具有薄膜压力感测远端头的导管的制作方法

文档序号:866474阅读:197来源:国知局
专利名称:具有薄膜压力感测远端头的导管的制作方法
技术领域
本发明涉及用于消融和感测心脏组织电活动的电生理导管,具体地讲,涉及在其远端具有接触力感测功能的电生理导管。
背景技术
心律失常,尤其是指心房纤颤,一直是常见和危险的疾病,在老年人中尤为如此。 对于具有正常窦性心律的患者,由心房、心室和兴奋传导组织构成的心脏在电刺激的作用下可以同步、模式化方式搏动。对于心律失常的患者,心脏组织的异常区域不会像具有正常窦性心律的患者那样遵循与正常传导组织相关的同步搏动周期。相反,心脏组织的异常区域不正常地向相邻组织传导,从而将心脏周期破坏为非同步心律。之前已知这种异常传导发生于心脏的各个区域,例如窦房(SA)结区域中、沿房室(AV)结和希氏束的传导通道或形成心室和心房心腔壁的心肌组织中。包括房性心律失常在内的心律失常可以为多子波折返型,其特征在于电脉冲的多个异步环分散在心房腔室周围,并且这些环通常是自传播的。另一方面,或者除多子波折返型之外,心律失常还可以具有局灶性起源,例如当心房中孤立的组织区域以快速重复的方式自主搏动时。室性心动过速(V-tach或VT)是一种源于某一个心室的心动过速或快速心律。这是一种可能危及生命的心律失常,因为它可以导致心室纤颤和猝死。心律失常的诊断和治疗包括标测心脏组织(尤其是心内膜和心脏容量)的电性质,以及通过施加能量来选择性地消融心脏组织。此类消融可以终止或改变无用的电信号从心脏的一部分向另一部分的传播。消融方法通过形成不传导的消融灶来破坏无用的电通路。已经公开了多种用于形成消融灶的能量递送物理疗法,其中包括使用微波、激光和更常见的射频能量来沿心脏组织壁形成传导阻滞。在这个两步手术(标测,然后消融)中,通常通过向心脏中插入包含一个或多个电传感器的导管(或电极)并获取多个点处的数据来感应并测量心脏中各个点的电活动。然后利用这些数据来选择将要进行消融的目标区域。消融和标测涉及用导管的顶端电极接触组织壁。然而,并非总能相对于组织壁正确地定位顶端电极。因此,希望提供在远端头具有接触力感测功能的导管。最近的研究表明,消融灶深度可取决于RF消融过程中顶端电极施加到组织壁的接触力。因此,希望适于标测和消融的导管在远端头电极处具有接触力感测功能。另外,期望的是,这种导管配备有用于检测、测量和/或确定作用于导管顶端上的三维接触力矢量的薄膜压力传感器。由于使用磁性位置传感器监测导管位置,并三维标测心室壁,因此可以确定相对于心壁的顶端电极接触区域,从而计算顶端电极接触压力。

发明内容
本发明涉及用远端具有接触力感测功能的导管进行标测和消融。在一个实施例中,所述导管包括导管主体、可偏转节段和顶端远端头节段,其具有带薄膜压力传感器的顶端电极,其适于检测施加到所述顶端电极的力矢量。所述薄膜压力传感器包括两个相对的柔性和薄的支撑构件,其含有位于它们之间的压敏材料,所述材料的敏感度作为压力的结果变化。所述薄膜压力传感器还包括被支撑在所述柔性和薄支撑构件的界面表面上的跟踪电极交叉部分,其用于检测在所述交叉部分之间的压敏材料的敏感度的变化,并提供信号, 信号处理器可通过所述信号确定所述力矢量的径向和轴向分量。在一个实施例中,所述薄膜压力传感器具有2D、径向对称的形状,例如盘形或环形构造,并且被布置在与所述导管的远端头节段的纵向轴线一致的轴线上。在垂直于所述纵向轴线的平面位置,薄膜压力传感器被夹在所述顶端电极和致动构件之间,压力传感器与它们毗邻以例如当顶端电极与组织壁接触时检测施加到顶端电极上的接触力。在另一个实施例中,薄膜压力传感器具有3D、径向对称的形状,这种形状允许其套叠在止动构件的适形的3D远端和顶端电极的适形的3D近端之间。所述3D构型允许在压力传感器的更大的敏感度,以检测作用于顶端电极上的接触力矢量的径向和轴向分量。例如,3D薄膜压力传感器具有锥形形状,其适形于止动构件的凹型锥形远端端部和顶端构件的凸型锥形近端端部,使得压力传感器被套叠于它们之间。顶端电极的近端和止动构件的远端可以例如通过球窝结合件可旋转和可枢转地连接到压力传感器中的孔,所述球窝结合件允许顶端电极和止动构件之间沿着径向和轴向相对运动。


通过参考以下与附图结合考虑的详细说明,将更好地理解本发明的这些和其他特征以及优点,其中图1为本发明导管的一个实施例的俯视平面图。图2A为图1的导管的侧剖视图,其包括导管主体与沿第一直径截取的中间节段的
接合部。图2B为图1的导管的侧剖视图,其包括导管主体和沿与第一直径大致垂直的第二直径截取的中间节段之间的接合部。图2C是沿着C-C线截取的图2A和图2C的实施例的末端剖视图。图3是本发明的导管的远端头节段的实施例的分解图,包括顶端电极和2D薄膜压力传感器。图4A是大致沿着第一直径装配后的图3的远端头的侧剖视图。图4B是大致沿着第二直径装配后的图3的远端头的侧剖视图。图4C是沿C-C线截取的图4A和图4B的远端头节段的末端剖视图。图5是不含压敏材料的2D压力传感器的实施例的分解图。图6是装配后的图5的2D压力传感器的等轴视图。图6A为沿A-A线截取的图6的2D压力传感器的剖视图。图7是组装之前的具有第一支撑构件和第二支撑构件的2D压力传感器的实施例的俯视平面图。图8是组装之后的图7的2D压力传感器的俯视平面图。图9是具有2D压力传感器的导管的替代实施例,导管主体接合到远端头节段。图9A为图9的导管的侧面剖视图。
图10是本发明的包括3D压力传感器的导管的远端头节段的实施例的分解图。图11是装配后的图10的远端头节段的侧剖视图。图12是不含压敏材料的3D压力传感器的分解图。
具体实施例方式图1说明远端头具有力感测功能的导管10的实施例。该导管包括具有近端和远端的细长导管主体12、位于导管主体12远端的可偏转中间节段14、和适于标测、消融和检测施加到顶端电极17的力(例如当顶端电极接触组织壁19时)的远端头节段15。该导管也包括在导管主体12近端处的控制手柄16,其中控制手柄适于用来控制中间节段14的双向偏转。控制手柄16也可用作控制器11的导线管,该控制器适于向远端头节段15发送电气输入信号并接收来自它的电气输出信号,并处理这些输入和输出的电信号,以标测、消融和/或通过(例如)微处理器13感测力,其中微处理器应用了具有力感测解决方案的程序算法。根据本发明,这种信号包括来自薄膜压力传感器的信号,其跟踪电极交叉部分用于直接测量接触力,包括检测和测量顶端电极上的径向和/或轴向接触力,使得控制器和微处理器适于在计算接触力矢量的过程中处理这种信号。放大器和数据采集(DAQ)设备可设置在控制手柄中,以用于将来自薄膜压力传感器中的测量结果转换为可用信号。这些设备还可设置在导管外部,例如设置在分离的接合盒中或设置在导管导航系统中,所述导管导航系统被设计为使在患者心脏中的导管的实时计算的位置和取向可见,例如Biosense Webster, Inc.制造的CARTO导航系统。参照图2A和2B,导管主体12包括具有单个中央管腔或轴向腔18的细长管状构造。导管主体12是柔韧的(即可弯曲),但沿其长度基本上是不可压缩的。导管主体12可为任何合适的结构,并且可由任何合适的材料制成。目前优选的结构包括由聚氨酯或PEBAX 制成的外壁20。外壁20包括由不锈钢等制成的嵌入式编织网,以增大导管主体12的抗扭刚度,使得当旋转控制手柄16时导管10的中间节段14将以相应的方式进行旋转。导管主体12的外径并非决定性因素,但优选为不大于约8F,更优选不大于约7F。 同样,外壁20的厚度也不是决定性因素,但要足够薄,以使得中央管腔18可容纳线、电缆和配管等。如果需要,外壁20的内表面可衬有加强管22,以得到改善的扭转稳定性。在本发明所公开的实施例中,导管具有外径为约0. 090英寸至约0. 100英寸和内径为约0. 061英寸至约0. 065英寸的外壁20。加强管22的远端和外壁20的远端之间可用粘合剂彼此固定地附接,其中接合处靠近导管主体12的远端和近端。在控制手柄16和可偏转段14之间延伸的部件穿过导管主体12的中央管腔18。 这些部件包括顶端电极17的导线40、头节段中的压力传感器的导线42、用于向顶端电极17 递送流体的冲洗管38、容纳在顶端电极17中的电磁位置传感器19的线缆48、感测顶端电极的温度的热电偶线41、43和用于双向偏转中间节段14的一对拉线44。图2A、2B和2C中还示出了具有一段较短的管19的可偏转中间节段14的实施例。 该管也具有编织网构造,但具有多个离轴管腔,例如,第一管腔30、第二管腔31、第三管腔 32和第四管腔33。在所示实施例中,直径上相对的第二管腔31和第四管腔33中各有一根用于双向偏转的拉线44。第一管腔30载有导线40和42以及热电偶线41、43。第三管腔 32载有冲洗管38和传感器线缆48以及额外的导线42。
中间节段14的管19由比导管主体12更柔韧的合适的无毒材料制成。适用于管 19的材料是编织聚氨酯,即具有嵌入的编织不锈钢或类似材料的网的聚氨酯或PEBAX。每个管腔的大小并非决定性因素,只要每个管腔的大小足以容纳贯穿其中的各部件就可以。图2A和图2B中示出了将导管主体12附接到中间节段14的管19的方式。中间节段14的近端包括接纳导管主体12的外壁20的内表面的外周凹口。中间节段14和导管主体12通过胶或类似材料附接。如果需要,可在导管主体内的加强管(如果提供)的远端与中间节段的近端之间设置间隔区(未示出)。该间隔区使导管主体和中间节段的接合部形成柔韧性的过渡区,其使此接合部平滑地弯曲而不会折叠或扭结。在美国专利No. 5,964,757中描述了具有这种间隔区的导管,该专利的公开内容以引用方式并入本文中。各拉线44优选地涂覆有Teflon. RTM。拉线44可由任何合适的金属(如不锈钢或镍钛诺)制成,并且用特氟隆涂层赋予拉线润滑性。拉线的直径优选地在约0.006至约 0. 010英寸的范围内。如图2B和2C所示,导管主体12内每根拉线44的一部分穿过与拉线 44呈包围关系的压缩螺旋弹簧35。压缩螺旋弹簧35从导管主体12的近端延伸至中间节段14的近端。压缩螺旋弹簧35由任何合适的金属制成,优选地为不锈钢,并且压缩螺旋弹簧自身紧密地缠绕,以提供柔韧性,即弯曲性,但可抗压缩。压缩螺旋弹簧的内径稍大于拉线44的直径。在导管主体12内部,压缩螺旋弹簧35的外表面还覆盖有柔韧的不导电外皮 39,例如由聚酰亚胺配管制成的外皮。拉线44的近端锚固在控制手柄16内。拉线的远端锚固在中间节段14远端附近, 如图4B所示。每根拉线的远端均设有T形锚47,该锚包括贴合并压皱在拉线远端上的一短截不锈钢管,如皮下注射器座(hypodermic stock)。不锈钢管固定到(如通过焊接)由不锈钢带等形成的十字件上。十字件牢固地固定到管19外壁上,以锚定每根拉线的远端。第一拉线穿过可偏转中间节段的第二管腔31,第二拉线穿过可偏转中间段14的第四管腔33。 通过适当操纵偏转构件37 (图1),可实现偏转线44相对于导管主体12的独立纵向移动,导致中间段14偏转,从而操纵远端段15。参照图3、4A和4B,在中间节段14的远端是头节段15,其包括顶端电极17、薄膜压力传感器60和位于压力传感器和管19之间的止动构件62。在图示实施例中,压力传感器具有径向对称的扁平环形或环状。压力传感器具有薄的平面构造和环形横截面,其具有外径Dl和限定中央管腔64的内径D2。传感器的外径Dl类似于或稍小于管19和顶端电极 17的外径,使得在导管的远端或附近,在管19和顶端电极17之间呈现平滑和无损的轮廓。 内径D2足够大,以允许例如导线、冲洗管、热电偶线和/或传感器线缆的组件穿过。如图5和图6的实施例所示,薄膜压力传感器60包括第一跟踪电极66和第二跟踪电极68,各自形成在对应的薄的、柔性支撑片材63和65上,例如如MYLAR或KAPTON的聚酯膜上。第一电极66形成在第一片材63的远端面上,第二电极形成在第二片材65的近端面上。每个电极具有压敏电阻性材料或油墨的薄涂层67,例如铺设于支撑片材上的二硫化钼。片材63和65彼此叠置,使得第一和第二电极66和68面对、叠置并彼此交叉,优选地以一定角度(例如直角)彼此交叉,以产生“交叉部分1的网格图案,其中一对电极中的每个电极通过压敏电阻性材料与所述一对电极中的另一个电极(以及任何其它相邻的跟踪电极)分离(见图6A)。本文所用的“交叉部分”构造描述了叠置的一对电极彼此交叉,但不彼此接触。相反,交叉的一对电极在它们相对于彼此的最近的近端处保持分离一定间隙或间隔70,所述间隙或间隔被压敏材料填充,以使得通过交叉的电极对检测到在压敏材料中的电阻率的变化。因此,在没有外力的情况下,交叉电极之间的压敏材料67提供高阻抗, 当施加外力并且交叉电极对的相对的侧部上的压力发生变化时,材料的电阻作出响应并发生变化。当具有多对交叉的第一和第二电极时,每一对中的一个电极被驱动,并且所述对中的另一个电极被感测,以使得每个交叉电极对的被驱动和被感测的电极之间的电阻的测量结果提供施加到压力传感器上的力的输出表示。应当理解,微处理器13可应用三角形划分处理来利用定向(例如,径向和轴向)分量确定力矢量。压力传感器60具有范围在0. 05mm和0. 5mm之间的厚度,并优选地为约0. Imm厚度,并可适于和构造为承受每平方英寸0. Ipsi至(力低至62. 5 μ lb)范围内的1600 次测量。合适的薄膜压力传感器和系统可得自South Boston,Mass.,USA的Tekscan,Inc., 并在美国专利No. 4,856,993和No. 6,964,205中被描述,上述专利的全部内容以引用方式并入本文中。这些传感器和系统可测量静态和动态事件,并且因为它们极薄且柔性,它们可在最小干涉的情况下测量临界表面界面压力,并提供可被处理器处理并显示在监视器上的高度准确的压力读数。因此,每个交叉部分或交叉对通过施加到其的压力的函数的可变电阻来表征。应当理解,每个电极具有连接到对应的引线42的暴露的端子,所述引线延伸穿过压力传感器的中央管腔64并朝近端延伸穿过导管10抵达合适的电路(未示出)。电路通过顺序地扫描交叉部分的每个交叉电极对来操作,以测量在交叉部分上的压敏涂层的电阻,以提供施加到交叉部分的压力传感器的力的指示。在图5和图6的导管的图示实施例中,压力传感器具有最少三个电极交叉部分,其负载范围和敏感度针对预期的接触力范围进行合适的选择。最少三个电极交叉部分使得在进行利用方向和角度信息确定力矢量例如轴向和/或径向分量的过程中能够进行力和/或压力的三角形划分。如所示,每个交叉件与外径和内径间隔相等,并且交叉件绕头节段的纵轴线以0、120和240径向角彼此等量间隔。本领域普通技术人员将理解,可具有如所期望或合适的任意数量的交叉件,这取决于所需的分辨率。在图7和图8的替代实施例中,传感器包括至少两个平行的被驱动的电极66和两个平行的被感测的电极68,它们被布置为提供彼此等距离间隔的四个交叉件X,使得所述四个交叉件形成方形构型的四个拐角,其中所述交叉件绕头节段的纵向轴线径向对称。应当理解,任何数量的电极可按照任何合适的图案布置,并且电极可被一致地驱动或一致地感测,或者通过合适的电路,根据需要,相同的电极可在被驱动和被感测之间交替。实际上, 如本领域普通技术人员所理解,具有合适电路的本发明的系统可采用任何合适数量的电极,其被布置为被驱动和/或被感测的电极。在图3、4A和4B的图示实施例中,止动构件62在压力传感器60的附近并且用作压力传感器的刚性底座。所述构件为盘形,其具有较厚的平坦构型以及环形横截面,其具有外径D3和限定中央管腔70的内径D4。外径类似于或稍小于管19以及顶端电极17的外径, 使得在导管的远端或附近,在管19和顶端电极17之间呈现平滑和无损的轮廓。内径足够大,以允许上述组件在管19和顶端电极17之间延伸。在远端平表面和近端平表面之间的止动构件的厚度范围在约0. 4mm和0. 5mm之间。所述构件的材料可为相对于约5和150gf之间的力的足够刚性的任何材料。止动构件的远端表面和/或顶端电极的近端表面大致为平面并且垂直于远端头节段的纵向轴线,使得夹在其中的压力传感器检测作用于顶端电极上的主要轴向力,但是通过分析作用于顶端电极上的力的测量的轴向分量的差,径向分量的测量也是可能的。这些表面可包括绕纵向轴线等距间隔的鼓起的形成物,其用于将力局限到压力传感器的网格交叉部分上。在图示实施例中,顶端电极的近端表面具有多个圆形隆起74,其数量等于压力传感器中的电极交叉部分X的数量。如图所示,每个隆起被布置为与对应电极交叉部分轴向对齐,以将施加到顶端电极上的力局限于压力传感器的交叉部分X上。应当理解,虽然词“压力,,和“力”具有不同的技术含义和测量单位,但是这些术语在本文中可互换使用,这是因为压力传感器被构造为具有各种间隔的电极交叉部分(每个交叉部分覆盖预定面积),从而允许信号作为压力显示。因此,任何特定面积的表示 (representation)取决于在所述区域中的所述多个交叉部分,越多的交叉部分提供越大的表示,越少的交叉部分提供越小的表示。在这点上,止动构件的鼓起的形成物和/或顶端电极的近端具有已知的表面面积,获取的测量结果可通过力值确定。这样,多个电极接合部被有利地利用来确定力分量,并且通过三角形划分来确定力矢量。在图4C中最清楚地看出,顶端电极引线40和热电偶线41和45的远端分别锚定在形成于顶端电极17的近端中的盲孔120和122中。电磁定位传感器21被容纳在所述盲孔124中。冲洗管38延伸到形成在顶端电极的近端的冲洗通道126中。通道126与径向横分支130相通,以允许冲洗管38递送的流体经多个径向口 132流到顶端电极外面。如所述,导管10适于经由控制手柄上的偏转构件通过拉线的用户控制进行双向偏转。然而,适于与引导护鞘一起使用的导管IOa的实施例在图9中被显示。导管10'不具有通过拉线可偏转的多管腔管。如图所示,导管主体12的远端附着到远端头节段15,它们之间没有中间部分,其中组件穿过导管主体12的中央管腔18和止动构件62和压力传感器60的中央管腔之间。在示于图10、11和12中的导管IOb的另一替代实施例中,图中相同的组件具有相同的标号,远端头节段1 包括具有3D形状(例如,锥形)的薄膜压力传感器60b,使得近端和远端表面上的每个位置的表面矢量具有轴向和径向分量。在该实施例中,压力传感器包括四个电极交叉部分X,每个与锥形的外径和内径等距离间隔,并且绕锥形彼此等距离间隔,例如,以0、90、180和270度绕远端头节段的纵向轴线彼此间隔。第一电极66b被支撑在具有锥形的第一或远端薄的、柔性的支撑片材6 上。第二电极68b支撑在第二或近端薄的、柔性的支撑片材65b的远端表面上,所述支撑片材同样具有锥形,并且稍大于第一支撑片材,使得第二片材可容纳和包围第一片材和应用于第一片材的远端表面和第二片材的近端表面的压敏材料67b,以形成压力传感器。如图所示,第一和第二电极布置在它们对应的片材上,以在中央管腔64b周围的径向对称位置形成交叉部分X。对应的孔90设置在近端支撑片材65b中,使得用于第一和第二电极二者的引线42b可朝止动构件62b向近端延伸。压力传感器60b的锥形形状通常与止动构件62b的凹型锥形远端面110和顶端电极17b的凸型锥形近端面112匹配和对应,以使得压力传感器通过与电极交叉部分轴向对齐的鼓起形成物(例如,鼓起的环形隆起74b)被套叠在顶端电极和止动构件之间。中央管腔64b允许组件延伸穿过压力传感器60b,在当前实施例中,其包括具有球构件92和颈部 94的凸起,所述球构件和颈部与顶端电极的纵向轴线对齐,并从顶端电极17b的主体朝近端延伸。所述球构件被容纳在形成在止动构件的远端中的承窝96中并与其互锁。通过在顶端电极和止动构件之间提供机械止挡件,球窝结合件提供了额外的轴向抗拉强度。在这点上,可使用例如具有扁平末端或柱的任何标定止挡件(staking interference)。此外,球窝结合件允许顶端电极17b相对于止动构件62b在更多的维度上运动,以在利用径向和轴向分量检测施加的力时获得增加的敏感度和更高的分辨率。在止动构件62b的远端面和近端面之间的厚度在约1. Omm和6. Omm之间,优选地为3. 0mm。止动构件的近端面在内圆周100 上有凹口,以容纳中间节段14的管19b的有凹口的远端的外周102。用于压力传感器电极 66b和68b的引线42b延伸穿过与电极交叉部分X轴向对齐的设置在止动构件62b中的轴向通道108。顶端电极引线40b和热电偶线41b和4 穿过将止动构件的内凹口近端端部 100与止动构件的凸型远端面连接起来的中央通道112。顶端电极引线40和热电偶线41、 45锚定在形成在顶端电极的凸型近端中的对应的盲孔中。在任一前述实施例中,例如,当在标测和消融期间,顶端电极与组织接触时,压力传感器可通过任何适于保持最小约15牛顿的轴向负载的粘合剂粘合到顶端电极和/或止动构件上。包括环氧树脂、聚氨酯等的合适的粘合剂应当足够刚性以将力无损地转移到压力传感器上,但是也当足够弹性使得在作用在导管上的力的期望范围内不引起塑性变形。柔性护盖,例如,薄柔性、单管腔挤出物或管104可安装在压力传感器和止动构件上方,以使这些组件及它们的内部避免与患者接触。对于具有N个网格交叉部分的导管来说,每个测量的力的轴向分量F1,⑽⑷至!^-^ 之和应当等于施加到顶端电极的力的轴向分量。对于锥形传感器,每个测量的力的径向分量Fuadial至I^radial之和应当等于施加到顶端电极的力的径向分量。就纯轴向施加的负载而言,每个测量的力的轴向分量将等于(1/N)倍的施加的力的大小,并且测量的力的径向分量之和应当等于零。随着施加的力从纯轴向开始变化,每个测量的力的分量的变化允许确定施加的力的大小和方向。导管IOb的图示实施例适于通过一对拉线双向偏转,所述拉线延伸穿过中间节段 14b的管19b的两个对置的管腔。但是,应当理解导管IOb还可适于与导向护鞘一起使用, 其中导管主体被加入到远端头节段中,而不用中间节段。只要压力与力遵循上述约定,相信两种术语都是正确的。这些传感器通常将接合部以各种间隔布置(每个接合部覆盖预定面积),从而允许记录的信号作为压力被显示。在本发明公开的概念中,接合部的数量更加受限,并且因此每个接合部不太代表它们覆盖的面积。然而,如在段落0047中所述,止动构件和顶端电极的近端可具有鼓起的表面(理想地,为已知表面面积)。这些表面将允许针对已知区域采取测量,从而允许以力值确定结果。 因为此,利用多个压力传感器来确定力的分量,并通过三角形划分来确定力矢量。已参照本发明的某些示例性实施例进行了以上描述。显示的附图未必按比例绘制。本发明所属技术领域内的技术人员应认识到,在不有意脱离本发明的原则、精神和范围的前提下,可以对所述结构进行更改和修改。应当理解,附图未必按比例绘制。因此,以上描述不应被理解为只涉及附图中所描绘和示出的具体结构。相反,以上描述应被理解为与以下涵盖其最完整和最清楚范围的权利要求书一致,并且支持该权利要求书。
权利要求
1.一种适于进行标测和/或消融的导管,其包括管,适于穿过患者身体中的脉管;顶端电极,位于所述管的远端,所述顶端电极被构造为与身体组织接触,以进行标测或消融;和薄的、柔性的力传感器,其具有第一和第二薄的柔性背衬片材;至少第一柔性电极和第二柔性电极,所述第一柔性电极附着于所述第一薄的柔性背衬片材并通过所述片材支撑,以提供被驱动的电极,所述第二柔性电极附着于所述第二薄的柔性背衬片材并通过所述片材支撑,以提供被感测的电极;电阻性层,应用到所述被感测和被驱动的电极的至少一个上,并由电阻性材料制成,所述电阻性材料的电阻随施加到其上的压力的变化而变化。
2.根据权利要求1所述的导管,其中所述传感器包括至少两对第一柔性电极和第二柔性电极,其中所述第一电极附着于所述第一薄的柔性背衬片材并通过所述片材支撑,以提供至少两个被驱动的电极,并且所述第二柔性电极附着于所述第二薄的柔性背衬片材并通过所述片材支撑,以提供至少两个被感测的电极,并且所述电阻性层被施加到所述被感测的电极和所述被驱动的电极的至少一个上。
3.根据权利要求1所述的导管,其中所述至少两对第一柔性和第二柔性电极形成至少四个交叉件,每个交叉件在所述第一柔性电极之一和所述第二柔性电极之一之间。
4.根据权利要求1所述的导管,其还包括布置于所述管和所述传感器之间的止动构件,所述构件比所述管更加刚性,以响应于施加到顶端电极上的力提供相对于传感器的法向力。
5.根据权利要求1所述的导管,其还包括布置于所述管和所述传感器之间的止动构件,其中所述止动构件的远端和所述顶端电极的近端具有适形构造,使得所述传感器被套叠于它们之间。
6.根据权利要求1所述的导管,其中所述适形构造包括大致锥形形状。
7.根据权利要求6所述的导管,其中所述止动构件的远端、所述顶端电极的近端以及所述传感器的每个具有大致锥形形状。
8.根据权利要求7所述的导管,其中所述止动构件的远端具有大致凹型锥形形状,所述顶端电极的近端具有大致凸型锥形形状。
9.根据权利要求1所述的导管,其中所述传感器为盘形,并且布置于所述管和所述顶端电极之间。
10.根据权利要求9所述的导管,其中所述传感器具有外径和限定孔的内径。
11.根据权利要求1所述的导管,其中所述管具有单个中央管腔。
12.根据权利要求1所述的导管,其中所述管支撑导管主体。
13.根据权利要求1所述的导管,其中所述管为多管腔管。
14.根据权利要求1所述的导管,其中所述管支撑可偏转部分。
15.一种适于进行标测和/或消融的导管,其包括管,适于穿过患者身体中的脉管;顶端电极,位于所述管的远端,所述顶端电极被构造为与身体组织接触,以进行标测或消融;和薄的、柔性的力传感器,其具有第一和第二薄的柔性背衬片材;在所述第一和第二薄的柔性背衬片材之间的多个电极,所述电极被布置为与不同对的电极形成多个交叉件,每个电极被附着于至少一个所述柔性背衬片材并被所述片材支撑, 其中对于每个交叉件的每对电极来说,一个电极被驱动,而另一个电极被感测;电阻性层,应用到所述被感测和被驱动的电极的至少一个上,并由电阻性材料制成,所述电阻性材料的电阻随施加到其上的压力的变化而变化。
16.根据权利要求15所述的导管,其还包括止动构件,其中所述力传感器被布置在所述止动构件和所述顶端电极之间。
17.根据权利要求16所述的导管,其中所述止动构件的邻近端部和所述顶端电极的邻近端部具有适形的3D形状,使得所述力传感器被套叠在它们之间。
18.根据权利要求15所述的导管,其中所述力传感器具有三维形状,使得其对施加到所述顶端电极上的具有轴向和径向分量的力矢量作出响应。
19.根据权利要求15所述的导管,其中所述力传感器对施加到所述顶端电极上的具有轴向和径向分量的力矢量作出响应。
20.根据权利要求15所述的导管,其中所述传感器具有至少三个交叉件。
全文摘要
本发明公开了一种标测和消融导管,其在远端具有接触力感测能力。在一个实施例中,所述导管包括导管主体、可偏转节段和顶端远端头节段,其具有带薄膜压力传感器的顶端电极,其适于检测施加到所述顶端电极的力矢量。所述薄膜压力传感器包括两个相对的柔性和薄的支撑构件,其含有位于它们之间的压敏材料,所述材料的敏感度作为压力的结果变化,并且被支撑在所述柔性和薄支撑构件的界面表面上的跟踪电极交叉部分检测。当与具有适形形状的止动构件一起使用时,所述压力传感器可具有2D、径向对称的性质,例如,盘形或环形构造,或3D、径向对称的形状,例如锥形构造,其中当力矢量被施加到顶端电极上时薄膜压力传感器与所述止动构件毗邻。
文档编号A61B5/0402GK102423269SQ20111024648
公开日2012年4月25日 申请日期2011年8月16日 优先权日2010年8月16日
发明者J·W·舒尔茨 申请人:韦伯斯特生物官能公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1