第二障壁层52相比第一障壁层 51初始时可以有更厚的厚度,但是在拉伸之后,障壁层51和52两者可以呈现实质上相近或 者一致的厚度。为了提供将障壁层51和52吸至与模具70不同部分相接触的第二种方式,可以加 压障壁层51和52以及邻近的抗拉构件60之间的区域。在本方法的准备阶段,可以将注射 针放置在障壁层51和52之间,并且可以这样放置注射针以使得当模具70闭合时,模具部 分72中的脊75封住注射针。然后气体可以从注射针中注入,以使障壁层51和52接合脊 75的表面,从而在层51和52之间形成充气管41。然后气体可以穿过充气管41,从而进入 并加压邻近抗拉构件60的区域。结合真空,内部压力确保了障壁层51和52接触模具70 的不同部分。如图8C所示,当模具70进一步闭合时,围绕凹下的表面74延伸的脊75的部分将 第一障壁层51结合到第二障壁层52,从而形成外围结合53。也就是说,当模具部分71和 72继续相向移动时,脊75将障壁层51和52的部分挤压到一起以形成外围结合53。此外, 如图9所示,远离凹下的表面74延伸的脊75的部分在层51和52的其它区域之间形成结 合,以形成充气管41。如图9所示,完成结合后,打开模具70,移除腔体40以及障壁层51和52的多余部 分并允许冷却。流体可以通过充气针和由脊75形成的充气管41注入到腔体40中。此外, 加压后采用密封工艺来密封与每个腔体40邻接的充气管41。然后除去障壁层51和52的 多余部分,从而完成囊40的制造。作为选择,充气和移除多余部分的顺序可以颠倒。作为 工艺中的最后步骤,囊40可以合并到鞋10的鞋中底31中。可选的第一腔体制造工艺如上所述,抗拉构件60界定了 5个完全延伸穿过泡沫材料的空腔63,并且空腔63 界定了 4个立柱64,其将空腔63分开并在表面61和62之间延伸。空腔63和立柱64有效 地形成了挤压到不同程度的抗拉构件60的区域。更具体地,施加在与空腔63中的一个的 位置相对应的抗拉构件60 —部分上的挤压力,相比于施加在与立柱64中的一个的位置相 应的抗拉构件60—部分上的挤压力,会导致更大的弯曲。因此,与空腔63相对应的区域比 与立柱64相对应的区域更容易弯曲。在上述讨论的制造工艺中,在模具部分71和72之间挤压腔体40的组件。更具体 地,通过从平坦的表面73和凹下的表面74施加压力,将障壁层51和52结合到抗拉构件60 上。然而,假如抗拉构件60的区域在挤压力的作用下不同地弯曲,则障壁层51和52被挤 压至抗拉构件60的材料中的程度就会不同。也就是说,抗拉构件60和障壁层51和52在 立柱64的区域中相比于在空腔63的区域中可以挤压更多,这是由于这些区域中弯曲的差 别。因此,将障壁层51和52结合到抗拉构件60的程度在整个抗拉构件60上可以不同。
11
尽管上述讨论的制造工艺提供了用于形成腔体40的合适的方法,但是将障壁层 51和52结合到抗拉构件60的程度的差异可能会影响到腔体40。例如,障壁层51和52在 鞋10中反复压缩之后,结合的差异可能导致障壁层51和52在空腔63的区域耐久性更差。 也就是说,由于在空腔63的区域中挤压减少,在立柱64的区域中抗拉构件60与障壁层51 和52之间的结合,比在空腔63的区域中的更牢固。如下所述,对模具70的修改可以用来 均衡整个抗拉构件60上的挤压,从而均衡结合并增强腔体40的耐久性。 参照图10和图11A,模具70表示为具有多个凸起80,该凸起80从平坦的表面73 和凹下的表面74中的每一个向外延伸。凸起80设置成与空腔63相对应,其相比与立柱64 相对应的区域弯曲程度更大。如图IlB和IlC所示,当模具部分71和72相向移动以使平 坦的表面73和凹下的表面74接触并挤压腔体40的组件时,凸起80确保抗拉构件60与空 腔63相对应的区域比抗拉构件60与立柱64相对应的区域弯曲程度更大。也就是说,凸起 80有效地增加了在与空腔63相对应的区域中压缩抗拉构件60与障壁层51和52的程度, 由此加强了在与空腔63相对应的区域中抗拉构件60与障壁层51和52之间的结合。凸起80挤压抗拉构件60与障壁层51和52的程度,至少部分取决于凸起80的形 状和尺寸。例如,通过应用有限元分析,可以确定凸起80的形状和尺寸,以有效地均衡在与 空腔63相对应的区域和在与立柱64相对应的区域中的挤压力。也就是说,凸起80的形状 尺寸可以制成确保抗拉构件60与障壁层51和52之间的挤压力在抗拉构件60上实质上一 致地分布。通过均衡挤压力,障壁层51和52结合至抗拉构件60的程度可以在抗拉构件60 上实质上一致地分布。进一步地,凹下的表面74的较低区域形成隆起区域,其支承抗拉构件60并挤压抗 拉构件60。通过改变隆起区域的厚度,可以改变腔体40的组件被压缩的程度。也就是说, 如果需要更多的挤压,隆起区域可以向外突出更大的程度,如果需要更少的挤压,则隆起区 域可以向外突出更小的程度。因而,隆起区域可以用以给予腔体40的组件特定程度的挤 压。在一些结构的模具70中,第二模具部分72可以是可调整的,以使隆起区域可以升高或 降低。第二腔体结构在图12-15B中表示了可以与鞋10使用的另一种腔体140。腔体140包括外障壁 150和抗拉构件160。障壁150可以由任意上述讨论的用于障壁50的材料制成,其包括第 一障壁层151和第二障壁层152,其实质上不能渗透腔体40中包含的加压流体。因而,加压 流体在腔体140中通常会保持密封一段时间,该段时间包括鞋10的预期使用年限,或者流 体可以扩散到腔体140中以在鞋10的预期使用年限内维持压力。第一障壁层151和第二 障壁层152围绕它们各自的外围结合在一起,以形成外围结合153并相配合地形成密封的 外壳,在该空间中设置有抗拉构件160和加压流体。抗拉构件160可以由任意上述讨论的用于抗拉构件60的泡沫材料制成,其位于障 壁150中,并直接与障壁150结合。如图16所示,抗拉构件160包括具有起伏的或波状外 形的、非平面结构的第一表面161和相对的第二表面162。第一表面161与第一障壁层151 结合,而第二表面162与第二障壁层152结合。抗拉构件160也界定出五个空腔163,其完 全延伸穿过抗拉构件160的泡沫材料,因而形成延伸穿过抗拉构件160的通道。空腔163 界定出四个泡沫材料的立柱164,其分开空腔163并在表面161和162之间延伸。抗拉构件60的表面61和62实质上为平坦的,而表面161和162向外突出或者在与空腔163相对 应的区域形成轮廓。也就是说,表面161和162上的向外凸起设置在邻接空腔163的区域。 在腔体140的进一步的结构中,空腔163可以仅部分延伸穿过抗拉构件160,或者可以在不 同的方向上延伸。另外,形成抗拉构件160的不同凸起的泡沫材料的密度和可压缩性可以变化。与腔体40 —样,腔体140包含的加压流体在障壁150上导致向外的力,并倾向于 分开或向外挤压第一障壁层151和第二障壁层152。在没有抗拉构件160的情况下,加压流 体所导致的向外的力会赋予腔体140圆形或隆起的结构。然而,抗拉构件160结合到第一 障壁层151和第二障壁层152中的每一个上,以限制障壁层151和152的分开。因此,如图 所示,抗拉构件160的部分处于由流体导致的拉紧状态,并保持腔体140的结构。设置于腔 体140中的流体可以是任意上述讨论的用于腔体40的流体。第二腔体制造工艺腔体140的制造工艺与上述腔体40的制造工艺实质上类似。抗拉构件160的好 处是,表面161和162的轮廓确保在没有凸起80的情况下,抗拉构件160与障壁层151和 152之间的挤压力在抗拉构件160上实质上一致地分布。也就是说,该轮廓均衡挤压力,以 使得障壁层151和152结合到抗拉构件160上的程度在抗拉构件160上实质上一致地分布。 因此,在不引入如凸起80的结构至模具70的情况下,腔体140可以一致地结合。参照图17A,将抗拉构件160以及障壁层151和152中的每个置于模具70的模具 部分71和72之间。当模具部分71和72相向移动时,平坦的表面73和凹下的表面74接 触障壁层151和152中的每个。如图17B所示,抗拉构件160在障壁层151和152之间压缩 的第一部分是与空腔163相对应的波状外形区域。也就是说,模具70最初挤压与空腔163 相对应的区域。如图17C所示,当模具部分71和72继续相向移动时,抗拉构件160全部被 挤压在障壁层151和152之间。在与腔体40相类似的方式中,与空腔163相对应的区域比与立柱164相对应的区 域更容易弯曲。然而,如图17B所示,通过在表面161和162上形成向外的轮廓,与空腔163 相对应的区域早于与立柱164相对应的区域被挤压。如图17C所示,当进一步挤压抗拉构 件160时,在与空腔163相对应的区域内的向外的轮廓已经被挤压至实质上均衡了整个抗 拉构件160上的挤压力的程度。也就是说,抗拉构件160的向外的轮廓有效地增加了抗拉 构件160与障壁层151和152在与空腔163相对应的区域中被挤压的程度。因此,通过最 初挤压向外的轮廓,可以在抗拉构件160和障壁层151和152之间形成一致的结合。第三腔体结构图18-23B表示了鞋10可以采用的另一种腔体240。腔体240包括外障壁250和 抗拉构件260。障壁250包括实质上不能渗透腔体240中包含的加压流体的第一障壁层251 和第二障壁层252。腔体240中包含的加压流体导致作用于障壁250的向外的力,并倾向于 分开或者向外挤压第一障壁层251和第二障壁层252。然而,抗拉构件260结合至第一障壁 层251和第二障壁层252中的每个上,并处于由压缩流体导致的拉紧状态,因而限制了障壁 250的向外运动。第一障壁层251和第二障壁层252围绕它们各自的外围结合在一起,以形成外围 结合253,并相配合地形成密封的外壳,其中设置有抗拉构件260和加压流体。适用于障壁250的材料包括任意上述讨论的用于障壁50的材料。抗拉构件260是聚合物泡沫构件,其结合至障壁250上。尽管可以使用粘合剂粘合来固定障壁250和抗拉构件260,但是当障 壁250和抗拉构件260中的至少一个是由热塑性聚合物材料制成时,也适用直接结合。适 用于抗拉构件260的材料包括任意上述讨论的用于抗拉构件60的材料。相类似地,在腔体 240中可以采用任意上述讨论的用于腔体40的流体。如上所述,抗拉构件60具有的结构中,表面61和62都是平坦的且相互平行。与 此相反,抗拉构件260包括具有凹面结构的第一表面261,并且抗拉构件260包括大致平坦 的第二表面262。第一表面261的凹面结构向囊240提供凹形的上部区域,该上部区域可以 结合鞋面20并形成用于稳固地接收脚后跟的凹陷。相类似地,第二表面262的平坦结构向 腔体240提供大致平坦的下部区域,该下部区域结合鞋外底32。表面261和262的不同轮 廓可以与上述讨论的结构有显著的不同。例如,第二表面262可以在鞋10的后外侧拐角处 包含斜面,或者两个表面都是平坦的。抗拉构件260包括多个相交叉的空腔263,其穿过聚合物泡沫材料延伸,从而形成 穿过抗拉构件260延伸的通道。一些空腔263从抗拉构件260的前部纵向延伸至抗拉构件 260的后部,其它空腔263在抗拉构件260侧面之间横向延伸。空腔263增加了抗拉构件 260的可压缩性,并减少了腔体240的整体重量。在其它结构中,空腔263可以仅部分延伸 穿过抗拉构件260,而不是全部延伸穿过抗拉构件260。空腔263形成多个在抗拉构件260 的表面261和262之间延伸的立柱264。立柱264的大小可以依空腔263的数量和大小而 显著地不同。如图20和21所示,沿抗拉构件240纵向长度延伸的空腔263呈现大体为矩形的 形状。此外,如图19所示,在抗拉构件260侧面之间延伸的空腔263呈现大体为椭圆的形 状。尽管这些是适合空腔263的形状,但是空腔263的形状也可以不同,形状包括圆形、三 角形、六边形,或其它规则或不规则的形状。空腔263还表示为具有穿过抗拉构件260的长 度和宽度的恒定形状,但是也可以有非恒定的、变化的形状或变化的尺寸。因此,空腔263 的结构可以变化以赋予抗拉构件263的不同部分以不同的可压缩性或性能。例如,在抗拉 构件260的后外侧部分,空腔263可以具有更大的尺寸,以减少鞋底结构30在后外侧拐角 处的整体可压缩性。抗拉构件260可以由注塑成型(injection molding)工艺制成,其中将聚合物泡 沫注入具有型腔的模具中,该型腔具有抗拉构件260大体形状。在型腔中,多个可除去的棒 体可以在与空腔263位置相对应的位置延伸穿过型腔。一旦聚合物泡沫至少部分固化,则 可以移除棒体,并可以打开模具以允许取出抗拉构件260。第三腔体制造工艺尽管可以采用各种制造工艺制成腔体240,但现在讨论一种合适的热成形工艺的 例子。参照图25A-25C,热成形工艺中可以采用的模具270表示为包括第一模具部分271和 第二模具部分272。采用模具270将一对聚合物薄片(即,第一障壁层251和第二障壁层 252)和抗拉构件260制成腔体240。更具体地,模具270通过以下步骤促进热成形(a)赋 予第一障壁层251和第二障壁层252形状,(b)连接第一障壁层251和第二障壁层252的外 围以形成外围结合253,以及(c)将抗拉构件260结合至第一障壁层251和第二障壁层252 上。
如上所述,抗拉构件260界定出多个空腔263,抗拉构件260完全延伸穿过泡沫材 料,并且空腔263界定出不同的立柱264,立柱264在表面261和表面262之间延伸。空腔 263和立柱264有效地形成挤压至不同程度的抗拉构件260的区域。更具体地,施加在抗拉 构件260的与空腔263中的一个的位置相对应的部分上的挤压力,相比于施加在抗拉构件 260的与立柱264中的一个的位置相对应的部分上的挤压力,会导致更大的弯曲。因此,与 空腔263相对应的区域比与立柱264相对应的区域更容易弯曲。模具270表示为具有多个凸起280,其从第一模具部分271的表面273以及从第 二模具部分272的表面274向外延伸。凸起280设置在与空腔263位置相对应的位置,该 位置比与立柱264相对应的区域弯曲程度更大。当模具部分271和272相向移动使得表面 273和273接触并挤压腔体240的组件时,凸起280确保抗拉构件260的与空腔263相对应 的区域,比抗拉构件260的与立柱264相对应的区域弯曲程度更大。也就是说,凸起280有 效地增加了抗拉构件260与障壁层251和252在与空腔263相对应的区域内挤压的程度, 因而加强了抗拉构件260与障壁层251和252在与空腔263相对应的区域内的结合。制造腔体240的热成形工艺与上述制造腔体40的工艺实质上类似。因此,总体上 加热腔体240的组件。参照图25A,将抗拉构件260、以及障壁层251和252的中每个置于 模具部分271和272之间。如图25B所示,当模具部分271和272相向移动时,表面273和 274接触障壁层251和252中的每个。更具体地,模具270接触抗拉构件260的第一部分 是凸起280。也就是说,模具270最初挤压与空腔263相对应的区域。如图25C所示,随着 模具部分271和272继续相向移动,在障壁层251和252之间挤压全部抗拉构件260。已知 与空腔263相对应的区域呈现更大的弯曲,并且被凸起280挤压更多,抗拉构件260与障壁 层251和252之间的结合将会在抗拉构件260的整个表面上一致地分布。也就是说,抗拉 构件260之间的结合的不同区域的强度会实质上恒定。凸起280挤压抗拉构件260和障壁层251和252的程度,至少部分取决于凸起280 的形状和尺寸。例如,通过应用有限元分析,可以确定凸起280的形状和尺寸,以有效地均 衡与空腔263相对应区域和与立柱264相对应区域上的挤压力。也就是说,凸起280的形 状和尺寸可以制成确保抗拉构件260与障壁层251和252之间的挤压力在抗拉构件260上 实质上一致地分布。通过均衡挤压力,障壁层251和252结合到抗拉构件260上的程度可 以在抗拉构件260上实质上一致地分布。可能影响抗拉构件260上挤压力的一致性的另一个因素是第一表面261的轮廓。 第一表面261的中央区域与模具部分271和272移动的方向大致垂直,第一表面261的外 围区域向上倾斜。因而,来自第一模具部分271的向下的力与第一表面261的外围区域内 第一障壁层251和第一表面261之间的界面并不垂直。挤压力的方向与第一障壁层251和 第一表面261之间的界面的这种偏移还会影响第一障壁层251结合到第一表面261的程 度。然而,通过应用有限元分析,第一模具部分271的表面273可以根据抗拉构件260中的 轮廓而成形。因此,有限元分析可以这样成形模具270,以使其由于以下两个原因而提供实 质上一致的结合(a)空腔263和立柱264的弯曲的偏差,以及(b)抗拉构件260的表面的 轮廓。第四腔体结构图26-29B表示了鞋10可以采用的另一种腔体340。腔体340包括外障壁350和抗拉构件360。障壁350可以由任意上述讨论的用于障壁50的材料制成,障壁350包括实 质上不能渗透腔体340中包含的加压流体的第一障壁层351和第二障壁层352。第一障壁 层351和第二障壁层352围绕它们各自的外围结合在一起,以形成外围结合353,并相配合 地形成密封的外壳,该外壳中设置有抗拉构件360和加压流体。 抗拉构件360可以由任意上述讨论的用于抗拉构件60的材料制成,其位于障壁 350中并直接与障壁350结合。如图30所示,抗拉构件360包括具有实质上平坦结构的第 一表面361和相对的第二表面362。第一表面361结合到第一障壁层351上,第二表面362 结合到第二障壁层352上。与抗拉构件40、140、240相比,抗拉构件360具有实心结构,其 中不包含空腔,并且形成抗拉构件360各个部分的泡沫材料的密度和可压缩性是不同的。 更具体地,抗拉构件360的一半由泡沫材料363制成,另一半由泡沫材料364制成。相比之 下,泡沫材料363比泡沫材料364的密度更大、可压缩性更小。与腔体40 —样,腔体340包含的加压流体导致施加在障壁350上的向外的力,并 且倾向于分开或向外挤压第一障壁层351和第二障壁层352。在没有抗拉构件160的情况 下,由加压流体导致的向外的力会赋予腔体340圆形隆起的结构。然而,抗拉构件360结 合到第一障壁层351和第二障壁层352中的每一个上,以限制障壁层351和352的分离。 因此,如图所示,抗拉构件360的部分处于由流体导致的拉紧状态,并保持图中所示的腔体 340的结构。腔体340中的流体可以是任意上述讨论的用于腔体40的流体。第四腔体制造工艺如上所述,抗拉构件360具有实心结构,其由不同密度的泡沫材料363和364形 成。泡沫材料363和364有效地形成抗拉构件360的挤压至不同程度的区域。更具体地, 施加在泡沫材料364上的挤压力将会比施加在泡沫材料363上的挤压力导致更大的弯曲。 因此,与泡沫材料364相对应的区域比与泡沫材料363相对应的区域更容易弯曲。参照图31A,将抗拉构件360以及障壁层351和352中的每个置于模具370中。更 具体地,将组件置于模具70的第一模具部分371和第二模具部分372之间。如图31B所示, 当模具部分371和372相向移动时,表面373和表面374接触障壁层351和352中的每个。 表面373包括邻接泡沫材料364的凸起区域,以使抗拉构件360在障壁层351和352之间 挤压的第一部分是泡沫材料364。也就是说,模具370最初挤压与低密度泡沫材料364相对 应的区域。如图31C所示,随着模具部分371和372继续相向移动,在障壁层351和352之 间挤压全部抗拉构件360。如图31B所示,通过在表面373上形成凸起区域,与泡沫材料364相对应的区域先 于抗拉构件360的其它区域被挤压。如图31C,随着进一步挤压抗拉构件360,凸起区域进 一步被挤压,以在整个抗拉构件360上实质上均衡挤压力。也就是说,凸起区域有效地增加 了抗拉构件360与泡沫材料364相对应的区域中压缩与障壁层351和352的程度。因此, 通过利用模具370的凸起区域初始挤压泡沫材料364,可以在抗拉构件360与障壁层351和 352之间形成一致的结合,从而形成实质上具有恒定强度的结合。更多抗拉构件结构上述讨论的不同腔体40、140以及240的结构至少部分取决于抗拉构件60、160以 及260的结构。例如,平坦的表面通常导致具有平坦的表面的腔体,而波状外形表面通常导 致具有波状外形表面的腔体。另外,用以形成腔体40、140以及240的不同模具70和270的结构至少部分取决于抗拉构件60、160以及260的结构。因此,可以通过改变抗拉构件的 结构来影响所生产的腔体的性能和制成腔体的方式。图32A中表示了抗拉构件460。相比于具有大致呈矩形的空腔的抗拉构件60,抗 拉构件460界定出多个椭圆形的空腔463。图32B中表示了抗拉构件560,其包括多个部分 圆形的空腔。抗拉构件560的上、下表面实质上是平坦的,图32C中表示了相似的抗拉构件 660,其具有与多个空腔663的位置相对应的波状外形区域。可以使用模具中的凸起确保对 于抗拉构件460和560来说结合是一致的,而抗拉构件660的轮廓可以与腔体140的轮廓 相似。也就是说,在模具中没有凸起的情况下,轮廓可以允许使用模具中模塑工艺。图32D 中表示的另一种抗拉构件760,其具有不同的空腔763。尽管抗拉构件760具有与抗拉构件 260相似的形状,但是空腔763总体呈矩形并且主要在抗拉构件760的侧面之间延伸。图 32E中表示了又一种抗拉构件860,其具有三个空腔863,该空腔863仅部分延伸穿过抗拉构 件860的宽度,而不是穿过整个宽度。因此,可以采用多种抗拉构件结构,所选择的用来将 聚合物层结合到抗拉构件上的具体的成型工艺和模具结构可以至少部分取决于正在使用 的用来制成充有流体的腔体的抗拉构件的结构。结论如上述详细的讨论,泡沫抗拉构件可以呈现有不同可压缩性的区域。也就是说,当 受到挤压力时,抗拉构件的区域弯曲的程度可以不同。可压缩性的差异可能会由于抗拉构 件中的空腔或空处而增加,或者可压缩性的差异可能会由于抗拉构件各个部分的泡沫密度 的差异而增加。在一些例子中,可以采用包括凸起或其它轮廓的模具,以在整个抗拉构件的 范围内提供一致的结合。在其它例子中,抗拉构件的轮廓可以用于在整个抗拉构件的范围 内提供一致的结合。2004年12月30日向美国专利商标局递交的,名称为“充有流体的囊 状物的热成形的方法”,申请号为11/027,303的美国专利申请中包含有关于泡沫抗拉构件 和热成形方法的补充的详细描述,这里通过参考引用该申请的全部内容。上面的内容和关于各个例子的附图公开了本发明。然而,公开的目的是提供与本 发明相关的各种特征和概念的例子,并不是用来限制本发明的保护范围。本领域技术人员 应该理解,在不超出本发明权利要求所限定的保护范围的前提下,可以对上面所描述的例 子作出许多变化和修改。
权利要求
一种制造充有流体的腔体的方法,该方法包含在聚合物材料的第一层和第二层之间放置抗拉构件,该抗拉构件具有第一部分和第二部分,该第一部分比第二部分的可压缩性更大;将抗拉构件、第一层和第二层置于模具中,该模具具有凸起,该凸起位于接触邻接抗拉构件第一部分的第一层的区域中;以及在模具中挤压抗拉构件、第一层和第二层,以(a)将第一层结合到抗拉构件的第一表面,(b)将第二层结合到抗拉构件的第二表面,以及(c)将第一层和第二层围绕抗拉构件的外围结合在一起。
2.根据权利要求1所述的方法,其特征在于,还包括形成抗拉构件以包括至少一个空 腔的步骤,该空腔位于抗拉构件的第一部分。
3.根据权利要求1所述的方法,其特征在于,还包括形成抗拉构件以包括穿过抗拉构 件延伸的通道的步骤,该通道中的至少一个位于抗拉构件的第一部分。
4.根据权利要求1所述的方法,其特征在于,还包括形成抗拉构件以包括第一泡沫材 料和第二泡沫材料的步骤,第一泡沫材料位于抗拉构件的第一部分,第二泡沫材料位于抗 拉构件的第二部分,并且第一泡沫材料的密度低于第二泡沫材料的密度。
5.根据权利要求1所述的方法,其特征在于,还包括步骤由热塑性聚合物泡沫材料形成抗拉构件;以及选择第一层和第二层的聚合物材料为热 塑性聚合物材料。
6.根据权利要求5所述的方法,其特征在于,所述挤压的步骤包括在第一层和第二层 中的每个以及抗拉构件之间形成直接结合。
7.根据权利要求1所述的方法,其特征在于,还包括步骤形成抗拉构件的第一表面和第二表面以具有实质上平坦的结构;以及使抗拉构件的第一表面和第二表面的朝向实质上平行。
8.根据权利要求1所述的方法,其特征在于,还包括形成抗拉构件的第一表面和第二 表面中的至少一个以具有波状外形结构的步骤。
9.根据权利要求1所述的方法,其特征在于,所述放置抗拉构件的步骤和将抗拉构件、 第一层和第二层置于模具中的步骤同时执行。
10.根据权利要求1所述的方法,其特征在于,还包括将腔体合并至鞋制品中的步骤。
11.一种制造充有流体的腔体的方法,该方法包含将热塑性聚合物泡沫抗拉构件置于模具中的热塑性聚合物材料的第一层和第二层之 间,该抗拉构件的第一表面邻接第一层,该抗拉构件的第二表面邻接第二层,该抗拉构件界 定出位于第一表面和第二表面之间的空腔,并且该模具具有凸起,该凸起位于接触邻接空 腔的第一层的位置;在模具中挤压抗拉构件、第一层和第二层,以(a)将第一层直接结合到抗拉构件的第 一表面,(b)将第二层直接结合到抗拉构件的第二表面,和(c)将第一层和第二层围绕抗拉 构件的外围直接结合在一起;以及将腔体合并到鞋制品中。
12.根据权利要求11所述的方法,其特征在于,还包括将空腔配置为穿过抗拉构件延 伸的通道的步骤。
13.根据权利要求11所述的方法,其特征在于,还包括步骤形成抗拉构件的第一表面和第二表面,以具有实质上平坦的结构;以及 使抗拉构件的第一表面和第二表面的朝向实质上平行。
14.根据权利要求11所述的方法,其特征在于,还包括形成抗拉构件的第一表面和第 二表面中的至少一个,以具有波状外形结构的步骤。
15.根据权利要求11所述的方法,其特征在于,还包括加热抗拉构件、第一层和第二层 中的至少一个的步骤。
16.一种制造充有流体的腔体的方法,该方法包含将抗拉构件置于模具中的聚合物材料的第一层和第二层之间,该抗拉构件具有第一部 分和第二部分,该第一部分比第二部分的可压缩性更大,并且该模具界定出用于形成腔体 的空间,该空间的表面具有至少一个凸起;以及在模具中挤压抗拉构件、第一层和第二层,凸起在邻接抗拉构件第一部分的区域接触 第一层,并且凸起将第一层和抗拉构件的第一部分挤压在一起。
17.根据权利要求16所述的方法,其特征在于,还包括形成抗拉构件以在抗拉构件的 第一部分中包括至少一个空腔的步骤。
18.根据权利要求16所述的方法,其特征在于,还包括形成抗拉构件以包括穿过抗拉 构件延伸的通道的步骤,该通道中的至少一个位于抗拉构件的第一部分。
19.根据权利要求16所述的方法,其特征在于,还包括形成抗拉构件以包括第一泡沫 材料和第二泡沫材料的步骤,第一泡沫材料位于抗拉构件的第一部分,第二泡沫材料位于 抗拉构件的第二部分,并且第一泡沫材料的密度低于第二泡沫材料的密度。
20.根据权利要求16所述的方法,其特征在于,还包括步骤 由热塑性聚合物泡沫材料形成抗拉构件;选择第一层和第二层的聚合物材料为热塑性聚合物材料;以及 在第一层和第二层中的每个和抗拉构件之间形成直接结合。
21.根据权利要求16所述的方法,其特征在于,还包括将腔体合并至鞋制品中的步骤。
22.一种制造充有流体的腔体的方法,该方法包含在热塑性聚合物材料的第一层和第二层之间放置热塑性聚合物泡沫抗拉构件,该抗拉 构件具有第一表面,其邻接第一层,第二表面,其邻接第二层,以及多个空腔,其定位在第一表面和第二表面之间,以及用模具挤压抗拉构件、第一层和第二层,以使模具接触第一层,以将第一层直接结合至抗拉构件的第一表面,模具具有多个凸起,该 凸起接触邻接抗拉构件的空腔的第一层,该凸起将第一层和抗拉构件邻接空腔的部分挤压 在一起,模具接触第二层,以将第二层直接结合至抗拉构件的第二表面,以及 围绕抗拉构件的外围将第一层和第二层挤压在一起,以在第一层和第二层之间形成直 接结合。
23.根据权利要求22所述的方法,其特征在于,还包括使空腔形成为至少部分穿过抗拉构件延伸的通道的步骤。
24.根据权利要求22所述的方法,其特征在于,还包括使空腔形成为在抗拉构件的侧 面之间延伸的通道的步骤。
25.根据权利要求22所述的方法,其特征在于,还包括使空腔形成为延伸穿过整个抗 拉构件的通道的步骤。
26.根据权利要求22所述的方法,其特征在于,还包括步骤形成抗拉构件的第一表面和第二表面,以具有实质上平坦的结构;以及 使抗拉构件的第一表面和第二表面的朝向实质上平行。
27.根据权利要求22所述的方法,其特征在于,还包括形成抗拉构件的第一表面和第 二表面中的至少一个,以具有波状外形结构的步骤。
28.根据权利要求22所述的方法,其特征在于,还包括加热抗拉构件、第一层和第二层 中的至少一个的步骤。
29.根据权利要求22所述的方法,其特征在于,还包括将腔体合并至鞋制品中的步骤。
全文摘要
一种充有流体的腔体可以包括由聚合物材料制成的外障壁和位于外障壁内的泡沫抗拉构件。在制造该充有流体的腔体时,模具轮廓可以做成实质上均衡外障壁和抗拉构件各部分之间的挤压力,从而在外障壁和抗拉构件之间提供实质上一致的结合。抗拉构件的表面轮廓也可以做成实质上均衡挤压力。在一些结构中,外障壁和抗拉构件可以由热塑性聚合物材料制成,其在外障壁和抗拉构件表面之间形成直接结合。
文档编号A43B3/12GK101878104SQ200880102693
公开日2010年11月3日 申请日期2008年6月13日 优先权日2007年8月13日
发明者埃里克·S·辛德勒, 泽非·雷派波特 申请人:耐克国际有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1