制备多糖-蛋白轭合物疫苗的方法

文档序号:1092780阅读:798来源:国知局
专利名称:制备多糖-蛋白轭合物疫苗的方法
技术领域
本发明提供了以较高产量制备多糖-蛋白轭合物疫苗的方法。该方法涉及在一种反应物上的酰肼基与另一种反应物上的醛基反应。所述反应以较高的轭合效率快速进行。可使用简化的纯化方法从未轭合的蛋白和多糖以及其他小分子副产物中分离所述轭合产物。
背景技术
细菌多糖(PSs)是在大龄儿童和成人中诱导短期免疫的非T细胞依赖性抗原,但幼小婴儿却常常缺乏。PSs并不能与主要组织相容性复合物结合,所述主要组织相容性复合物是抗原提呈以及刺激T-辅助淋巴细胞所必需的。PSs可以在无需T-辅助细胞淋巴细胞的帮助下刺激B淋巴细胞产生抗体。作为所述B淋巴细胞非T细胞依赖性刺激的结果,在这些抗原的免疫之后依然缺少记忆诱导。
通过多糖与蛋白分子的共价结合,非T细胞依赖性多糖抗原可转变为T细胞依赖性抗原。结合于所述轭合物疫苗多糖部分的B细胞可由辅助性T细胞来活化,该辅助性T细胞对该轭合载体蛋白部分的多肽具有特异性。对该载体蛋白产生应答的T辅助细胞能增强针对该多糖的抗体产生。多糖轭合疫苗是由蛋白与多糖的共价连接形成的多糖-蛋白杂合体。因为大多数天然细菌多糖在先经受某些化学修饰(“活化”)之前不能与蛋白化学相连,所以通常需要在结合前对所述多糖进行化学修饰。
对所述蛋白的结合产生了多种T细胞抗原决定簇。这些T细胞抗原决定簇会与CD4辅助性T细胞相互作用,极大地促进对所述结合多糖的抗体应答。甚至在婴儿体内,对轭合物的所述T辅助细胞依赖性应答可产生血清IgG抗体和免疫记忆。而且,与天然多糖相比,所述多糖轭合物的免疫原性对所述轭合多糖的大小的依赖程度有所降低。因此,采用多糖或寡糖制备的轭合物具有类似的免疫原性。
可采用多种轭合反应将多糖与蛋白共价连接。三种较为常用的方法有1)还原性氨基化,其中一种反应成分的醛基或酮基与另一种反应成分的氨基或酰肼基反应,所形成的C=N双键随后被还原剂还原成C-N单键;2)氰基化轭合,其中可通过溴化氰(CNBr)或1-氰-4-二甲基氨基吡啶四氟硼酸(CDAP)向该羟基引入一个氰基,在加入蛋白成分后,其与氨基或酰肼基形成共价键;3)碳二亚胺反应,其中碳二亚胺能活化所述轭合反应中一种成份的羧基,所活化的羧基再与另一成分的氨基或酰肼基反应。这些反应经常被用来在所述轭合反应之前对所述轭合物的成份进行活化。
b型嗜血流感杆菌(Hib)轭合物疫苗是用于临床的第一种多糖-蛋白轭合物疫苗。Robbins及其同事在1980年运用生物工程技术将糖化学地连接到蛋白载体上,这是50年前就发展出来的概念。参见Avery等人,J.Exp.Med.1929;50533-550;Schneerson等人,J.Exp.Med1980;152361-376。在美国目前有四种不同的Hib轭合物疫苗获得了许可,每种各不相同,且各自具有其物理,化学和免疫学特征,如表1所总结。在这些疫苗所使用的轭合化学和质量控制的详细论述已经出版。参见Ellis等人在《b型等嗜血杆菌轭合物疫苗的发展与临床应用》(Development and clinical uses of Haemophilus b conjugate vaccines)一书中由Kniskem等人所著的《轭合物设计,化学与分析》″Conjugationdesign,chemistry,and analysis″章节,纽约,Marcel Dekker出版社,1994年,37-69页。
表1
*所述四种Hib轭合物疫苗通常以其缩写以及括号中对应的生产厂商来进行描述。
最先商业化的Hib轭合物,多聚核糖基核糖醇磷酸白喉类毒素轭合物(PRP-D)通过6-碳间隔物、己二酸二酰肼(ADH)连接于白喉类毒素的部分大小减少的Hib多糖,使用的是Schneerson等人的方法,J.Exp.Med.1980;152361-376。在1-[3-(二甲基氨基)丙基]-3-乙基碳二亚胺盐酸盐(EDC)存在的条件下,使用ADH以该方法进行反应得到了白喉类毒素的ADH衍生物。然后通过使用CNBr在所述羟基上产生氰基来活化所述His多糖。将所活化的多糖与所述ADH-类毒素(氰基化轭合)轭合,但该方法产生的连接不稳定,而且所述轭合物还具有溶解性的问题。
随后对Robbins轭合化学进行了改进,使得所述ADH间隔物首先被加在所述多糖上,然后在EDC(碳二亚胺反应)存在的条件下,将该多糖轭合于纯化的蛋白。参见Chu等人,Infect.Immun.1983;40245-256;Schneerson等人,Infect.Immun.1986,52519-528。这一改进提高了轭合效率和产物的溶解性。多聚核糖基核糖醇磷酸破伤风蛋白轭合物(PRP-T)疫苗就是利用这一改进的化学方法共价地将Hib多糖连接于破伤风类毒素(参见表1)。
多聚核糖基核糖醇磷酸交联反应突变体白喉类毒素轭合物(PRP-CRM)疫苗,也称为嗜血流感杆菌b型寡糖轭合物(HbOC),并不含有His多糖。相反,它利用的是在核糖醇部分中通过乙二醇官能性的高碘酸氧化衍生得到的约20个重复单位的寡糖。然后在氰基硼氢钠(还原氨基化)存在的条件下,将所述氧化的寡糖直接连接于CRM197,其是从白喉杆菌(Corynebacterium diphtheriae)C7(β197)的培养物中分离到的一种白喉毒素的无毒性突变体。参见Anderson等人J.Immunol.1989;1422464-8;以及Anderson,Infect.Immun.1983,39233-238。在这种轭合方法中,认为寡糖与蛋白的比率对最佳的抗体应答至关重要。参见Ellis等人在《b型等嗜血杆菌轭合物疫苗的开发与临床应用》(Development and clinical uses of Haemophilus b conjugate vaccines)一书中由Kniskern等人所著的《轭合物设计,化学与分析》″Conjugationdesign,chemistry,and analysis″章节,纽约,Marcel Dekker出版社,1994年,37-69页;以及Anderson等人,J.Immunol.1989;1422464-8。
与其他Hib轭合物疫苗相比,Hib多糖-脑膜炎萘瑟菌(Neisseriameningitidis)外膜蛋白复合体轭合物疫苗(PRP-OMPC)具有多种独特的性质。所述蛋白载体并不是白喉,破伤风和百日咳(DTP)疫苗的成分,但却由脂多糖缺失的脑膜炎球菌外膜囊泡以及其上通过硫醚连接的大小缩小的Hib多糖构成。参见Marburg等人J.Amer.Chem.Soc.1986;1085282-5287;Ellis等人在《b型等嗜血杆菌轭合物疫苗的发展与临床应用》(Development and clinical uses of Haemophilus b coniugatevaccines)一书中由Kniskem等人所著的《轭合物设计,化学与分析》″Conjugationdesign,chemistry,and analysis″章节,纽约,MarcelDekker出版社,1994年,37-69页;以及Anderson等人,J.Immunol.1989;1422464-8。在该方法中,将单独的连接物与所述蛋白和Hib多糖连接,然后将所述连接物融合形成硫醚键。
脑膜炎萘瑟菌(Neisseria meningitidis)是全世界细菌性脑膜炎和败血症的首要原因。致病性脑膜炎球菌由多糖荚膜包被,该荚膜与该有机体的外膜表面相连接。根据荚膜多糖的免疫学特异性,已鉴定出了13种不同的脑膜炎球菌血清型。参见Frasch,C.E.等人,1985。在这13种血清型中,有5种能导致绝大多数的脑膜炎球菌疾病;这些血清型包括血清型A,血清型B,血清型C,血清型W135和血清型Y。血清型A是造成大多数流行病的原因。血清型B,血清型C,和血清型Y能导致大多数的地方病及其局部爆发。对侵入性脑膜炎球菌的宿主防御依赖于补体介导的溶菌作用。负责补体介导的溶菌作用的血清抗体主要旨在对付所述外荚膜多糖。参见,Rosenstein等人,N.Rngl.J.Med.,3441378-1388,2001年。
除了血清型B之外,能够导致年龄相关预防的多糖安全性疫苗已使用了多年。然而,在多糖疫苗给药后,抗体滴度快速降低并且没有免疫记忆的诱导。参见,Jodar等人,2002年,Biologicals,28193-197。
基于脑膜炎球菌多糖的常规疫苗能够引起对于所述荚膜多糖的免疫应答。这些抗体能对所述血清型特异的脑膜炎球菌产生补体介导的溶菌作用。含有纯化荚膜多糖的脑膜炎球菌疫苗可在成人中诱导保护性的血清抗菌抗体,然而其在4岁以下的儿童中免疫原性相当低,并可以到耐受。参见Taunay等人,1974年,Pediatr.Res.,8429;Gold等人,1975,J.Clin.Invest.,561536-1547;Leach等人,1997年,J.Infect.Dis.,175200-204。
为了克服多糖疫苗的局限,基于公认的轭合物Hib疫苗的成功,已有开发脑膜炎球菌血清型A和C糖轭合物疫苗工作的报道。广泛使用的Hib轭合物疫苗也可以通过运输状态(carriage state)的还原以及导致群体免疫力的传播来保护不包括在免疫计划中的年龄组。参见,Peltola,H.2000,Clinical Microbiol.Reviews(临床微生物学综述),13302-317。这些疫苗具有免疫原性,并且在婴儿中具有良好的耐受。正如向冈比亚婴儿给药脑膜炎球菌AC轭合物疫苗的血清型C成分所证实的,通过记忆诱导可以提高长期免疫力。参见,Fairley等人,1996,J.Infect.Dis.,1741360-1363;Leach等人,1997,J.Infect.Dis.,175200-204。
现已证明,对抗脑膜炎奈瑟菌血清型A和C以及其他具荚膜细菌的多糖-蛋白轭合物疫苗能够有效地减少由这些病原体诱导的人类疾病。诱导T-细胞非依赖性免疫应答的细菌寡糖或多糖与T-细胞依赖蛋白免疫原的共价轭合导致了在婴儿和幼儿中诱导记忆反应的具有较高免疫原性的分子。参见Chu等人,1983,Infect.Immun.,40245-256;Richmond等人,1999,J.Infect.Dis.,1791569-1572;Peltola,H.2000,Clinical Microbiol.Reviews(临床微生物学,综述),13302-317;Ramsay等人,2001,Lancet,357195-196。
在过去5年中,英国的脑膜炎疾病有快速增长的趋势,其导致了C型脑膜炎球菌轭合物疫苗的开发以应用到对从1岁到18岁的全部儿童进行免疫计划之中。在提供了足以初始和诱导免疫记忆的单次剂量之后,英国在1999年成为了第一个在国家免疫计划中引入脑膜炎球菌疫苗的国家。参见卫生部,伦敦,1999,PL/CMO/99/2PL/CNO/99/4PL/CPHO/99/1;Richmond等人,1999,J.Infect.Dis.,1791569-1572;Richmond等人,2001,J.Infect.Dis.,183160-163。
用脑膜炎球菌轭合物进行婴儿免疫可以提供长期对疾病的预防。对在婴儿期接受了脑膜炎球菌A/C轭合物(MenA/V)接种的5岁冈比亚儿童进行了抗体水平和免疫记忆的评价。参见,MacLennan等人,2001,J.Infect.Dis.18397-104。
在巴西,脑膜炎疾病在原住民中的发病率为1-3/100,000,主要是由血清型B(60%)其次是血清型C(40%)引起的。参见,Sifontes等人,1997,Arch.Med.Res.,2841-5。从七十年代开始,为了对疾病进行控制,巴西一直都在生产抗脑膜炎奈瑟菌的多糖疫苗(A/C)。为了跟踪多糖细菌疫苗的技术进步,采用还原氨基化技术作为起始过程对A型多糖-破伤风类毒素和C型多糖-破伤风类毒素进行开发。参见,Jennings等人,1981,J.Immunol.,1271011-1018。所选择的方法首先应用于A型和C型多糖,并且具有对其他脑膜炎多糖的潜在应用性。
如表2所总结的,已采用了多种方法来活化所述脑膜炎球菌的多糖并进行轭合作用。在所述多糖分子上,即使仅有相对较少的几个位点被活化的时候,每种活化方式也都具有改变重要抗原决定簇的潜能。例如,对C型脑膜炎球菌多糖的高碘酸活化,就能导致链断裂从而产生具有末端醛基的较小的糖单位,其可通过还原氨基化连接于所述蛋白。参见,Richmond等人,J.Infect.Dis.1999;1791569-72。
表2
a.己二酸的N-羟基琥珀酰亚胺二酯b.脱乙酰化的多糖,仅对C型脑膜炎球菌有过报道在所述Hib轭合物的商业化之前,就已经出现了关于C型脑膜炎球菌轭合物的生产与优化的早期研究的报道。参见Beuvery等人,Infect.Immun.1982;3715-22;Beuvery等人,Infect.Immun.1983;4039-45;Beuvery等人,J.Infect.1983;6247-55;Jennings等人,J.Immunol.1981;1271011-8。
关于将所述C型多糖与蛋白载体的化学连接报道过两种不同的轭合方法。参见Jennings等人,J.Immunol.1981;1271011-8;Beuvery等人,Infect.Immun.1983;4039-45。第一种方法是对多糖进行部分解聚化,通过高碘酸氧化产生末端醛基进行活化(表2中的方法#1)。在氰基硼氢钠存在的条件下,通过还原氨基化反应,所述醛基与所述蛋白质的自由氨基(大多数为赖氨酸)结合。参见Jennings等人,J Immunol1981;1271011-8。在该方法中,活化发生在所述C型多糖的一个特异性位点上。
第二种方法采用的是碳二亚胺反应(表2中的方法#2),将高分子量多糖中的羧基共价连接于所述载体蛋白赖氨酸的∈-氨基。与高碘酸活化的方法相比,该方法的活化位点更加随机。
已经在动物上对通过这两种方法制备的C型脑膜炎球菌轭合物进行了评价。参见Beuvery等人,Dev.Biol.Stand.1986;65197-204;以及Beuvery等人,J.Infect.1983;6247-55。在初次免疫时所述轭合物都能刺激T细胞非依赖性和T细胞依赖性的应答。参见Beuvery等人,J.Infect.1983;6247-55。然而,研究证明,所述多糖必须共价地与所述载体蛋白相连才能诱导T细胞依赖性的应答。
最初用于临床试验的A型和C型脑膜炎球菌轭合物是由ChironVaccine公司生产的,并在1992年就进行了报道(表2中的方法#3)。参见Costantino等人,Vaccine 1992;10691-8。所述轭和方法是基于通过温和的酸性水解选择性地对小分子寡糖的末端基团进行活化,然后通过烃间隔物与蛋白进行轭合。将白喉毒素的无毒性的突变体,CRM197用作蛋白载体。为了活化寡糖以进行轭合反应,向所述寡糖的末端加上氨基基团,然后与己二酸的N-羟基琥珀酰亚胺二酯反应生成活性酯。然后将该活性酯共价结合于CRM197蛋白赖氨酸的∈-氨基,形成了所述轭合物。
发明概述尽管在多糖活化中已经使用过ADH形式的酰肼,但是在制备多糖-蛋白轭合物疫苗的现有方法中,还没有在还原氨基化轭合反应中采用酰肼化学的方法。这些现有技术都是利用所述蛋白的赖氨酸残基上的∈-氨基与活化多糖上诸如醛基(还原氨基化)和羧基的官能团进行反应。该反应的效率较低,通常仅有20%左右。该反应还需要2-3天时间才能完成所述轭合,且必须采用纯化步骤从未反应的多糖中分离出所述轭合物。参见Pollard等人《分子药物方法》(Methods in MolecularMedicine),第66卷《脑膜炎球菌疫苗方法与实验设计》(Meningococcal Vaccinesmethods and Protocols)书中Guo等人的《蛋白-多糖轭合》″Protein-polysaccharide conjugation″内容,Humana Press,Totowa,NJ,2001,pg 49-54。对所得到的较低产量有几种解释。首先,在所述轭合条件下(pH6.5-7.4)赖氨酸∈-氨基的反应性较低(pKa=10.5)。参见Inman等人,Biochemistry 1969;84074-4082。其次,大多数轭合方法都将类毒素用作载体蛋白。所述类毒素都来自于用甲醛脱毒处理过的毒素,这些甲醛会与所述毒素上的氨基结合,从而只会留下有限数量能够进行轭合反应的氨基。第三,所得活化蛋白和蛋白-多糖轭合物的降低的溶解性经常导致沉淀。
现存的基于多糖的疫苗在幼儿中的使用有限且不能在成人中提供长期的预防。所以需要能在具有如细菌性脑膜炎、流感、破伤风和其他细菌感染危险的儿童和成人中存在对疾病具有长期预防的蛋白-多糖疫苗。可将优选实施方案的所述蛋白-多糖轭合物用于制备对婴儿、儿童和成人具有长期预防的疫苗制剂。
因此,以较高产率合成和生产多糖-蛋白轭合物疫苗的方法是令人满意的。同样值得期待的还有这样的反应,其具有较快反应速率,降低的不希望副产物的产生,以及在该反应结束时残留未反应的蛋白和多糖量降低。
提供了包括纯化设备优化的商业体积(从8mL到2,000mL或更多的终产物)生产的规模化方法。在所述方法的标准化过程中,通过ELISA比较了具有免疫原性潜能的Men C型轭合物与小鼠中普通CPS的总抗体的诱导及其抗C型脑膜炎奈瑟菌的抗菌活力。在该方法中,将Bio-Manguinhos,Fiocruz,Rio de Janeiro(巴西)生产的脑膜炎奈瑟菌的A型多糖(APS)和C型多糖(CPS),通过在氰基硼氢钠存在下的还原氨基化,与破伤风类毒素(TT)(来自Instituto Butantan,Sao Paulo,巴西)共价连接。使用过量的二盐酸肼(hydrazine dihydrochloride),通过碳二亚胺反应引入肼基(-NH2-NH2-)来活化TT。
因此,在第一实施方案中提供了制备轭合物疫苗的方法,该方法包括将多糖与氧化剂反应,由此得到了醛活化的多糖溶液;将蛋白与二氯肼在酸性pH条件下反应,由此得到肼活化的蛋白溶液;在pH约5到约7,存在氰基硼氢化钠的条件下,将所述醛活化的多糖与所述肼活化的蛋白反应,由此得到轭合物;以及用己二酸二酰肼中和未反应的醛基,由此得到能够刺激免疫反应的轭合物疫苗。
在第一实施方案的一个方面,所述氧化剂包括NaIO4。
在第一实施方案的一个方面,用HEPES缓冲液对所述醛活化的多糖溶液进行缓冲液更换。
在第一实施方案的一个方面,所述醛活化的多糖溶液被缓冲液更换至pH约7到约8。
在第一实施方案的一个方面,用Na2CO3缓冲液对所述肼活化的蛋白溶液进行缓冲液更换。
在第一实施方案的一个方面,所述肼活化的蛋白溶液被缓冲液更换至pH约10.0到约11.0。
在第一实施方案的一个方面,在所述肼活化的蛋白溶液被缓冲液更换至pH约10.0到约11.0之前将所述肼活化的蛋白溶液的pH升高至约7.0到约11。
在第一实施方案的一个方面,以约1∶1.6至约1∶5的比例将所述醛活化的多糖与所述酰肼活化的蛋白反应。
在第一实施方案的一个方面,该方法还包括透析所述轭合物疫苗的步骤,由此基本上去除全部未反应的化合物和未轭合的多糖,得到纯轭合物疫苗。
在第一实施方案的一个方面,该方法还包括通过切向流超滤(tangential flow ultrafiltration)浓缩所述纯轭合物疫苗的步骤,从而得到浓缩的纯轭合物疫苗。
在第一实施方案的一个方面,该方法还包括向所述浓缩的纯轭合物疫苗加入作为稳定剂的蔗糖的步骤,从而得到稳定的轭合物疫苗。
在第一实施方案的一个方面,该方法还包括冷冻干燥所述浓缩的纯轭合物疫苗的步骤,从而得到干燥的轭合物疫苗。
在第一实施方案的一个方面,所述多糖选自脑膜炎球菌多糖,肺炎球菌多糖,b型嗜血流感杆菌多糖,伤寒杆菌Vi多糖,以及B型链球菌多糖。
在第一实施方案的一个方面,所述蛋白选自破伤风类毒素,白喉类毒素,CRM197以及脑膜炎球菌蛋白。
附图的简要描述

图1所示为天然和氧化的Men A型多糖以及Men A型轭合物和活化破伤风类毒素的高效液相分子排阻色谱图。
图2所示为用三种不同Men C型轭合物进行3剂免疫(间隔21天)的小鼠的总IgG(ELISA)。
图3所示为用三种不同Men C型轭合物进行3剂免疫(间隔21天)的小鼠的抗菌滴度(靶菌株为C型脑膜炎奈瑟菌)。
优选实施方案的详细描述以下内容和实施例将对本发明的优选实施方案进行详细描述。本领域所属技术人员应该理解对本发明进行多种变化和修改均包括在本发明的范围内。因此,对优选实施方案的描述不应被认为对本发明的范围有所限制。
简介常规合成与生产多糖-蛋白轭合物疫苗的方法通常的轭合反应效率都比较低(一般为20%左右)。这意味着丧失了最高至80%所加入的活化多糖。而且,通常还需要将所述轭合物从未轭合的多糖中纯化出来的色谱方法。优选实施方案的合成方法利用的是一种反应物上的酰肼基与另一反应物上的醛基或氰酸盐酯基反应的特有的化学性质,其轭合物产量也有所提高(一般高至60%左右)。
当所述轭合反应以较高的轭合效率进行时,反应后残留的未轭合蛋白与多糖的量会低至无需对其进行去除。因此,对所述轭合产物的纯化过程可以简化成,例如,对小分子副产物进行去除的透析步骤。可以在反应物浓度为约1-约40mg/mL,多糖/蛋白摩尔比从约1∶5到约5∶1,优选为从约1∶2到约1∶1.6或2∶1,在一或两天之内完成基于酰肼的轭合反应,虽然在某些实施方案中,更高或更低的比率是优选的。随所述多糖的最适条件的变化,优选进行所述轭合反应的条件是温度是从约4℃至约40℃,优选为从约5,10,15或20℃至约25,30或35℃,pH至从约6至约8.5,优选从约6.1,6.2,6.3,6.4或6.5至约6.6,6.7,6.8,6.9,7.0,7.1,7.2,7.3,7.4,7.5,7.6,7.7,7.8,7.9,8.0,8.1,8.2,8.3或8.4。因此,当采用基于酰肼的轭合物反应时,可以较低的成本生产轭合物疫苗。
为了克服轭合物疫苗常规合成方法中的某些不足,提供了在还原氨基化和氰基化轭合反应中使用酰肼化学将多糖与载体蛋白轭合的方法。通过碳二亚胺与肼、ADH、碳酰肼(carbohydrazide)或琥珀酰二肼反应向蛋白分子的天冬氨酸和/或谷氨酸残基的羧基上引入具有-NH-NH2结构的酰肼。在轭合前,在pH值从约10至约11.5,优选为从约10.1,10.2,10.3或10.4至约10.6,10.7,10.8,10.9,11.0,11.1,11.2,11.3或11.4,最优选为约10.5;缓冲液浓度从约3mM或更低至约10mM或更高,优选从约4或5mM至约6,7,8或9mM时,所活化的蛋白是可溶解的。适合的缓冲也包括Na2CO3,3-(环己基氨基)-1-丙磺酸(CAPS)(3-(cyclohexylamino)-1-propanesulfonicacid)和2-(N-环己基氨基)乙磺酸(CHES)(2-(N-cyclohexylamino)ethane sulfonic acid)。然后在pH值从约6至约8.5,优选从约6.1,6.2,6.3,6.4或6.5至约6.6,6.7,6.8,6.9,7.0,7.1,7.2,7.3,7.4,7.5,7.6,7.7,7.8,7.9或8.0;在缓冲液浓度为从约100mM或更低至约200mM,优选从约110,120,130,140或150mM至约160,170,180或190mM时,将所活化的蛋白与含有醛基(还原氨基化)或氰酸盐(氰化轭合)基活化的多糖反应。适合的缓冲液包括N-(2-羟乙基)哌嗪-N`-(2-乙磺酸)(HEPES),磷酸盐缓冲液(PBS),TES(EDTA,Tris-HCI,SDS),吗啉基丙磺酸(MOPS)以及N,N-二(2-羟乙基)-2-氨基乙磺酸(BES)。
可选择地,可使用酰肼及对所述多糖进行官能化。在采用pH为6.5-7.5较强的缓冲液时,可将所活化的多糖与醛基(还原氨基化)活化蛋白轭合。所述蛋白可在pH约为10.5较弱的缓冲液中一直保持其可溶性,直至轭合。由于在中性/弱酸性条件下与赖氨酸的∈-氨基(pKa=10.5)相比,酰肼基的反应性(pKa=2.6)要高得多,而且在轭合之前使用在pH至约为10.5时保持可溶性的活化蛋白能提高所述轭合物的溶解性,所以所述轭合反应的产量的到了很大提高。
正如在小鼠实验中所证明的那样,通过这些方法制备的轭合物在实验动物中都具有免疫原性。而且,该轭合反应可以在没有氰基硼氢钠下高效完成,由此还避免了在该轭合产物中氰化物离子的引入。该反应可在弱酸性或中型pH条件下,在室温或在4℃过夜完成,这与常规还原氨基化轭合方法所需要的数天时间正好相反。这又一次确保了对来自诸如b型嗜血流感杆菌,19F型肺炎链球菌以及A型脑膜炎奈瑟菌的不稳定多糖的较高的轭合疫苗生产。可将优选实施方案中的方法用来制备更廉价的轭合物疫苗,从而大力推进公共卫生事业。
多糖在本文中,术语“多糖”涵义广泛,取其常规含义,包括含有多个重复单位的糖,包括含有50个或更多重复单位的多糖以及含有50个或更少重复单位的寡糖。通常,多糖含有从约50,55,60,65,70,75,80,85,90或95个重复单位至约2,000个或更多重复单位,优选为从约100,150,200,250,300,350,400,500,600,700,800,900或1000个重复单位至约1100,1200,1300,1400,1500,1600,1700,1800或1900个重复单位。寡糖通常含有从约6,7,8,9或10个重复单位至约15,20,25,30或35至约40或45个重复单位。
适合在优选实施方案中进行使用的多糖包括来自具荚膜细菌的多糖和寡糖。所述多糖和寡糖可以是任意来源的,例如,可来自天然发生的细菌,遗传工程细菌或可以人工合成。在活化前可将所述多糖和寡糖进行一个或多个步骤的处理,例如,纯化,官能化,使用弱氧化条件解聚化,脱乙酰化等等。如果需要的话还可以进行后续处理步骤。可以采用本领域内公知的适当方法对适合的多糖和寡糖进行合成,制备和/或纯化。
适于在优选实施方案中进行使用的多糖和寡糖包括,例如血清型为1,2,3,4,5,6B,7F,8,9N,9V,10A,IIA,12F,14,15B,17F,18C,19A,19F,20,22F,23F和33F的肺炎球菌多糖;血清型为A,B,C,W135和Y的脑膜炎球菌多糖;b型嗜血流感菌多糖聚核糖基核糖醇磷酸;血清型III和V的B型链球菌多糖以及伤寒杆菌Vi多糖。肺炎球菌和B型链球菌血清型以及脑膜炎球菌血清型的其它多糖也适于在本发明中使用,其他T细胞非依赖性多糖和寡糖抗原,例如来自A型链球菌,葡萄球菌,肠球菌,肺炎克雷伯氏杆菌,大肠杆菌,绿脓假单胞菌和炭疽芽孢杆菌的多糖和寡糖,也一样适于在本发明中使用。尽管细菌多糖和寡糖是特别优选的,但革兰氏阴性细菌的脂多糖和脂寡糖及其多糖衍生物和寡糖衍生物,以及病毒性多糖和病毒性寡糖都是可以使用的。
在优选实施方案中适合的是具有侧链磷和/或主链磷的多糖。优选实施方案的轭合物反应特别适于使用具有主链磷的多糖。这些多糖对断裂和降解特别敏感,因此随着发生降解反应持续时间的减少,所述轭合反应的快速也导致了较高产量的轭合物产生。
在任意的预处理步骤完成之后,可将多糖或寡糖用于“活化”步骤。术语“活化”是指为所述多糖提供能与所述蛋白进行反应的化学基团的化学处理。在特定的优选实施方案中,活化涉及利用能与醛基的官能化蛋白进行反应的酰肼基官能化多糖或寡糖。可选择地,可采用与酰肼基的官能化蛋白发生反应的醛基,酮基或氰酸盐基对所述多糖或寡糖进行官能化。
可采用适合的官能化反应利用酰肼基来活化多糖或寡糖。优选官能化反应是还原氨基化,其中在高碘酸盐活化反应中将所述多糖或寡糖与NaIO4反应生成醛基,所述醛基随后与己二酸二酰肼反应,再用NaBH4进行还原。
可采用适合的官能化反应利用醛基来活化多糖或寡糖。某些具有末端醛基的多糖和寡糖可参与所述轭合反应。如果采用醛基对所述多糖和寡糖进行活化,则优选的反应涉及氧化剂,例如NaIO4的反应。氧化剂具有将所述多糖或寡糖断裂的能力。通过选择特定的氧化剂以及该氧化剂的浓度来避免或控制不需要的片断。酮基也能与酰肼反应,因此在某些实施方案中也可使用酮基来活化所述多糖或寡糖。
优选地,可采用强缓冲溶液的方式将强缓冲(pH从约6.5至约8,从约100mM至约200mM的较高缓冲浓度)活化的多糖溶液用于轭合反应。可以使用任意适合的缓冲液,优选为诸如N-(2-羟乙基)哌嗪-N`-(2-乙磺酸)的缓冲液。
蛋白活化的多糖或寡糖与蛋白轭合能产生轭合物疫苗。适合的蛋白包括细菌毒素,这些毒素是可通过化学或遗传手段安全地对患者进行给药的免疫有效载体。其示例包括诸如白喉类毒素,CRM197,破伤风类毒素,百日咳类毒素,大肠杆菌LT,大肠杆菌ST以及来自绿脓假单胞菌外毒素的灭活的细菌毒素。也可以采用细菌外膜蛋白,例如外膜蛋白复合体c(OMPC),孔道蛋白(porins),转铁蛋白结合蛋白,肺炎球菌溶酶(pneumolysin),肺炎球菌表面蛋白A(PspA),肺炎球菌结合素蛋白(PsaA),或肺炎球菌表面蛋白BVH-3和BVH-11。还可以使用诸如炭疽芽孢杆菌的保护性抗原(PA),卵清蛋白,钥孔戚血蓝素(KLH),人血清白蛋白,牛血清白蛋白(BSA)以及结核菌素衍生物纯化蛋白(PPD)的其他蛋白。所述蛋白优选无毒和无反应原性的蛋白,且可得到足够优选实施方案轭合方法所需的量与纯度。例如,可从白喉棒状杆菌(Corynebacteria diphtheriae)的培养物中纯化得到白喉毒素,并使用甲醛进行化学脱毒从而得到适合的蛋白。
也可使用那些含有至少一种T细胞抗原决定簇的天然毒素或类毒素片断,同样可使用以上所列的外膜蛋白复合体,以及多种蛋白的某些类似物,片断和/或类似片断。上述蛋白可以是从天然来源获得的,通过重组技术生产的或者是由本领域公知技术合成的。可以通过多种方式获得类似物,例如,可以在不丧失利用诸如抗体的抗原结合区或底物分子的结合位点的结构产生的相互结合能力的条件下,用某些氨基酸替换蛋白中的另一些氨基酸。还可以使用诸如那些含有表面暴露有谷氨酸或天冬氨酸基团的其他蛋白质。
可以采用任意的官能化反应利用酰肼基来活化所述蛋白。优选地,可以采用碳二亚胺反应,例如通过在EDC的存在下与肼,碳酰肼,琥珀酰二酰肼,己二酸二酰肼或其他二酰肼经由该蛋白的天冬氨酸和谷氨酸残基上的羧基向所述蛋白引入酰肼基。EDC可用作催化剂利用肼或二酰肼来活化和修饰所述蛋白反应物。可将包含EDC的任意水溶性碳二亚胺用作催化剂。EDC-催化的蛋白通常具有聚合和沉淀的趋势,因此在涉及蛋白的轭合物制备中并不是优选的。参见Schneerson等人,Infect.Immun.1986,52519-528;Shafer等人,Vaccine 2000,18(13)1273-1281;以及Inman等人,Biochemistry 1969,84074-4082。所述活化蛋白的聚集和沉淀部分依赖于其pH环境。因此,可通过在缓冲溶液中保持这些酰肼修饰蛋白的可溶性,来控制其聚合与沉淀的趋势。通过对所述反应混合物进行缓冲液更换将所述活化蛋白的pH维持在约10.5,从而使得所活化的蛋白保持其可溶性以及稳定性以进行轭合反应。优选地,可以采用诸如从约3mM至约10mM的较低浓度Na2CO3弱缓冲液。
然后,当将所述缓冲的酰肼修饰蛋白加入pH从约6至8.5,优选从约6.5至约8的活化多糖中的时候,可制备蛋白-多糖轭合物而不产生沉淀。可使用任意适合的官能化反应利用醛基来活化蛋白。优选地,该蛋白在EDC的存在下与1-氨基-2,3-丙二醇进行反应。可使用诸如葡糖胺,半乳糖胺等等氨基糖来代替1-氨基-2,3-丙二醇。在这一反应中,EDC可被用作催化剂利用氨基二醇来活化和修饰该蛋白反应物,经由该蛋白的天冬氨酸和谷氨酸残基的羧基进行。
通过还原氨基化制备轭合物可通过醛基和酰肼基的反应(还原氨基化)制备轭合物。所述还原氨基化轭合反应可用来将酰肼修饰的反应物(蛋白或多糖)与含有醛基的其它组分轭合。
在常规还原氨基化反应中,在醛基和氨基之间的反应是可逆和不利的,因此需要使用氰基硼氢钠来协助所述轭合反应,所述氰基硼氢钠通过将C=N双键转化成C-N单键从而使得所述整个还原氨基化事件成为不可逆。相比较而言,由于所述酰肼-醛反应具有较高的效率,因此在优选实施方案中的该还原氨基化轭合反应是在没有氰基硼氢钠的帮助下完成的。在该还原氨基化轭合反应结束的时候,可使用硼氢钠或其他适合的反应物来将C=N双键还原成C-N单键,同时将任意的醛基还原成醇基。优选实施方案中的所述还原氨基化轭合反应避免了所产生的轭合物中混有氰化物,氰基硼氢钠副产物的沾染。
为了降低所述轭合反应中的活化蛋白的沉淀,该活化蛋白优选地存在于从约3mM至约10mM的较低浓度的弱缓冲液中,然后将其加入到较强缓冲(pH值从约6.5至约7.5,约100mM至约200mM的高缓冲浓度)活化的多糖溶液中。优选地,将所述活化蛋白溶液的pH值缓冲至约pH10到约pH11.5,最优选为约pH10.5。将所活化多糖溶液优选地强缓冲至约pH6到约pH8,最优选为约pH6.5至约pH7.5。所述酰肼-醛还原氨基化反应以高速完成,对活化蛋白在pH低于10.5(例如pH低至约8.5至约9.5)条件下具有的沉淀作用可以通过具有反应活性的活化多糖的分子性质得以克服。
轭合物两种反应物的每个分子都含有多个反应基团。活化的多糖分子可以反应并形成与不止一个活化蛋白的分子连接的不止一个键。类似地,活化蛋白分子也可反应并形成与不止一个活化多糖的分子连接的不止一个键。因此,所述轭合物是具有多种交联基质型晶格结构的混合物。例如,可以只有单键,或2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29或30个或更多的键。优选地,可对多糖与蛋白之间连接键的平均数进行调节。所述连接键的平均数依赖于多糖的类型,蛋白的类型,轭合方法,反应条件等等。通常存在1至约2,3,4或5个连接键,从而避免了由过度轭合造成的所述蛋白对免疫系统刺激能力的干扰,也不会引起所述多糖结构的改变。然而,在某些实施方案中,高于5个连接键的情况也是可以容忍甚至是需要的。
轭合反应完成之后,可使用任意适合的方法对所述轭合物进行纯化。纯化的目的是为了去除未反应的多糖,蛋白或小分子反应副产物。纯化的方法包括超滤,分子排阻色谱,密度梯度离心,疏水作用色谱,硫酸铵分级分离等等本领域公知的方法。如上所述,优选实施方案中的所述轭合反应的产率较高,且产生了更少的不需要的小分子反应副产物。因此,无需进行纯化,或仅需要进行较低程度的纯化。根据需要,可将所述轭合物浓缩或稀释,或加工成任意适于在药物组合物中进行使用的形成。
治疗方法可将由所述优选实施方案制备的轭合物以适合形式的免疫有效剂量对个体进行给药从而治疗和/或预防感染性疾病。在此使用的术语“个体”是指诸如哺乳动物的动物。例如,哺乳动物包括了人类,灵长类,狗,猫,绵羊,牛,山羊,猪,马,小鼠,大树,兔子,豚鼠等等。术语“个体”,“患者”和“宿主”可以交替使用。在本文中,术语“免疫有效”剂量的所述轭合物疫苗是指适于引起免疫反应的剂量。该具体的剂量依赖于需要进行治疗个体的年龄,体重和临床状态以及给药的方法。本领域所属技术人员应该很容易对适合的剂量进行确定。
与常规疫苗相比,含有优选实施方案的轭合物疫苗的药物组合物具有多种优点,包括增强较弱免疫原性抗原的免疫原性,有效地将抵抗原的用量,降低加强免疫的频率,提高效率,对免疫系统进行优先刺激,或者对免疫应答具有潜在的靶效应。可通过下述的多种方式对个体进行疫苗给药,包括肠道外(例如,通过脑池内注射和灌输技术),皮内,跨膜的,透皮的(包括局部的),肌肉的,腹膜内的,静脉的,动脉内的,灶内的,皮下的,口服以及鼻内(例如吸入)方式进行给药。可通过弹丸注射或连续灌输,以及例如对疾病或损伤位点的局部给药进行轭合物疫苗给药。所述轭合物疫苗可以药物或生理可接受载体的形式进行给药。
在本文中,术语“疫苗”涵义广泛,取其常规含义,包括优选实施方案的轭合物或其他抗原,与佐剂,稀释剂,赋形剂,载体和其他药物可接受物质配制而成。术语“药物可接受的”是指可与诸如细胞,细胞培养物,组织或有机体的生物系统相容的无毒材料。
使用优选实施方案轭合物的免疫方法为个体提供了预防或治疗疾病,病症和/或感染的组合物和方法。在本文中,术语“治疗”涵义广泛,取其常规含义,包括治愈性,阻止性,预防性,缓解性和/或改善性的治疗。
所述疫苗组合物优选是灭菌的,并含有治疗或预防有效量的适于对个体进行给药的重量单位或体积的所述轭合物。在本文中,术语“药物可接受的载体”是指适于对个体进行给药的一或多种相容的固体或液体填充剂,稀释剂或胶囊材料。术语“载体”是指有机或无机的,天然或合成的,与所述活性成分合并后可以促进应用的成分。所述载体的性质依赖于其给药方式。生理和药物可接受的载体包括稀释剂,填充剂,盐,缓冲液,稳定剂,增溶剂以及其他本领域公知的材料。
以不存在对所需要的药物效率造成潜在危害的相互作用的形式,药物组合物的成分也可以与所述优选实施方案的轭合物进行共混合,以及相互混合。
可适用本领域公知的方法将优选实施方案中的所述轭合物疫苗配制到药物组合物中。所述疫苗组合物可含有一种或多种佐剂。适合的佐剂包括诸如氢氧化铝或磷酸铝的铝佐剂,弗氏佐剂,BAY,DC-chol,pcpp,单磷酰脂A,CpG,QS-21,霍乱毒素以及甲酰甲硫氨酰肽。参见,例如《疫苗设计,亚基和佐剂方法》Vaccine Design,the Subunit andAdjuvant Approach,1995(M.F.Powell and M.J.Newman,eds.,PlenumPress,N.Y.)。
对个体进行给药的轭合物疫苗剂量以及给药方案对医药和兽医领域的所属技术人员而言是很容易理解的,需要参考诸如预期用途,具体的抗原,佐剂(如果有的化),年龄,性别,体重,物种,一般情况,以往疾病和/或治疗情况,以及给药方式的因素。根据动物试验可以确定初始剂量,根据本领域内所接受的诸如标准剂量试验的实际操作,也可以确定对人给药的剂量大小。例如,可以从血清抗体水平测试对治疗有效剂量进行初步估测。所述剂量依赖于所述轭合物的特异活性,并可通过常规实验很容易地测定。
在实施治疗和/或预防特异的疾病的免疫方案中,可以对个体进行治疗有效量轭合物的给药。在本文中,术语“有效量”是指足以表现出对个体具有有意义好处的治疗剂(例如轭合物)或其他活性成分的总量,这些有意义的好处包括对相关临床状态(疾病,感染等等)的增强的免疫应答,治疗,治愈,预防或缓解;或者是提高的对这些病症治疗率,治愈率,预防率或缓解率。当将术语“有效量”用于单独给药的单独治疗剂时,该术语指单独的治疗剂。当将该术语用于联合给药时,是指无论是合并给药,依次给药或同时给药的条件下,产生所述治疗效果的所述组分的合并量。在本文中,短语治疗剂的“有效量给药”是指对所述个体进行所述治疗剂的治疗,其量与时间足以诱导至少一个反映所述疾病,感染或病症严重性的指征得到了某些改善,优选为持续的改善。
如果患者一段时间间隔的至少两次都表现出了改善的情况,那么则认为所述改善是“持续的”。可根据,例如免疫资料,疾病,感染或病症的信号或症状确定改善的程度。可对反映所述患者疾病程度的多种指征进行评估来确定治疗的量和时间是否是充分的。可以根据所述患者在所述接受治疗剂初次剂量给药之前的检查情况,或根据从健康患者人群中得到的统计学数据确立所选择指征或多种指征的基线值。如果将所述治疗剂给药用来治疗急性症状,则所述初次剂量应尽可能快地进行实际给药。直到所述患者表现出对于所选定的指征或多种指征的基线值具有改善的时候,治疗剂给药诱导了改善。在治疗慢性疾病的过程中,可通过在一段时间,例如一个月,两个月,三个月或更长,或无限期的重复给药所述治疗剂,从而获得这种程度的改善。单剂量可足以治疗或预防某种疾病。如果需要的话,与所述患者的疾病无关,可在所述相同水平或减少的剂量或频率进行无限期的治疗。一旦治疗有所降低或中断,如果症状复发,则能以所述原始水平重新开始治疗。
通常,所述轭合物提供的为对抗细菌感染接种的有效剂量或治疗有效量从约1μg或更低至约100μg或更高,优选从约2,3,4,5,6,7,8,9,10,15,20,25,30,35,40,45或50μg至约55,60,65,70,75,80,85,90或95μg每千克体重。如果所述感染后时间持续的较短,则有效剂量对抗体的需要也可有所降低,因为对所述细菌的增殖而言时间也更短。有效剂量还可依赖于诊断时的细菌量(bacteriaload)。对于治疗用途,可以考虑在一段时间内进行多次注射给药。
可以单剂量或包含一或多次加强给药的一系列剂量对所述轭合物疫苗进行给药。例如,婴儿或儿童可在其一生的早期接受单剂量给药,然后在1,2,3,4,5,6,7,8,9,10或更多年之后接受加强剂量的给药。所述加强剂量可从已接触抗原的B细胞中产生抗体,即记忆应答。换言之,加强给药后,所述轭合物疫苗能在婴儿或儿童体内引发较高的初级功能抗体反应,并能引起记忆应答,说明由所述轭合物疫苗引起的保护性免疫应答是长期有效的。
可将所述轭合物疫苗配制成液体制剂,进行,例如口服,鼻内,肛门,直肠,含服,阴道,口服,胃内,粘膜,perlinqual,肺泡,牙龈,鼻或呼吸道粘膜给药。适于这些给药的形式包括悬液,糖浆和酏剂。可将所述轭合物疫苗配制成肠道外,皮下,皮内,肌肉,腹膜内或静脉给药,注射给药,植入物的缓释给药,或通过滴眼剂给药。适于这些给药的形式包括灭菌的悬液和乳浊液。这些轭合物疫苗可与诸如灭菌水,生理盐水,葡萄糖等等适合的载体,稀释剂或赋形剂混合。还可将所述轭合物疫苗冷冻干燥。根据所需要的给药方式和制剂形式,所述轭合物疫苗可含有辅助性物质,例如湿润剂或乳化剂,pH缓冲剂,凝胶或粘度增强添加剂,防腐剂,调味剂,色素等等。无需进行不适当的实验,可参考诸如《雷明顿制药科学与操作》″RemingtonTheScience and Practice of Pharmacy″,Lippincott Williams&Wilkins,第20版(2003年6月1日)以及《雷明顿制药科学》″Remington′sPharmaceutical Sciences″,Mack Pub.Co.,第18和第19版(分别在1985年12月和1990年6月出版)的标准材料制备适合的制剂,在此将其全部引用作为参考。这些制剂可包括复合试剂,金属离子,诸如聚乙酸,聚乙醇酸,水凝胶,右旋糖苷等等的聚合物,脂质体,微乳浊剂,微团(micelles),单层或多层囊泡,血影(erythrocyte ghosts)或球芽(spheroblasts)。适于脂质体制剂的适合脂类包括但不限于甘油单酯,甘油二酯,硫酯,溶血卵磷脂,磷脂,皂角苷,胆汁酸等等。这些附加成分的存在会影响所述物理状态,溶解性,稳定性,体内释放率,以及体内清除率,从而根据目的应用进行选择,由此对所述载体的性质进行改造以适合所选择的给药途径。
优选地,以液体悬液或冷冻干燥产物的形式提供所述轭合物疫苗。适合的液体制剂包括例如缓冲至选定pH值的等渗水溶液,悬液,乳浊液,或粘性组合物。透皮的制剂包括洗液,凝胶,喷雾剂,药膏或其他适合的技术手段。如果需要进行鼻内或呼吸道(粘膜)给药(例如喷雾法或吸入法),组合物则为能够通过挤压喷雾器,泵分配器或气雾剂分配器进行使用的形式。气雾剂通常都采用烃的方式进行压缩。泵分配器可优选地对测定的剂量或具有特定颗粒大小的药剂进行分配,如下所述。
当以溶液,悬液和凝胶形式存在时,除了所述活性成分外,所述轭合物的配方通常含有大量的水(优选为纯净水)。还可以具有少量的其他成分,例如pH调节剂,乳化剂,分散剂,缓冲剂,防腐剂,湿润剂,胶凝剂,色素等等。
优选地,所述组合物与受者的血液或其他体液是等渗的。可使用酒石酸钠,丙二醇或其他无机或有机溶质使得所述组合物具有等渗性。特别优选的是氯化钠。还可以使用缓冲剂,例如乙酸及其盐,柠檬酸及其盐,硼酸及其盐,以及磷酸及其盐。胃肠外载体包括氯化钠溶液,Ringer′s葡萄糖,葡萄糖和氯化钠,乳酸盐Ringer′s或不挥发油。静脉载体包括液体和营养补充剂,电解质补充剂(例如那些基于Ringer′s葡萄糖的补充剂)等等。
使用药物可接受的增稠剂可在选定的水平保持所述组合物的粘度。甲基纤维素是优选的,因为其较容易和廉价得到,且易于使用。其他适合的增稠剂包括黄原胶,羧甲基纤维素,羟丙基纤维素,卡波姆(carbomer)等等。所述增稠剂的优选浓度可依赖于所选择的所述制剂。重要的是使用的量能获得所选定粘度。通常可优选地从加入这些增稠剂的溶液中制备粘性组合物。
可使用药物可接受的防腐剂来提高所述组合物的保存期。虽然有多种防腐剂,例如对羟苯甲酸酯(parabens),硫柳汞(thimerosal),氯丁醇(chlorobutanol)或氯苄烷铵(benzalkonium chloride)可以使用,但苯甲醇是较为适合的。尽管会随所选择的制剂的变化而发生改变,所述防腐剂的适合浓度可从0.02%至2%(基于所述总重量)。
还可以将所述轭合物进行肺部给药。当吸入并穿过肺上皮层进入血流时,可对哺乳动物进行所述轭合物的肺给药。可使用多种针对治疗产品进行肺给药的医疗器械,包括但不限于喷雾器,计量吸入器以及粉末吸入器,这些器械对本领域所属技术人员是相当熟悉的。这些器械可使用对所述轭合物进行分配的适当配方。通常,除了用于治疗中的稀释剂,佐剂和/或载体之外,每种配方对该种器械都是特异性的,还会涉及适当的促进材料的使用。
为了进行肺部给药,可将所述轭合物方便地制备成平均颗粒大小从约0.1μm或更低至10μm或更高,更优选为从约0.2,0.3,0.4,0.5,0.6,0.7,0.8或0.9μm至约1.0,1.5,2.0,2.5,3.0,3.5,4.0,4.5,5.0,5.5,6.0,6.5,7.0,7.5,8.0,8.5,9.0或9.5μm的用于肺部给药的颗粒。适于将所述轭合物进行肺部给药的药物可接受载体包括诸如海藻糖,甘露醇,木糖醇,蔗糖,乳糖和山梨醇的糖。其他用于所述配方的成分还包括DPPC,DOPE,DSPC和DOPC。还可以使用包括聚乙二醇和诸如环葡聚糖的葡聚糖的天然或合成的表面活性剂。还可以使用胆盐和其他相关的增强剂,纤维素和纤维素衍生物以及氨基酸。还可以使用脂质体,微胶囊,微球体,内含物复合体以及其他类型的载体。
适合使用喷射或超声波喷雾器的配方,通常都包括以每毫升溶液含有约0.01或更低至100mg或更高轭合物的浓度,优选为每毫升溶液含有约0.1,1,2,3,4,5,6,7,8,9或10mg至约15,20,25,30,35,40,45,50,55,60,65,70,75,80,85或90mg的溶解或悬浮于水中的所述轭合物。所述配方还可以包括缓冲液和简单的糖(例如,用于蛋白稳定以及渗透压调节)。所述喷雾剂配方还可含有表面活性剂,从而降低或防止在所述气溶胶形成过程中由溶液雾化引起的表面诱导的所述轭合物的聚集。
适合使用计量吸入器装置的配方通常都包含精细粉末,该精细粉末含有表面活性剂协助的悬浮于促进剂的本发明化合物。所述促进剂可包括诸如含氯氟烃,氢代含氯氟烃(hydrochlorofluorocarbons),氢代含氟烃(hydrofluorocarbons)的常规促进剂,以及诸如三氯氟甲烷,二氯二氟甲烷,二氯四氟乙醇以及1,1,1,2-四氟乙烷的烃及其组合。适合的表面活性剂包括去水山梨糖醇三油酸酯,大豆卵磷脂和油酸。
适于从粉末吸入装置中进行分配的配方通常都包含精细研磨的干粉,所述干粉含有所述轭合物,可任选地包括促进所述粉末从所述装置中进行分配的诸如乳糖,山梨醇,蔗糖,甘露醇,海藻糖或木糖醇的填充剂,其剂量通常为约1%重量比或更低至99%或更高重量比的所述配方,优选从约5,10,15,20,25,30,35,40,45或50%重量比至约55,60,65,70,75,80,85或90%重量比的所述配方。
当通过静脉,经皮,皮下或其他注射方式对所述轭合物进行给药时,所述轭合物疫苗优选为无热源,注射可接受的水性液体。具有适合pH,等渗能力,稳定性等等的所述注射可接受溶液的制剂是本领域内公知的。优选的适于注射的药物组合物优选的含有诸如氯化钠注射液,Ringer’s注射液,葡聚糖注射液,葡聚糖和氯化钠注射液,乳酸Ringer’s注射液的载体,或其他本领域内公知的等渗载体。
根据不同的因素所述注射的持续时间也有所变化,包括从几秒或更短时间的单次注射给药到1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23或24小时或更长时间的连续静脉给药。
可通过液体或凝胶,或作为植入体或装置对所述轭合物进行局部,系统或区域地给药。
优选实施方案中的轭合物,或优选实施方案中的轭合方法对于制备治疗多种细菌感染的疫苗而言非常有用,这些细菌感染包括由幽门螺旋杆菌(Helicobacter pyloris),(Borelia burgdorferi),嗜肺性军团病菌(Legionella pneumophilia),分支杆菌属(Mycobacteria sps.)(例如结核分支杆菌(M.tuberculosis),鸟型分枝杆菌(M.avium),胞内分枝杆菌(M.intracellulare),堪萨斯分支杆菌(M.kansasii),戈氏分枝杆菌M.gordonae)),金黄色葡萄球菌(Staphylococcus aureus),淋病奈瑟菌(Neisseria gonorrhoeae),脑膜炎萘瑟菌(Neisseria meningitidis),单核细胞增多性李氏菌(Listeria monocytogenes),酿脓链球菌(Streptococcuspyogenes)(A型链球菌),无乳链球菌(Streptococcus agalactiae(B型链球菌)),链球菌(草绿色型,viridans group),粪链球菌(Streptococcusfaecalis),牛链球菌(Streptococcus bovis),链球菌(厌氧型(anaerobicsps.)),肺炎链球菌(Streptococcus pneumoniae),致病的弯曲杆菌属(Campylobacter sp.),肠球菌属(Enterococcus sp.),流感嗜血杆菌(Haemophilus influenzae),炭疽芽孢杆菌(Bacillus anthracis),白喉杆菌(Corynebacterium diphtheriae),棒状杆菌属(corynebacterium sp.),猪红斑丹毒丝菌(Erysipelothrix rhusiopathiae),产气荚膜梭状芽孢杆菌(Clostridium perfringers),破伤风梭状芽胞杆菌(Clostridium tetani),产气肠杆菌(Enterobacter aerogenes),肺炎克氏杆菌(Klebsiellapneumoniae),(Pasturella multocida),拟杆菌属(Bacteroides sp.),具核梭杆菌(Fusobacterium nucleatum),念珠状链杆菌(Streptobacillusmoniliformis),苍白梅毒螺旋体(Treponema pallidium),雅司螺旋体(Treponema pertenue),细螺旋体属(Leptospira),以色列放线菌(Actinomyces israelli)引起的感染。
可使用优选实施方案的某些方法制备疫苗,所述疫苗可对个体进行治疗或免疫,从而抵抗诸如哺乳动物肉瘤和癌瘤的癌症,例如纤维肉瘤,粘液肉瘤,脂肪肉瘤,软骨肉瘤,成骨肉瘤,脊索瘤,血管肉瘤,内皮肉瘤,淋巴管肉瘤,淋巴管内皮肉瘤,滑膜瘤,间皮瘤,尤因氏瘤,平滑肌肉瘤,横纹肌肉瘤,结肠癌,胰腺癌,乳腺癌,卵巢癌,前列腺癌,扁平细胞癌,基底细胞癌,腺癌,汗腺癌,皮脂腺癌,乳头状癌,乳头状腺癌,囊腺癌,髓样癌,支气管癌,肾细胞癌,肝癌,胆管癌,绒毛膜癌,serminoma,胚胎性癌,维尔姆斯氏肿瘤(Wilms′tumor),子宫颈癌,睾丸肿瘤,肺癌,小细胞肺癌,膀胱癌,上皮癌,神经胶质瘤,星形细胞瘤,成神经管细胞瘤,颅咽管瘤,室管膜瘤,松果体瘤,成血管细胞瘤,听神经瘤,少突神经胶质瘤,脑脊膜瘤,黑素瘤,成神经细胞瘤,视网膜母细胞瘤;以及白血病,例如急性淋巴细胞性白血病和急性髓细胞性白血病(原始粒细胞性白血病,前髓细胞性白血病,粒单核细胞白血病,单核细胞性白血病以及红白血病);慢性白血病(慢性粒细胞性(粒细胞的)白血病以及慢性淋巴细胞性白血病);以及真性红细胞增多症,淋巴瘤(何杰金氏病和非何杰金氏病),多发性骨髓瘤,瓦尔登斯特伦氏巨球蛋白血症以及重链病,淋巴细胞增生性疾病,包括自身免疫淋巴细胞增生综合征(ALPS),慢性成淋巴细胞白血病,毛细胞性白血病,慢性淋巴性白血病,外周T-细胞淋巴瘤,小淋巴细胞淋巴瘤,套细胞淋巴瘤,滤泡性淋巴瘤,伯基特淋巴瘤(Burkitt′s lymphoma),EB病毒阳性T-细胞淋巴瘤,组织细胞性淋巴瘤,何杰金氏病,弥散攻击性淋巴瘤,急性淋巴性白血病,T-γ淋巴细胞增生症,皮肤B细胞淋巴瘤,皮肤T细胞淋巴瘤(即蕈样肉芽肿痛)和Szary综合征。
可将所述轭合物与多种目前正在使用或开发中,适于人类或非人类个体的疫苗结合给药。适于人类患者并对感染性疾病的疫苗包括联合的白喉和破伤风类毒素疫苗;百日咳全细胞疫苗;灭活的流感疫苗;23价肺炎球菌疫苗;麻疹活疫苗;流行性腮腺炎活疫苗;病毒性风疹活疫苗;卡介苗(BCG)结核疫苗;甲型肝炎疫苗;乙型肝炎疫苗;丙型肝炎疫苗;狂犬病疫苗(例如人二倍体细胞疫苗);灭活的脊髓灰质炎疫苗;脑膜炎球菌多糖疫苗;四价脑膜炎球菌疫苗;黄热病活病毒疫苗;灭活的伤寒全细胞疫苗;霍乱疫苗;灭活的日本乙型脑炎疫苗;腺病毒疫苗;巨细胞病毒疫苗;轮状病毒疫苗;水痘疫苗;炭疽疫苗;天花疫苗以及其他可商业获得的疫苗和实验疫苗。
可以采用试剂盒的形式为进行给药的医生或其他健康关怀职业人员提供所述轭合物。所述试剂盒是具有容器的包装,其含有对个体进行轭合物疫苗给药的所述轭合物疫苗以及操作指导。任选地所述试剂盒可包含一或多种其它治疗试剂。任选地所述试剂盒可包含一或多种诊断工具及其使用指导。例如,其可包括含有2种或更多疫苗的混合疫苗(cocktail vaccine),或含有不同疫苗或治疗剂的单独的药物组合物。所述试剂盒可包含进行连续给药或顺序给药所述轭合物疫苗的分别剂量。所述试剂盒可包含适合的给药装置,例如注射器,吸入装置等等,以及所述治疗剂的给药指导。所述试剂盒可选地包含关于将所包括的任意或全部治疗剂进行储存,重组(如果可用的话),以及给药的指导。所述试剂盒可包括反映需要对个体进行给药数量的多个容器。如果所述试剂盒含有第一和第二个容器,则存在多个。
实验材料破伤风类毒素(TT)由Instituto Butantan, Paulo,SP,巴西提供。其是按照DTP疫苗应用(世界卫生组织1990年,白喉、破伤风、百日咳和组合疫苗的要求,WHO技术报告系列N°.800,日内瓦,世界卫生组织)的要求生产和纯化的。TT的抗原纯度应大于1,500Lf/mg蛋白氮(世界卫生组织生物标准化专家委员会,2001年。关于脑膜炎C型轭合物疫苗生产与控制的建议(草案),日内瓦,11月26-30日)。采用Bradford’s方法对蛋白含量进行测定。参见Bradford,M.M.1976,Anal.Biochem.,72248。
脑膜炎A型和C型多糖(分别为Mn A PS和Mn C PS)是由Bio-Manguinhos, Oswaldo Cruz,Rio de Janeiro,RJ,巴西提供的。其是通过如前所述的分别在Frantz培养基中对脑膜炎奈瑟菌的1951和2135疫苗菌株进行培养和纯化得到的。简言之,通过在56℃加热30分钟杀死所述微生物后收集所述培养物,然后用溴化十六烷基三甲铵(Cetavlon)沉淀来部分纯化所述APS和CPS。用酚萃取对所述Cetavlon-沉淀的包膜多糖进行纯化,再通过不同的离心来去除内毒素(Gotschlich等人,1969,J.Exp.Med.,1291349-1365;世界卫生组织1976年,脑膜炎球菌多糖疫苗的要求,WHO技术报告系列N°.594,日内瓦;世界卫生组织1981年,脑膜炎球菌多糖疫苗的要求,WHO技术报告系列N°.658,日内瓦,世界卫生组织29)。
分别采用Svennerholm’s方法和具有脉冲电流检测的高效阴离子交换色谱(HPAEC-PAD)对所述CPS和APS的糖含量进行测定(Svennerholm,L.1957,Biochim.Biophys.Acta,24604-611;Ricci等人,2001,Vaccine,191989-1997)。通过质子核磁共振(NMR)对所述多糖的特征、结构和纯度进行测定(Jones等人,1996,Dev.Biol-Stand.BaselKarger,87143-151;Jodar等人,2004,Vaccine,221047-1053)。方法蛋白活化在室温和酸性条件下,通过碳二亚胺方法用50x过量的二盐酸肼引入肼基来活化TT。用0.02M PBS pH7.4(约12倍体积)透析来纯化所得的酰肼活化的破伤风类毒素(TTH),并使用切向流超滤设备(Minisette System-Pall BioPhannaceuticals)和Ω型膜卡座(ScreenChannel-Hydrophilic polyethersulphone)进行浓缩(Handbook,1999)。对所述纯化条件进行标准化从而能够处理至少5升所述溶液。
轭合在存在1N氰基硼氢钠,pH5.0-7.5,22-45℃的条件下,以1∶1.6至1∶5的比例和1-40mg/mL的浓度将肼活化的TT(TTH)与醛活化的多糖反应过夜。然后加入己二酸二酰肼(ADH)保持3小时以中和未反应的醛基。然后将所述溶液用0.02M PBS pH7.4(约20倍体积)透析,以去除未反应的化合物和未轭合的多糖,然后使用切向流超滤设备(Minisette System-Pall BioPhannaceuticals)和Ω型膜卡座(ScreenChannel-Hydrophilic polyethersulphone)进行浓缩(Handbook,1999)。对所述纯化方法进行标准化从而能够处理超过2升所述混合物。
大体积产物的制备在无菌条件下,通过将作为稳定剂的蔗糖与适量的所述大量轭合物混合制备了所述终产物,从而获得了5人份剂量小瓶。
将所述产物在共溶点之下冷冻。在完成升华过程之后,所述产物温度逐渐升高。通过湿度检测(微分压技术)和氮气浴测定所述最终的残留湿度(1%),这一测定在所述干燥过程结束时最后进行。从化妆品的角度来看,所述循环给出了白色均一的干燥小饼,其具有令人满意的结果。
疫苗的质量控制—物理-化学分析为了对蛋白、多糖和轭合物(50μL;0.1-1mg/ml)进行高效液相分子排阻层析(HPSEC)分析,使用的是配有Unicorn4.12分析软件和分别检测蛋白和糖信号的280nm和206nm检测器,具有TSK 4000PWXL柱子的Amerscham Biosciences HPLC系统,盐水的流速为0.5mL/分钟。
分别采用Bradford’s方法和间苯二酚以及HPAEC-PAD分析对所述产物中间体和所述终轭合物中的总蛋白和多糖含量进行了测定(参见Svennerholm,L 1957,Biochim.Biophys.Acta,24604-61l;Bradford,M.M.1976,Anal.Biochem.,72248;Ricci等人,2001,Vaccine,191989-1997)。将所述CPS的结果用来计算不同轭合物批次获得的多糖与蛋白的比例(表3)。可将该参数用来评估生产的一致性。
表3三种不同Men C型轭合物的多糖-蛋白比例(w/w)
以甘氨酸为标准,通过TNBSA分析测定所述TTH中的氨基基团的含量(TNBSA分析的Pierce指南)。
通过+HNMR对所述天然APS的CPS的特征/结构和纯度进行分析。将样本溶解于D2O(约10mg/mL)再加上0.01%二甲亚砜(DMSO)(用作内部标准),在40℃和600MHz进行测定。在溶剂中没有0.01%DMSO,采用所述相同的条件通过+HNMR对所述活化多糖和轭合步骤中存在的醛基进行监测(Egan,W.2000,Dev.Biol.Base,Karger,1033-9)。
在0.4M KCl/0.05M乙酸钠中使用浓度区间(0.025-0.4mg/mL)通过“多角度激光散射”(MALLS)对所述天然和氧化的多糖和轭合物的分子量进行测定(参见Jumel等人,2002,Biotechnol.Appl.Biochem.,36219-226)。
可采用不同的方法,如超滤来对所述纯化的大量轭合物中未结合或游离的多糖进行测定,从而确保其含量在临床上是安全和有效的(世界卫生组织生物标准化专家委员会,2001年。关于脑膜炎C型轭合物疫苗生产与控制的建议(草案),日内瓦,11月26-30日;Jodar等人,2004,Vaccine,221047-1053)。
通过HPAEC-PAD对所述冻干轭合物疫苗中的蔗糖含量进行测定(参见世界卫生组织生物标准化专家委员会,2001年。关于脑膜炎C型轭合物疫苗生产与控制的建议(草案),日内瓦,11月26-30日)。
按照世界卫生组织的要求对所述纯化的大量轭合物进行细菌和霉菌无菌情况的检测(参见世界卫生组织生物标准化专家委员会,2001年。关于脑膜炎C型轭合物疫苗生产与控制的建议(草案),日内瓦,11月26-30日)采用Karl Fischer方法对所述冻干轭合物疫苗的残留湿度进行测定(Wieland,G.1987.《水分测定的Karl Fischer滴定法,理论与应用》(Water determination by Karl Fischer Titration.Theory andApplications).Git Verlag GMBH出版,德国)。该平均含量优选为不超过2.5%。
通过鲎属变形虫溶解物(Limulus amoebocyte lysate)(LAL;低于100内毒素国际单位/克多糖)和兔子中的热源测试分别对所述冻干轭合物疫苗的热源含量进行体外和体内测定(参见世界卫生组织生物标准化专家委员会,2001年。关于脑膜炎C型轭合物疫苗生产与控制的建议(草案),日内瓦,11月26-30日)。
A型脑膜炎球菌的天然和氧化的多糖和多糖-蛋白轭合物的色谱分析为了控制所述轭合步骤的过程,将活化的破伤风类毒素、氧化多糖和轭合产物的样本(50μL;0.1-1mg/ml)在TSK 4000PWXL柱子中,以0.5mL/分钟流速的盐水,在配有Unicorn4.12分析软件和280nm和206nmUV检测器的Amerscham Biosciences HPLC系统中进行洗脱,从而分别检测蛋白和糖信号(图1)。
C型脑膜炎球菌多糖-蛋白轭合物在小鼠中的免疫原性在第0天,第21天和第41天,以2μg/剂量的普通多糖或多糖-蛋白轭合物(3个不同批次)对Swiss小鼠(15-22g;每组10只)进行肌肉注射免疫。在每次剂量之前和第3次剂量之后的14天收集抗血清,并使用ELISA分析抗所述多糖的总IgG水平。将所述免疫组与接收等体积PBS给药的对照组进行比较。
进行了ELISA分析。用100μL含多糖的包被溶液对II型Immulon板(Dynex)进行过夜包被,该多糖用甲基化人血清白蛋白来混合。用200μL洗涤缓冲液(含有0.05%Tween 20,0.05%NaN3的PBS)洗涤四次之后,向每一个孔中加入100μL抗血清样本和从1/5000(采用含有PBS,4%新生小牛血清,0.05%NaN3稀释)开始倍比连续稀释的标准血清样本。过夜孵育后,将该板洗涤四次,再和100μL与碱性磷酸盐轭合的山羊抗鼠IgG全分子(在稀释缓冲液中稀释为1/3000)孵育2小时。洗涤(4×200μL)后,将该板与100μL对-磷酸硝基苯基酯(1mg/mL)孵育30分钟,加入50μL 1N NaOH中止反应(参见Gheesling等人,1994,J.Clin.Microbiol.,321475-1482)。通过读板器(405nm)测定ELISA读数,从该ELISA读数以及相同板中共分析的对照血清的标准曲线,计算出所述抗血清样品的抗多糖抗体水平。计算每组小鼠的抗体水平的几何平均值(图2)。
还测定了血清抗菌活性。用50-70cfu每孔接种物测定血清的二倍稀释,所述接种物是生长于胰蛋白酶处理的大豆琼脂(TSA)上的对数生长期的脑膜炎球菌生长物。将从雄性豚鼠获得的血清作为补体的来源(对C型脑膜炎奈瑟菌而言没有抗菌抗体)。所述分析在37℃进行30分钟,向每个孔中加入150μl含2%BSA的TSA。在0和30分钟后通过重复两次的斜面法进行定量培养。所述抗菌抗体滴度以能够产生至少50%杀死所述接种物的终稀释度的log2表示(参见Milagres等人,1994,Infect.Immun.;62(10)4419-24)(图3)。
讨论上述步骤已被证明可有效的以商业化规模生产、纯化和控制MenA型和C型轭合物疫苗。采用上述方法,可使用还原氨基化以工业规模生产不同批次的轭合物从而生产较大体积的终产物。所述下游方法使用切向过滤来优化纯化步骤,从而获得较高产率的没有游离多糖的可溶产物。已建立的生产方法是具有可重复性的。所获得的三种终批次的物理-化学质量控制和Men C型免疫原性评估是一致的,说明所开发的疫苗适于进行I期临床试验研究。
通过适当的调整,上述方法可用于生产抗不同荚膜化细菌的其它轭合物疫苗。
本说明书中将所有参考文献全文引用。如果在参考本说明书中包含的出版物和专利或专利申请时发现与本说明书的公开内容有所抵触时,则以本说明书的内容替代这些抵触内容和/或优先考虑本说明书的内容。
在本说明书中,术语“包含”与“包括”,“含有”或“其特征在于”是同义词,其是包含性的或开放式的,且并不排除其他的,未引用的元件或方法步骤。
应该理解,在本说明书和权利要求中所有对成分,反应条件等等进行描述的所有数字在所有场合都采用了术语“约”对其进行修饰。因此,除非意思相反,在本说明书和所附权利要求中设定的数字参数都是近似的,其可随通过本发明要获得的所需要的特性不同而发生变化。至少,不对所述权利要求的范围的等价原则的应用进行限制,应根据其有效数字和普通的约数方法对每个数字参数进行解释。
以上内容公开了本发明的若干方法和材料。还可以对本发明的方法和材料,以及制作方法和设备进行修改。从本说明书的公开内容出发或在本发明公开的实践中,这些修改对本领域所属技术人员而言是显而易见的。因此,不应将本发明局限于所公开的特定实施方案之内,相反,本发明应涵盖在所附权利要求范围和精神之内的所有修改和替换。
权利要求
1.制备轭合物疫苗的方法,该方法包括将多糖与氧化剂反应,由此得到醛活化的多糖溶液;将蛋白与二氯肼在酸性pH条件下反应,由此得到肼活化的蛋白溶液;在pH约5到约7,存在氰基硼氢化钠的条件下,将所述醛活化的多糖与所述肼活化的蛋白反应,由此得到轭合物;及用己二酸二酰肼中和未反应的醛基,由此得到能够刺激免疫反应的轭合物疫苗。
2.如权利要求1所述的方法,其中所述氧化剂包括NaIO4。
3.如权利要求1所述的方法,其中用HEPES缓冲液对所述醛活化的多糖溶液进行缓冲液更换。
4.如权利要求1所述的方法,其中所述醛活化的多糖溶液被缓冲液更换至pH约7到约8。
5.如权利要求1所述的方法,其中用Na2CO3缓冲液对所述肼活化的蛋白溶液进行缓冲液更换。
6.如权利要求1所述的方法,其中所述肼活化的蛋白溶液被缓冲液更换至pH约10.0到约11.0。
7.如权利要求6所述的方法,其中在所述肼活化的蛋白溶液被缓冲液更换至pH约10.0到约11.0之前将所述肼活化的蛋白溶液的pH升高至约7.0到约11。
8.如权利要求1所述的方法,其中以约1∶1.6至约1∶5的比例将所述醛活化的多糖与所述肼活化的蛋白反应。
9.如权利要求1所述的方法,还包括透析所述轭合物疫苗的步骤,由此基本上去除全部未反应的化合物和未轭合的多糖,得到纯轭合物疫苗。
10.如权利要求9所述的方法,还包括通过切向流超滤来浓缩所述纯轭合物疫苗的步骤,从而得到浓缩的纯轭合物疫苗。
11.如权利要求10所述的方法,还包括向所述浓缩的纯轭合物疫苗加入作为稳定剂的蔗糖的步骤,从而得到稳定的轭合物疫苗。
12.如权利要求10所述的方法,还包括冷冻干燥所述浓缩的纯轭合物疫苗的步骤,从而得到干燥的轭合物疫苗。
13.如权利要求1所述的方法,其中所述多糖选自脑膜炎球菌多糖,肺炎球菌多糖,b型嗜血流感杆菌多糖,伤寒杆菌Vi多糖,以及B型链球菌多糖。
14.如权利要求1所述的方法,其中所述蛋白选自破伤风类毒素,白喉类毒素,CRM197以及脑膜炎球菌蛋白。
全文摘要
本发明公开了以高产率制备多糖-蛋白轭合物疫苗的方法。该方法涉及一种反应物上的酰肼基团与其他反应物上的醛基反应。所述反应以较高的轭合效率快速进行。可采用简化的纯化方法从未轭合的蛋白和多糖以及其他小分子副产物中分离出所述轭合物。
文档编号A61K39/385GK1863554SQ200480028978
公开日2006年11月15日 申请日期2004年8月6日 优先权日2003年8月6日
发明者埃伦·杰苏鲁, 伊文娜阿莲娜弗雷塔斯·布拉西莱罗·达西尔韦拉, 雷娜塔·查加斯·巴斯托斯, 卡尔·E·弗拉施, 车恒·罗伯特·李 申请人:美国政府健康及人类服务部
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1