用于制造医疗程序的定制针引导装置和方法与流程

文档序号:15746623发布日期:2018-10-23 23:21阅读:132来源:国知局

前列腺癌是美国癌症死亡的第二大原因。2014年诊断出超过225,000例癌症,其中近30,000例死亡。如果得到适当的诊断,前列腺癌是可以治疗的。识别患有前列腺癌的男性的初始筛选是血液中前列腺特异性抗原PSA的水平。这些男性通常被称为核心活组织检查,其中前列腺样本被切除并由病理学家评估以确定是否存在癌细胞。PSA血液测试中没有信息可以确定前列腺中可能存在癌组织的位置。分布在前列腺上的12核心样本已成为确定癌症是否存在的可接受方法。该过程通常使用经直肠超声进行以使针位置可视化,并且以及针通常通过直肠的衬里插入以到达该前列腺。经直肠超声引导手术需要大量针头插入,需要高剂量的抗生素预防,不能使可疑区域容易看见,并且没有提供记录样本位置的方法以供将来参考。

因此,需要通过避免通过直肠进入前列腺来减少前列腺活组织检查程序中的针插入次数和对抗生素的需要。

进一步需要一种能够在活组织检查期间提供针尖位置的精确记录的技术。

对于用于在医疗过程期间引导针进入的患者特异性一次性工具,例如MRI引导的前列腺活组织检查,存在更进一步的进步需求。



技术实现要素:

揭示了一种可定制的针引导器,用于在医疗过程期间引导针进入,例如MRI引导的前列腺活组织检查。在实施例中,该针引导器包含一个板(plate),其中在活组织检查过程期间,基于患者位置和MR图像选择的位置处将一个或多个管插入板中。

还揭示了一种用于制造患者特异性一次性工具的方法,该工具用于在诸如MRI引导的前列腺活检的医疗过程期间引导针进入。更具体地,揭示了一种用于制造针引导器以在患者保持在MRI中时引导针的方法。可以使用初始图像和术前多参数MRI在扫描仪的参考系中识别目标位置,并且可以选择轨迹。然后将产生针引导器并用于完成活组织检查。针引导器可以通过这样的方法产生,其中通过摩擦在塑料板中钻件孔,并且导管通过摩擦焊接插入并焊接就位。针引导器的制造基于快速,精确的机器,用于从无菌套件创建引导装置。

根据本揭示內容的一个方面,在活组织检查过程中使用的无菌针引导装置包括具有至少一个其延伸穿过的管状针引导件的平板。

根据本揭示內容的另一方面,一种用于制造导针的套件,用于在无菌状态下制造针引导器的套件,包括多个复数导管,每个导管具有与其配对的钻头。在一个实施例中,套件可任选地进一步包括空白平面,在该过程中导管嵌入其中。

根据本揭示內容的又一方面,系统包含至少一个穿过延伸其中的针引导通道的圆柱形导管,在其第一端偶合到所述导管的钻头,和用于偶合所述钻头之一者和导管到动作源的适配器盖帽的组合。

根据本揭示內容的又另一方面,在活组织检查过程中使用的无菌针引导器包含圆柱形导管主体,其定义穿过延伸其中的复数个针引导通道以及具有被定义用于偶合到钻头的第一端和被定义用于与适配器偶合的第二端。

根据本揭示內容的又一方面,于活组织检查过程用于制备针引导器的套件包含:定义穿过延伸其中的内部针引导通道的圆柱形导管,在其第一端偶合到所述导管的钻头,由具有熔点低于所述复数个钻头的材料形成的平板;以及定义可选择性地进入的内部空间的封装结构,所述内部空间其中设置有所述导管和平板。在一个实施例中,所述封装结构通过壁被定义,所述壁至少部分地可移动相对于所述封装结构的另一部分,并且其允许所述导管所述导管相对于所述平板沿三个轴重新定位,同时保持在所述封装结构的内部空间内。

附图说明

图1概念性地示出了MRI扫描仪的孔中的前列腺活组织检查的引导件;

图2概念性地示出了根据本揭示內容的针引导器模板;

图3概念性地示出了根据本揭示內容的用于使钻件相对于板自动移动的装置;

图4概念性地示出了根据本揭示內容的套件和钻件的侧视横截面图;

图5A至E概念性地示出了用于产生根据本揭示內容的定制针引导器的制造过程;

图6A至C概念性示出了根据本揭示內容的非无菌钻头和套件的无菌部件之间的界面;

图7A至C概念性示出了根据本揭示內容的钻头配置;

图8A至B概念性示出了根据本揭示內容的钻头配置;

图9A至D概念性示出了根据本揭示內容的钻头、导管和/或适配器组合的分解透视图。;

图10A至B概念性示出了根据本揭示內容的圆柱形针引导器的侧视图和透视图;

图11A概念性地示出了根据本揭示內容的钻头、导管和适配器组合的分解透视图;

图11B概念性地示出了根据本揭示內容的套件的分解透视图;

图11C概念性地示出了根据本揭示內容,设置在外部无菌包装内部的套件;

图12A至E概念性地示出了用于从根据本揭示內容的套件生成定制针引导器的无菌制造过程;

图13A至B示出了根据本揭示內容的钻头、导管和/或适配器CAP组合的概念分解和侧视图;

图14A至D分别示出了根据本揭示內容的套件的概念透视图、侧视图、剖视图和侧视图;

图15A至B是根据本揭示內容的另一套件的视图;

图16是图14和15的套件的顶视图;

图17A至B6概念性地示出了根据本揭示內容的图14和15的套件相对于制造机器的关系,

图18A至H概念性地示出了利用图14和15的套件使用制造机器生成定制针引导器的过程顺序;

图19是根据本揭示內容的另一套件的透视图;以及

图20A至F概念性地示出了使用制造机器来生成利用图19的套件的定制针引导器的过程顺序。

具体实施方式

根据本揭示內容的一个方面,揭示了一种用于基于MRI扫描快速创建定制的无菌针引导器的方法。在患者在扫描仪中时,仅在用于设计模板的术中扫描后几分钟执行定制过程。制造后没有时间对部件进行消毒,因此针引导器模板在无菌状态下生成。

图1概念性地示出了使用固定的患者特异性模板将针引导至目标的MRI引导的经会阴方法的过程。在所揭示的方法中,患者101被放置在MRI扫描仪102中,其脚固定在镫形物103中。在患者的初始扫描之后在手术期间产生的针引导针引导器104用于引导附接到针激活器106的活检针105。针引导器被构造成允许针105插入前列腺107内的选定位置。通过准确地靶向怀疑患有癌症的MRI可见区域,所揭示的装置和技术与现有方法相比,将提高发现威胁生命的肿瘤的能力,并减少不必要地治疗低风险病例的机会。

图2概念性地示出了根据本揭示內容的针引导器。针引导器包含平板108,其中嵌入有一个或多个导管109。活检针105穿过导管109插入会阴。可以对导管进行颜色编码以匹配在计算器屏幕图像上突出显示的区域。当引导件安装在扫描仪中时,导管109在对应于针的轴线的位置处连接到平板108。在说明性实施例中,平板108和导管109均由基本上刚性的材料制成,例如天然或合成树脂,其可根据本文揭示的方法被操纵以快速制造针引导器。

参照图3,用于制造在医疗过程期间制造无菌无菌针引导针引导器的机器200包括包括钻201和自动致动器202-204的系统,其允许钻201相对于平台205沿三个轴的动作,因此,导管109可以在安装在平台上的板108上以足够的范围定位,并且钻头可以沿其自身轴线移动以在板中形成孔。机器200,特别是自动致动器202,203和204,可以使用任何数量的商业上可获得的服务器马达致动的组件来实现,其可以基于从在医疗程序之前或期间获取的导出自图像数据的数据来数字控制。

图4概念性地示出了用于形成无菌针引导器的套件的示例性实施方式的侧视横截面图。套件225包含若干刚性导管的导管109,例如由热塑性塑料制成的圆筒,每个圆柱体具有摩擦钻头110,例如,高温塑料,包含在其中和无菌托盘206上。无菌适配器适配器210可以包括在套件中,以在钻头马达201和摩擦钻头110或导管109上的表面211之间提供界面。无菌适配器的目的是防止污染物或微生物从钻件孔马达或相关的延伸部分转移到钻头或导管。无菌适配器可以手动连接到钻头马达上,或者可以从套件中取出并通过自动装置连接到钻头马达上。钻头和引导件成对配合,使得导管不能相对于钻头旋转,允许钻头在任何一个被保持在适配器中导管和钻头旋转。可选地,空白平板108可以附接到托盘206,或者可以单独提供。引导零件207将板对准自动模板制造机200中的平台205。

图5A至E概念性地示出了机器200用于从所揭示的套件生成定制引导件的过程顺序。如上所述,针引导器的制造利用快速,精密的机器从无菌套件产生引导件。在图5A至E中的说明性图像序列中,假设板在垂直于钻件轴的两个轴上移动,尽管通过移动电动机本身可以实现相同的过程。在图5A中,机器移动板,使得一个钻头/导管对和无菌适配器直接在钻件孔马达下方。钻头向下移动并连接到钻头上,如图5B所示。这可以通过机械穿线或使用电磁夹头。抬起钻头并移动以及板,使钻头直接在板上安装导管的点上方,如图5C所示。钻头旋转到高速并下降,因此钻头尖端接触模板并开始通过摩擦加热局部熔化板,如图5D所示。钻头继续下降,直到导管凸缘抵靠板顶表面,如图5E所示。钻头停止旋转导管,使其通过摩擦停止,加热导管和板的表面,使它们熔化并熔合在一起。钻件释放钻头,如图5F所示,允许钻头从导管中掉出。注意,板和导管永远不会与未消毒的无菌机器200或钻件孔马达201的任何部分接触。

图6A至C概念性地示出了通过使用无菌适配器,用非无菌钻头操纵无菌部件,例如导管和钻头,而不会污染无菌部件的方法。无菌适配器301或302每个分别至少具有至少第一外表面301a或302a,其与钻件201摩擦接合并且可能在接触钻头时被污染,以及保留无菌并用于接触试剂盒套件的无菌组件的第二内表面301b或302b。无菌适配器301可以实施为单个整体形成的半柔性材料片,其具有外表面,该外表面具有与所述零件互补的轮廓,例如,如图6A至B所示,钻头或夹头的空腔或内部轮廓将无菌适配器插入其中并摩擦地保持在其中。在实施例中,无菌适配器的一个末端可包括,例如,腔或内部轮廓设计成接收并摩擦地将导管109的端部保持在其中,同时适配器301本身连接到钻件201。在一个实施例中,如图6C所示,适配器302可以预安装在例如导管109和钻头110的部件上,并用非无菌夹头303连接到钻头201。本文揭示的无菌适配器可以手动连接到钻头马达或可以从无菌套件中取出并通过自动化装置连接到钻件孔马达上。如前所述,在实施例中,无菌套件可以包括适配器,该适配器预先装配到套件内的每个引导件和钻头组合上。

根据本揭示內容的另一方面,可以利用多个不同的钻头和适配器配置来将导管109摩擦焊接到板108。参见图7A至C和8A至B,示出了许多不同的钻头配置。图7A至C示出了几种适用于所揭示实施例的大致圆锥形钻头尖端。图7A示出了钻头尖端401,其具有大致锥形的形状,具有均匀的锥形侧面。图7B示出了钻头尖端402,其具有大致圆锥形状,其侧面非均匀地逐渐变细以具有至少部分地弯曲的凸形外部轮廓。图5c示出了钻头尖端403,其具有大致圆锥形状,其侧面非均匀地逐渐变细以具有至少部分地弯曲的凹形外部轮廓。这些通常为圆锥形的钻头将材料推开,穿过板108的表面并逐渐熔化其中的较大直径。

图8A至B示出了几种适用于所揭示实施例的大致杯形钻头尖端。图8A示出了钻头尖端404,其具有大致杯形状,其特征在于均匀直径的腔405,以虚线示出,至少部分地延伸通过其内部。图8B示出了具有大致杯形的钻头尖端406,其特征在于锥形直径腔407,以虚线示出,至少部分地延伸通过其内部。在焊接过程中,大致杯形的钻头404和406沿着它们各自的外径熔化环,并且接住从板108切下的材料,并将诸如塞子的材料保持在它们各自的内腔内。

根据本揭示內容的另一方面,可以使用多个适配器和/或导管和钻头配置来连接钻头到导管并将扭矩从钻头传递到钻头和/或导管,让钻头座与以及钻头和/或导管之间没有接触。参照图9A,示出了一种配置的分解透视图,其中适配器410可接纳在导管411和钻头412内,以允许扭矩从适配器传递到钻头。在图9A中,适配器410包括圆柱形驱动旋钮410A,其具有从其向外穿过的延伸的杆410B。在说明性实施例中,杆410B具有矩形横截面轮廓。导管411包含大致圆柱形的主体411B,其定义了延伸穿过其中的中心针引导通道或延伸穿过其中的内腔411C。在说明性实施例中,通道411C具有横截面该模型的形状与杆410B的形状相似,但其尺寸设计成允许杆410B插入其中。导管411进一步包括在其一个端部处包括凸缘头部411A。钻头412的形状类似于图7A的钻头401,但具有腔体412A,该腔体延伸穿过至少部分地延伸到其内部。在说明性实施例中,腔412A具有模制杆410B的横截面轮廓,但其尺寸设计成允许杆4100B插入其中。钻头412通过附接至连接到驱动旋钮410A的杆410B来驱动。在使用中,适配器410、导管411和钻头412可以预先配置在一起,如图3和4中类似地所示,其中杆410B设置在通道411C和腔412A内。钻件夹头可以抓住驱动旋钮410A以拾取组件并将钻头412定位在板108上以执行钻件孔/焊接过程。在引导件411焊接就位后,钻件夹头沿逆行方向拉动驱动旋钮410A,移除杆410B并使钻头412脱落。

参照图9B,示出了系统结构的分解透视图,其中导管413包含圆柱形主体413B,其延伸穿过凸缘413A上方并且具有圆形横截面轮廓的通道413C,在其一个端部处开口成矩形腔413D,其尺寸设计成在其中接收钻头414的短柱延伸部414A。导管413B的延伸穿过凸缘413A上方延伸的部分可接收在未示出的适配器内,基本上类似于适配器301并附接到钻头,使得扭矩从适配器传递到钻头。在使用中,导管413和钻头414可以预先配置在一起。装配有适配器的钻头拾取组件并将钻头414定位在板108上以执行钻件孔/焊接过程。在引导件413焊接就位之后,具有适配器的钻头释放导管413,留下钻头414以手动移除。

参照图9C,示出了系统配置的分解透视图,其中适配器415的其中短柱415C和钻头414的短柱414A可接收在导管416内,以允许扭矩传递自适配器到钻头。适配器415基本上如前所述地实施,但是没有如410B的杆例从其向外延伸。在使用中,适配器415、导管416和钻头414可以预先配置在一起。钻件夹头抓住驱动旋钮415A以拾取组件并将钻头414定位在板108上以执行钻件孔/焊接过程。在引导件416焊接就位后,钻件夹头沿逆行方向拉动驱动旋钮415A,使钻头414手动移除。

在图9D中,适配器418包括圆柱形驱动旋钮418A,其具有从其向外延伸的矩形短柱延伸部418B和从短柱延伸部418B向外延伸的延伸杆418C。在说明性实施例中,杆418C具有圆形横截面轮廓。导管419包含大致圆柱形的圆柱形主体419B,其定义了延伸穿过其中的中心通道或延伸穿过其中的内腔通道419C。在说明性实施例中,通道419C具有类似杆418C的圆形截面轮廓,但其尺寸设计成允许杆418C插入其中。导管419进一步在其一个端部处包括带凸缘的头部419A。钻头420可以类似于此前所述的方式实施。通道419C通向矩形空腔419D和419E,其尺寸设计成分别接收钻头420的短柱延伸部420A和适配器418的短柱延伸部418B。钻头420通过杆418B保持在导管419中,该杆418B装配到钻头中的圆形腔420B中。钻头420通过附接到引导件419而被驱动。在使用中,适配器418、引导件管导管419和钻头430可以预先配置在一起,且杆418C设置在通道419C和420B的通道内。钻件夹头抓住驱动旋钮418A以拾取组件并将钻头420定位在板108上以执行钻件孔/焊接过程。在引导件419焊接就位后,钻件夹头沿逆行方向拉动驱动旋钮418A,移除杆418C并使钻头420脱落。

根据本揭示內容的另一方面,导管包括包括多个引导信道,使得单个导管为从单个导管的单个区域中的多个成簇插入点提供选项。参照图10A至B,导管510包含大致圆柱形的主体510A,其具有复数个有不同横截面直径的部分。导管主体510A进一步定义穿过延伸其中的中心针引导通道或穿过延伸其中管腔510B和复数个针引导器侧通道510C,其围绕包围管腔510B。在说明性实施例中,信道510C的信道围绕信道510B均匀地间隔开,通道510C的相应中心位于从信道510B的信道中心测量的圆半径上。在说明性实施例中,通道510B至C的横截面轮廓类似杆511的横截面轮廓,但其尺寸设计成允许杆511插入其中。导管510进一步包括在其一个端部处包括凸缘头部511D,其定义直径与圆柱形体主体510A的直径相比的突然增加。导管510可与配对钻头和适配器配对,类似于本文所述的适配器/导管/钻头系统,用于偶合钻头到导管,并将扭矩从钻头传递到钻头和/或导管,钻头与钻头和/或导管之间没有接触。

参照图11A,导管迭层515的分解透视图示出为包括适配器514、导管510、杆511和钻头512。对杆511可接收在任何导管510和钻头512道的510B至C的组合以允许扭矩从适配器514传递到钻头512。钻头512的形状可以类似于图8A的钻头404或图8B的钻头406但具有中心针引导通道和至少一个偏心通道,至少部分地延伸穿过其中并且具有横截面通道轮廓,其类似杆510的尺寸,但其尺寸设计成允许杆510插入中。钻头512通过连接到杆511来驱动,该杆511又连接到适配器514。在使用中,适配器514、导管511和钻头512可以预先配置成导管系统515,如图11B所示,设置有杆511,其设置在通道511B至C和类似相应钻头512的通道内。钻件夹头可以抓住适配器514以拾取组件并定位钻头512在板108上执行钻件孔/焊接程序。在引导件510焊接就位之后,钻件夹头沿逆行方向拉动适配器514,移除杆511并允许钻头512掉落,其程序类似于在此描述的利用其他导管和钻头组合的程序。

图11B是套件520的概念分解图,套件520包含托盘525,板522和复数个导管迭层515可以可拆卸地固定到托盘525。在说明性实施例中,托盘525具有大致矩形的形状,其定义了复数个内部分段腔,其中一个腔定义了多个从其向外突出的复数个插座525A,并且导管系统515可以可拆卸地被接收其中。在实施例中,适配器盖帽514或钻头512可以容置于插座525A中。如图所示,板522具有大致矩形的形状,其周围具有复数个夹子,用于固定到托盘525的周边边缘。在实施例中,托盘525可具有手柄525B和手柄盖525C以帮助处理套件520在无菌环境中。板522可具有与本文所述的板108相同的结构和功能。可选的薄膜526可以设置在板522的表面附近。薄膜522用于保护板522的表面免受非无菌环境的影响。

在实施例中,钻头401至404、406、412、414、420或512中的任何钻头可由聚醚醚酮PEEK塑料形成,聚醚醚酮PAEK族中的无色有机热塑性聚合物。PEEK塑料是一种半结晶热塑性塑料,具有优异的机械和化学抗性,可保持在高温下。与大多数其他热塑性塑料相比,PEEK塑料在343℃/649.4°F的较高温度下熔化,使得能够使用注塑或挤出方法形成或加工任何钻头。钻头401至404、406、412、414、420或512中的任何钻头也可以由铝或不锈钢形成,或者有比板108具有更高熔化温度并且与磁共振兼容的任何材料。

在实施例中,适配器410、415、420和514中的任何一个可以由不锈钢或其他刚性可消毒材料形成。在实施例中,导管411、413、416、419和510中的任何导管可由塑料形成,包括但不限于天然或合成树脂,其刚性足以将扭矩从适配器传递到钻头但是它具有比钻头低的熔点,用于在钻件孔/焊接过程中与板207熔合。

因为用于制造针引导器的引导件制造机器(Guide Fabrication Machine,GFM)中的环境很可能被污染,导致它引起针引导器的污染,因此需要一种机制,其中针引导器可以在不暴露于外部环境的情况下生产。

根据本揭示內容的另一方面,针引导器套件520及其针引导器组件完全封闭在密封的无菌盖中。在使用之前,例如在运输和储存期间,套件520包含在外部无菌包装517内,如图11C所示。在一个实施例中,包装517可包含真空形成的聚苯乙烯托盘517A,其中套件520设置在其中并且保持有剥离顶部517B。可以在包装后使用γ辐射对套件520进行灭菌。

根据本揭示內容的另一方面,针引导器套件的内部部件在制造期间与外部环境隔离。在一个实施例中,针引导器套件530可包含托盘531,该托盘531保持与本文所述的套件520基本相同的部件,但仅具有单个迭层532。此外,袋534密封地固定在托架531上。托盘531的顶部边缘位于板522的表面上方。此外,可以设置类似于本文其他地方描述的贴花557的剥离贴花(未示出),设置在托盘531的开口端上,有助于将板552与环境隔离。如图12A-B所示,袋534固定有接口536,通过该接口536,堆栈532可移动地设置在接口536中,如图12A-B所示。在一个实施例中接口536可以包含直接邻接固定袋534的外表面的橡胶密封件,和设置在橡胶密封件附近的刚性或半刚性支架,橡胶密封件和支架都具有可移动地将堆栈532保持在其中的孔。袋534的尺寸足够大,使得界面536可以在制造过程中相对于板108的表面在三个轴上移动,并且可以由薄的柔性抗菌材料制成。这样,袋534可以在运输和储存期间折迭在其自身上,其中套件530的内部保持无菌。图12A-E概念性地示出了用于从套件530生成定制针引导器的无菌制造过程,图12B、12D、12F包括仅用于比较目的的以指示界面536在放置导管的过程中相对于板522的相对位置。

图12A、12C和12E描绘了使用引导件制造机器的计算器控制的致动器将导管放置在板上的所需位置的过程。首先,将钻头定位在堆栈532的正上方然后降低,直到钻头座在堆栈532的盖子上,如图12C所示。接下来,启动自动卡盘,抓住盖帽,并因此抓住整个迭层532。如图12E所示,将迭层532重新定位在将要放置导管的位置上。该动作可以是二维的,以根据需要覆盖整个板,但是为了解释的目的,仅在图12中沿着一个单独的轴示出。注意,当钻头移动堆栈的部件时,由袋534产生的柔性无菌屏障根据需要在三个维度上变形以适应动作并因此在整个生产过程中保持密封屏障。接下来,钻头旋转并降低堆栈。钻头通过摩擦加热板,在通过板时形成孔。钻头可以由PEEK制成,PEEK是一种高温塑料,其熔点远高于板材(ABS)的熔点。钻头盖的内腔接住从孔中移除的大部分塑料,并且移位塑料的其余部分形成围绕孔的边缘。摩擦钻件孔消除了在常规钻件孔中产生的小碎片颗粒的形成。在产生孔之后,旋转迭层532继续前进,直到导管的凸缘到达板522。凸缘和以及板之间的摩擦在每个上面熔化一层薄塑料,将两个表面焊接在一起。整个过程,包括钻件孔,焊接和冷却,可能只需要大约10秒钟。一旦导管焊接到板中,钻头就缩回。因为钻件夹头夹住盖子,所以盖帽和销(pin)从堆栈532中拉出。钻头落在板522下方进入托盘531。

图13示出了用于制造清洁的针引导器540的堆栈542的另一实施例。制成针引导器540的套件包括板544和一个或多个堆栈542,每个由钻头541,导管543,盖帽547和销548组成。销548固定到盖帽547上并压入钻头541并可将扭矩传递到钻头541和导管543。

图14A至D示出了根据本揭示內容的另一个方面的针引导器制造套件550的构造,其中构成针引导器所需的套件的部件完全是完整的包含在屏障内。在针引导器制造过程中的摩擦钻件孔和焊接是通过密封套管工作完成的,允许钻件孔并将导管焊接到位而不会将污染物转移穿过屏障。在说明性实施例中,针引导器套件550包含基本上圆形的基部552,该基部552定义空腔并且具有沿着其周边的孔,板544可以可滑动地移除到该孔中。底座552用盖子554封闭,盖子554的边缘形成迷宫式密封件555。当向从盖子向上突出的面板551施加力时,允许盖子554的旋转动作。在556处的转动(tour)通过迷宫式密封件旋转地固定到盖544的顶部。通过向从其向上突出的Tarrant面板553施加力,可以旋转转台556。复数个堆栈542保持在从转台556的顶表面向上突出的衬套558内,以允许每个堆栈的盖帽547与钻头卡盘或收集件相互作用。如图所示,POA贴花557可用于临时地密封底座552内部的板544。

转台556保持在旋转凹槽554中,旋转凹槽554由底座552保持,因此不可能无意中抬起转台或盖子从套件上脱落,从而露出板。当盖子544旋转时,其外围边缘沿着基座552的顶部边缘滑动。当转台旋转时,其外边缘滑动抵靠盖子。如图14C所示,盖子554和转台556都使用迷宫式密封件555以防止污染物进入同时允许其旋转。迷宫式密封不是气密的,然而,它们形成了曲折的路径,污染物在没有相当大的力的情况下不会轻易通过。为了在引导制造过程中密封空间免受污染,所有旋转表面都是密封的。转台556和盖子554用柔性塑料裙部密封,该塑料裙部与移动部件一起旋转并沿固定部件滑动。用于钻件孔和摩擦焊接过程旋转和滑动的盖帽547用一对弹性体环密封,例如硅树脂O形环559,其提供高可靠性的气密密封。

在现场导轨制造期间保持清洁环境,通过在基座/盖和盖/转台连接处周围包括密封件,以及在它们穿过转台的盖子周围。注意,图15A中所示的密封件仅需要在制造引导件并且运输到MRI室中期间保持清洁屏障。

盖帽547是钻头541和导管543的延伸部分,其通过转台556中的密封件559突出。引导件制造机器(GFM)可以抓住盖子并钻件孔,就像先前的设计一样。盖帽547位于一对O形环密封件内,该O形环密封件可以允许盖帽旋转和滑动,同时保持气密密封。O形环可以由硅树脂,丁腈橡胶(buna nitrile)或其他弹性体制成。当环被压在两个表面之间时,图3底部所示的环形横截面变形。这是许多注射器中使用的相同类型的滑动密封件。

图16概念性地示出了相对于板544的旋转设计的运动学,以虚线示出以指示它在转台556和盖子554下方。两个旋转件,转台556和盖子554,相当于两个虚拟连杆(或线段)。如果连杆长度相等(钻头圆与盖子中心相交)且长度连杆1+连杆2的长度至少为盖子中心到盖子上最远点的距离,则这些钻头可以定位在板544上的任何点上。通过独立地旋转转台556和盖子554,任何钻头541可以定位在板544上的任何点,允许在板544所需定位上放置多达六个导管543。这个过程要求包含钻头的圆穿过盖子的旋转中心,并且从盖子旋转中心到转台旋转中心的距离之和以及钻头圆的半径至少与从板中心到板角的距离一样大。

GFM 600中的xyz导线(traverse)包括三个机器人平台,其可以在例如圆形路径上协调地移动。为了将钻头和导管定位在所需位置,xyz平台用钻头卡盘推动桨叶553和551以旋转转台556和旋转盖子554,如图17A至B所示。在图17A中,钻件夹头推动桨叶551并旋转盖子554。在图17B中,钻件夹头推动桨叶553并使转台556旋转。

图18A至H概念性地示出了机器600用于从套件550生成定制针引导器的过程顺序,该套件550将导管43放置在板544上的所需定位,通过密封的衬套558完成钻件孔和焊接。在图18A-H中的说明性图像序列中,假设盖子554和转台556旋转360度。所有步骤分别由引导件制造机器(GFM)600中的计算器控制的X、Y和Z致动器560、562和564执行。

套件550在外部无菌包装517内运送。在使用之前,将套件517从其包装中取出,如图18A所示。套件517放置在GFM 600中,如图18B所示。钻件下降到盖子桨叶551旁边并使用盖子桨叶旋转移动盖子554,并使用转台桨叶553旋转移动电流556,以将堆栈542定位在板544上的所需引导件位置上,如图18C所示。接下来,将钻件夹头重新定位在堆栈上并降低到其盖帽547上。然后,启动自动卡盘,抓住盖帽547,如图18D所示。钻件旋转并降低钻头541,如图18E至F所示。钻头541通过摩擦加热板544,在其穿过板544时形成孔。在孔形成之后,旋转堆栈542继续前进,直到导管543的凸缘到达板108。凸缘和板544之间的摩擦在每个上面熔化一层薄塑料。一旦导管543已焊接到板544中,钻头就缩回。因为卡盘夹住盖帽,盖帽547和销548从迭层542中拉出。钻头544落到托盘下方。对于插入板544中的每个导管543重复上述步骤。

在临床使用中,套件550将包含在密封的外包装517中。在程序开始时,技术人员将打开外包装,移除套件550,并将其放置在引导件制造机器600中。屏障防止内部组件的污染。一旦制造了定制的针引导器,就将套件从机器上移除。虽然套件的外部不干净,但是屏障仍然是完整的并且其内部组件是干净的。套件被运送到手术室。当放射科医师准备将针引导器安装在框架中并进行活组织检查时,技术人员从套件550上移除粘合剂覆盖物557,并且以及放射科医师用无菌手套将移除定制制造针引导器以使用。GFM600通常位于MRI手术室附近的房间中。机器将保持清洁但不会无菌。如所述的套件和以及密封件周围的主要屏障有助于从打开包装的时间隔离针引导器部件,直到贴花557剥离以便放射科医师移除板544。

读者将理解,所揭示的制造过程包括完全包围针引导器套件的部件的屏障,通过穿过密封的衬套完成摩擦钻件孔和焊接。

图19示出了具有柔性屏障的另一套件570,其允许定制的针引导器与外部环境中的空气和表面污染物保持完全隔离,直到其从手术室中的外包装移除。在一个实施例中,针引导器套件570可包含托盘571,该托盘571将板574保持在其中的内表面中。可滑动地固定在下托盘571上的是上托盘573,其可以使用例如可滑动轨道在X和Y轴上滑动。固定到上托盘573的顶部的是一个或多个堆栈542,如前所述,柔性屏障575设置在托盘571和上托盘573周围并密封到上托盘573的顶部以允许堆栈542的盖帽547两个从那里突出。接着制造过程,柔性屏障575进一步围绕下托盘571的开口端进行密封,以允许在制造过程之后移除板574。在完成制造过程之前,剥离贴花577可用于覆盖下托盘571的开口端。柔性屏障575的尺寸足够大,使得上托盘573可以在制造过程中相对于板574的表面沿X和Y轴线移动,并且可以由薄的柔性抗菌材料制成。堆栈542设置在衬套中,与套件550的衬套558相同。钻头541保持在上托盘573中,在两个方向上移转。GFM 600的xyz平台使用自动卡盘夹紧堆栈542的盖帽547,并使用它们移动上托盘573,直到堆栈在板574上的所需位置上方。

图20A至F描绘了使用套件570将导管放置在板574上的所需位置处的过程,该套件570是简单的,没有示出轨道固定下托盘571两个上托盘573。所有步骤由以下步骤执行:引导制造机600中的计算器控制的致动器以与参考套件530和图12描述的方式基本类似的方式。钻头下降直到盖帽547上方。然后,自动卡盘被激活,抓住盖帽以至于整个迭层542。迭层在导管543放置的位置上重新定位。该动作在两个维度上根据需要覆盖整个板574,但是为了解释的目的,这里仅在一个单独的轴上示出。注意,当钻头移动堆栈的部件时,柔性无菌屏障575根据需要变形以适应动作并因此在整个制造过程中保持密封屏障。钻头旋转并降低堆栈542。钻头通过摩擦加热板574,在其穿过板时形成孔。在产生孔之后,旋转堆栈继续前进,直到导管的凸缘到达板。凸缘和以及板之间的摩擦在每个板上熔化一层薄薄的塑料。钻头停止,允许零件冷却。导管已经摩擦焊接到板中。整个过程,包括钻件孔,焊接和冷却,大约需要10秒钟。一旦导管焊接到板中,钻头就缩回。因为卡盘夹住盖帽,所以盖帽和销从堆栈中拉出。钻头从板下方落入托盘中。

在其他实施例中,所揭示的装置和技术可延伸穿过,以用于需要对前列腺癌进行活组织检查或治疗的其他MRI引导程序。

对于本领域技术人员显而易见的是,可以发生对这里揭示的装置和过程的修改,包括替换各种组件值或连接节点,而不脱离本揭示內容的真实精神和范畴。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1