用于试验神经刺激的神经刺激引线和使用方法与流程

文档序号:22437967发布日期:2020-10-02 10:33阅读:309来源:国知局
用于试验神经刺激的神经刺激引线和使用方法与流程

相关申请的交叉引用

本申请要求2018年2月22日提交的题为“neurostimulationleadsfortrialnervestimulationandmethodsofuse(用于试验神经刺激的神经刺激引线和使用方法)”的美国临时申请第62/633,806号的权益,该申请的全部内容在此通过引用并入本文。

本申请涉及2017年2月13日提交的题为“neurostimulationleadfortrialnervestimulationandmethodsofuse(用于试验神经刺激的神经刺激引线和使用方法)”的美国非临时申请15/431,475[代理案卷97672-001910us]和2015年8月14日提交的题为“externalpulsegeneratordeviceandassociatedmethodsfortrialnervestimulation(用于试验神经刺激的外部脉冲发生器设备和相关联的方法)”的美国非临时申请14/827,081,所述申请的全部内容出于所有目的通过引用整体并入本文。

发明的背景

近年来,使用植入式神经刺激系统来进行治疗已经变得更加普遍。虽然此类系统在治疗众多慢性病症中显示出了前景,治疗的有效性可在患者之间明显地变化,并且在植入之前可能难以确定治疗的可行性。虽然常规的植入方法通常利用临时的、部分植入的神经刺激系统进行初步测试来评估治疗的可行性,但是此类系统可能不提供用完全植入的设备治疗的准确表示。由于脉冲发生器之间的差异或由于引线的逆行或迁移造成的神经刺激引线的位置上的变化,许多此类临时的部分植入的系统可能不以与完全植入的系统一样的方式操作。临时引线或尖齿形引线的逆行还可能导致引线的电连接故障或第二切口部位的感染。因此,期望提供用于提供神经刺激引线的方法和设备,所述方法和设备通过改善的引线和引线连接、改善的植入和移除、以及从试验系统向长期完全植入的神经刺激系统的更加无缝的转换来提供一致的治疗结果。



技术实现要素:

本发明涉及神经刺激治疗系统,并且具体地涉及用于神经刺激试验或评估以及永久性植入式系统的神经刺激引线。

在一个方面,本发明涉及神经刺激引线,该神经刺激引线包括在导体和近侧接触连接器之间的保持特征。在一些实施例中,引线包括至少一个线圈导体和近侧接触连接器,所述至少一个线圈导体从所述神经刺激引线的近侧部分延伸到所述神经刺激引线的远侧部分上的远侧电极,所述近侧接触连接器与所述至少一个线圈导体电耦合,并且所述近侧接触连接器被配置用于将所述引线电连接到脉冲发生器或外部电缆,所述外部电缆随后连接到所述脉冲发生器。所述近侧接触连接器包括远侧保持凸缘和在远侧保持凸缘的近侧的减小轮廓的耦合部分,其中所述导体的一个或多个线圈沿所述耦合部分定位并固定地附接到所述耦合部分。一个或多个线圈与所述保持凸缘的所述面向近侧的表面接合,以便抵抗所述线圈引线和近侧接触连接器之间的张力,并维持所述线圈导体和所述近侧接触连接器的所述耦合部分之间的电连接的完整性。

在一些实施例中,所述保持凸缘包括面向远侧的斜坡表面,所述面向远侧的斜坡表面至少部分地围绕所述近侧接触连接器的圆周延伸,以促进所述线圈导体与所述近侧接触连接器的组装。在一些实施例中,所述保持凸缘包括开放凹口部分,所述开放凹口部分与所述凸缘的其余部分相比具有减小的半径,以便允许所述线圈导体经过所述凸缘被拧到所述耦合部分上。在一些实施例中,所述开放凹口部分围绕所述圆周在90度到160度之间。所述保持凸缘的所述斜坡表面是倾斜的,例如以30度到60度之间的角度倾斜,通常为约45度以促进所述线圈引线在所述连接器上的馈送。所述保持凸缘的所述面向近侧的保持表面基本垂直于所述近侧接触连接器的纵轴延伸。

在一些实施例中,所述线圈导体通过钎焊或激光焊接被固定地附接到并且电耦合到所述近侧接触连接器的所述耦合部分。所述近侧接触连接器可包括近侧部分,所述近侧部分是细长的以促进所述引线到脉冲发生器的连接,并且所述近侧部分包括近侧开口以促进通过所述引线的开放管腔引入管丝。

在一些实施例中,所述保持凸缘配置成承受至少5n的拉力。在本文所述的应用中,所述保持凸缘配置成承受10-12n的最小拉力。应当理解,期望的最小拉力可以根据特定引线或应用的性质而变化。

在一些实施例中,所述引线进一步包括外部绝缘体涂层,所述外部绝缘体涂层沿至少在所述近侧部分和所述远侧电极之间的所述神经刺激引线的中间部分设置在所述线圈导体上,其中所述远侧电极由所述线圈导体的没有所述外部绝缘体涂层的暴露部分定义。在一些实施例中,所述神经刺激引线具有沿所述线圈导体和所述近侧接触连接器的基本上相同的外径,以促进所述引线通过孔针。在一些实施例中,,所述线圈导体中的大部分以第一节距闭合缠绕。所述线圈导体包括以第二节距缠绕的一个或多个开放线圈部分,其中所述一个或多个线圈部分定位在距离所述远侧电极一定距离处,所述距离对应于一个或多个孔针的长度。

在一些实施例中,所述神经刺激引线包括具有在约0.01平方英寸到0.1平方英寸范围内的表面积的单个电极。第一电极的长度或表面积可以配置成对应于要在经皮神经评估之后放置的可植入神经刺激引线的电极部分的尺寸。此类神经刺激引线可以用于骶神经刺激,具体而言,所述引线适合于用作用于经皮神经评估的试验刺激引线。

在一些实施例中,所述神经刺激引线包括一个或多个附加的导体,所述一个或多个附加的导体从所述神经刺激引线的所述近侧部分延伸到沿所述神经刺激引线的所述远侧部分的一个或多个附加的电极。所述一个或多个附加的线圈导体可被电耦合并固定地附接到所述近侧接触连接器的所述耦合部分,并且所述一个或多个附加的线圈导体中的每一个的一个或多个线圈被放置在所述保持凸缘的近侧。在一些实施例中,所述线圈导体和所述一个或多个附加的导体由多带导体定义。在其他实施例中,多电极引线可以包括围绕具有中心管腔的管缠绕的多个绝缘导体。

在本文所述的神经刺激引线中的任一者中,所述导体或引线主体可包括所述线圈导体的涂层,所述涂层包括配置成沿至少一个或多个保持特征提供改善的保持的纹理化表面。在一些实施例中,所述涂层包括具有取向为阻止所述神经刺激引线的移动的多个倒钩的倒钩表面。

在一些实施例中,由一个或多个线圈导体定义的神经刺激引线包括沿所述引线的可植入长度的至少一部分的开放线圈节距,以便抵抗所述引线的迁移。所述开放线圈节距可具有与所述闭合线圈部分相同的直径。此类开放线圈部分可以在所述引线的缠绕期间形成,而不是通过拉伸或伸长闭合缠绕部分形成,以避免导体的塑性变形。

在另一方面,神经刺激引线可以包括附接到其上的一个或多个锚。在一些实施例中,此类引线可以包括在远端处的可伸缩的锚定特征,所述锚定特征附接到延伸通过所述近侧接触连接器的细长构件,使得所述细长构件的缩回使所述远侧锚缩回到所述线圈导体的中心管腔中。在其他实施例中,引线可包括生物可吸收的锚,所述生物可吸收的锚设置在远端处或邻近所述远侧电极,所述锚被配置成在所述试验期期满之后吸收,以允许准备好移除所述引线。在一些实施例中,所述生物可吸收的锚包括不透射线的标记,所述不透射线的标记在所述锚吸收之后保留在身体内,以允许将永久植入的引线的电极定位在与所述引线的所述远侧电极的位置相同的位置处。应当理解,这些锚定特征可应用于任何类型的引线(例如,盘绕的、非盘绕的,单个电极,多电极的)并应用于任何应用。

在另一方面,具有一个或多个线圈导体的神经刺激引线可包括配置成附接到所述线圈导体的螺旋尖齿形锚。在一些实施例中,所述螺旋尖齿形锚以与所述锚附接到的所述导体的一部分的节距相同的节距缠绕。所述螺旋尖齿形锚由任何适合的材料(例如金属、聚合物)形成。在一些实施例中,所述锚由镍钛诺形成并通过热定型形成,使得在附接时尖齿从所述引线主体中向外延伸。在一些实施例中,所述螺旋尖齿形锚配置成沿所述远侧电极或邻近所述远侧电极附接到所述引线的闭合缠绕部分的外表面。在其他实施例中,所述螺旋尖齿形锚配置成附接到所述线圈导体的开放线圈节距部分的内部部分,使得所述尖齿从所述引线向外延伸。在一些实施例中,所述螺旋尖齿形锚配置成附接到所述引线的远端,并且所述螺旋尖齿形锚包括远侧防损伤尖端以提供用于插入所述线圈导体内的管丝的端止动器。

在另一方面,本文提供了组装神经刺激引线的方法。此类方法包括组装试验引线,特别是pne引线。此类方法可以包括:在近侧接触连接器的远侧保持凸缘上馈送至少一个线圈导体,以便沿所述远侧保持凸缘的近侧的所述近侧接触连接器的减小轮廓的耦合部分定位所述线圈导体的一个或多个线圈,并且通过钎焊或焊接将所述线圈导体电耦合并固定地附接到所述耦合部分。此类方法进一步包括将所述远侧保持凸缘的面向近侧的表面与设置在所述保持凸缘的近侧的所述一个或多个线圈的一部分接合,以便承受由所述引线中的张力施加的拉力,由此维持所述线圈导体和所述近侧接触连接器之间电连接的完整性。在一些实施例中,在所述线圈导体和所述近侧接触连接器的接口上推进覆盖物或热缩管以用于保护。

在一些实施例中,所述组装神经刺激引线的方法可包括附接一个或多个锚定特征,所述一个或多个锚定特征包括沿所述引线的闭合缠绕部分的外表面设置的螺旋形锚、设置在所述引线的开放线圈节距部分内的螺旋形锚、缩回到所述引线的中心管腔中的可伸缩锚、在试验期的持续时间之后吸收的生物可吸收的锚、具有在所述锚被溶解之后保留在身体内的不透辐射的标记的生物可吸收的引线中的任一者。

在另一方面,本文提供了一种引线延伸件。此类引线延伸件可包括经由延伸电缆耦合的远侧连接器和近侧连接器。所述远侧连接器被配置用于与完全植入的引线电耦合。近侧连接器被配置用于与外部脉冲发生器或介入连接件耦合。所述近侧连接器被尺寸设计成通过从患者的身体的第一切口区域隧穿的工具或套管并通过第二切口到所述患者的身体外部;延伸电缆将所述远侧连接器与所述近侧连接器电耦合;以及逆行止动器,所述逆行止动器设置在所述近侧连接器和所述远侧连接器之间的所述延伸电缆上,并且所述逆行止动器配置成防止所述近侧连接器通过所述第二切口逆行进入患者的身体,其中所述逆行止动器被尺寸设计成与所述近侧连接器一起通过隧穿工具或套管。在一些实施例中,所述逆行止动器具有面向远侧的表面,所述面向远侧的表面基本垂直于所述延伸电缆的纵轴,以便与所述患者的皮肤或所述患者的皮肤上的相关联的垫或纱布相接,以便阻止所述引线通过所述第二切口逆行。在一些实施例中,所述逆行止动器的形状基本上为圆柱形,尽管应当理解,可以利用各种其他形状。在一些实施例中,所述逆行止动器可以是可调整的或可移除的,或配置成附接到较大的逆行止动器特征。

在另一方面,提供了使用此类引线延伸件的方法。此类方法可以包括:在患者的身体中植入神经刺激引线,使得该引线的近端被设置在第一切口区域处;从所述第一切口区域隧穿到第二切口;在所述第一切口区域处连接所述引线延伸件的远侧连接器并在所述第一切口区域处植入所述远侧连接器,所述远侧连接器经由包括逆行止动器的延伸电缆与所述引线延伸件的近侧连接器电耦合;以及使近侧连接器和所述逆行止动器通过从所述第一切口隧穿的工具或套管并通过所述第二切口到所述患者的身体外部。随后移除所述工具或套管。用所述逆行止动器接合所述患者的外部皮肤或设置在所述患者的外部皮肤上的垫或纱布以阻止在试验期期间或在所述引线延伸件的移出(explant)期间所述引线逆行进入所述患者。这防止所述第二切口部位的感染并促进在所述试验之后移除所述引线延伸件。

本公开的进一步适用领域将根据下文所提供的详细说明而变得明显。应当理解的是,虽然这些详细说明和具体示例指示了各种实施例,但它们仅旨在用于说明的目的而并非旨在必然地限制本公开的范围。

附图的简要说明

图1是根据本发明的一些实施例的具有延伸到粘附到患者的皮肤的epg贴片的部分植入的引线的试验神经刺激系统的示意图。

图2a示出了用于使用单个电极线圈引线的经皮神经评估的示例神经刺激系统。

图2b示出了用于使用完全植入的尖齿形引线和引线延伸件的试验期的示例神经刺激系统。

图3是根据一些实施例的试验神经刺激系统的示例配置。

图4是根据一些实施例的试验神经刺激系统的又另一替代配置。

图5示出了根据一些实施例的epg和相关联的示意图。

图6示出了根据一些实施例的epg的示意图。

图7a-7b示出了根据一些实施例的替代epg。

图8a-8b示出了根据一些实施例的配置用于经皮神经评估或试验期的神经刺激引线。

图9a-9c分别示出了图8a的神经刺激引线的近侧接触连接器的立体图、前视图和侧视图。

图10a-10b分别示出了根据一些实施例的近侧接触连接器的远侧部分的前视图和侧视图。

图11-13b示出了根据一些实施例的具有逆行止动器的延伸电缆的若干视图。

图14a-14b示出了根据一些实施例的示例epg和引线延伸件以及尖齿形引线。

图15示意性地示出了根据一些实施例的利用epg粘附设备的试验神经刺激系统的使用。

图16示出了根据一些实施例的组装具有线圈导体的神经刺激引线的方法。

图17示出了根据一些实施例的用于神经刺激试验期的神经刺激引线延伸电缆的使用方法。

图18示出了根据一些实施例的用于在神经刺激引线中使用的锚定特征。

图19a-19c示出了根据一些实施例的由多导体带(诸如在图19c的横截面中示出的多导体带)定义的多电极神经刺激引线的闭合线圈和开放线圈设计。

图20a-20b示出了根据一些实施例的具有围绕用于在多电极神经刺激引线中使用的中心芯或导管布置的多个导体的多导体设计的横截面。

图21a-21b分别示出了根据一些实施例的具有缩回之前的可伸缩锚特征和缩回之后的可伸缩锚特征的线圈神经刺激引线。

图22示出了根据一些实施例的具有生物可吸收的锚特征的线圈神经刺激引线。

图23a、23b和23c示出了根据一些实施例的具有在引线的线圈部分内相接的锚定特征的线圈神经刺激引线。

本发明的详细描述

多年来,神经刺激已经被用于治疗各种病症,从慢性疼痛到勃起功能障碍和各种泌尿功能障碍。虽然神经刺激在许多应用中已经证明是有效的,但是有效的治疗通常依赖于通过一个或多个神经刺激电极利用脉冲发生器向特定神经或目标区域持续递送治疗激活。近年来,完全可植入神经刺激已经变得越来越普遍。虽然此类可植入系统为患者提供了更多自由和移动性,但是一旦植入,此类系统的神经刺激电极就更难调整。通常在通过患者组织中形成的隧道前进的可植入引线的远端上提供神经刺激电极。

图1示意性地示出了根据本发明的方面的利用epg粘附设备的试验神经刺激系统的使用。此类试验神经刺激系统可用于评估完全可植入神经刺激系统的可行性。可植入神经刺激系统可用于治疗患有例如源自周围神经的慢性的、严重的、难治的神经疼痛或各种泌尿功能障碍和肠功能障碍的患者。可植入神经刺激系统可以用于刺激目标周围神经或脊柱的后硬膜外空间。可植入神经刺激系统包括植入的脉冲发生器,通常被植入在下背部区域。在一些实施例中,脉冲发生器可以生成向神经递送的一个或多个非消融性电脉冲,以控制疼痛或引起一些其他期望的效果。在一些应用中,可使用脉冲幅度在0ma-1,000ma之间、0ma-100ma之间、0ma-50ma之间、0ma-25ma之间、和/或任何其他脉冲幅度或中间范围幅度的脉冲。脉冲发生器中的一个或多个脉冲发生器可以包括适配成用于向可植入神经刺激系统的其他部件提供指令并从其中接收信息的处理器和/或存储器。处理器可以包括微处理器,诸如来自英特尔或超微半导体有限公司(advancedmicrodevices,)等的微处理器。可植入脉冲发生器可以实现能量存储特征(诸如电池或一个或多个电容器),并且通常包括无线充电单元。

由脉冲发生器生成的电脉冲经由包括在远端处或远端附近的一个或多个神经刺激电极的一个或多个引线递送到一个或多个神经和/或目标位置。引线可以具有各种各样的形状,可以是各种各样的大小,并且可由各种各样的材料制成,所述大小、形状和材料可以由应用或其他因素指定。在一些应用中,诸如在骶神经刺激中,引线可以被植入为沿脊柱延伸或延伸穿过骶骨的孔中的一个孔,诸如图1所示的。在其他应用中,引线可以被植入在患者身体的外围部分中(诸如在手臂或腿中),并且引线可以配置成向周围神经递送诸如可以用于减轻慢性疼痛的一个或多个电脉冲。

电脉冲的一个或多个特性可以经由植入的脉冲发生器的控制器来控制。在一些实施例中,这些特性可以包括例如电脉冲的频率、强度、模式、持续时间或其他定时和幅度方面。这些特性可以包括例如电压、电流等。对电脉冲的这种控制可以包括创建一个或多个电脉冲程序、计划或模式,并且在一些实施例中,这可以包括选择一个或多个已存的电脉冲程序、计划或模式。在图1描绘的实施例中,可植入神经刺激系统100包括在可植入脉冲发生器中的控制器,该控制器具有一个或多个脉冲程序、计划、或模式和/或选择所创建的脉冲程序、计划、或模式中的一个或多个。

骶神经调节(snm),也称为骶神经刺激(sns),被定义为向骶神经递送温和的电脉冲以调节控制膀胱和直肠功能的神经通路。该策略提出在具有膀胱和/或直肠的完整神经支配的患者的尿或大便失禁、尿或大便的非阻塞性潴留、或慢性骨盆疼痛的治疗中使用snm。

使用snm(也称为sns)来治疗是对于具有大便失禁或膀胱过度活动(急迫性尿失禁,尿急-尿频(urgency-frequency)的明显症状)或非阻塞性尿潴留的、行为疗法(例如,提示排放(promptedvoiding))和/或药物疗法已经失败的患者的若干替代模态中的一种。急迫性尿失禁被定义为当存在强烈的排放欲望时尿液的泄漏。尿急-尿频是不可控制的排尿的冲动,导致非常频繁小量的排尿。尿潴留是无法完全排空膀胱的尿液。大便失禁是不能控制肠道运动,导致粪便物质的意外泄漏。

snm设备由递送受控制的电脉冲的可植入脉冲发生器组成。该脉冲发生器附接到引线,该引线连接到骶神经,最常见的是s3神经根部。系统的两个外部部件帮助控制电刺激。患者远程控制可以由患者保管并且可以用于控制epg的各种操作方面中的任一者和其刺激参数。在一个此类实施例中,患者远程控制可以用于打开设备或使epg返回休眠状态或调整刺激强度。控制台编程器由医生保管并且用于调整脉冲发生器的设置。

在常规方法中,在植入永久性设备之前,患者经受初始测试阶段以估计对治疗的潜在反应。开发的第一类型的测试是经皮神经评估(pne)。该过程在局部麻醉下进行,使用测试针来识别(多个)合适的骶神经。一旦识别,将临时引线通过测试针插入并留在原处4到7天。该引线连接到外部刺激器,该外部刺激器可由患者在他们的口袋中携带、抵靠在手术绷带下的皮肤固定、或佩戴在腰带中。该测试阶段的结果用于确定患者是否是永久植入设备的合适候选者。例如,对于膀胱过度活动,如果患者显示出50%或更高的症状频率减轻,则认为他们有资格用永久设备。

第二类型的测试是2阶段手术过程。在阶段1,植入四极尖齿形引线(阶段1)。测试阶段可以持续长达若干周,并且如果患者显示出指定的症状频率减轻,则他们可以前进到手术的阶段2,阶段2是神经调节设备的永久植入。已经以各种方式使用该2阶段手术过程。这些方式包括其替代pne的使用,用于pne失败的患者、用于具有非决定性pne的患者、或用于具有成功pne的患者以进一步细化患者选择。

在一个方面,对于具有标称阻抗(例如,约1200欧姆(ohms))、约4.2ma的幅度、以及约120us的脉宽的尖齿形引线,epg的电池寿命的持续时间是至少四周,或者对于pne引线,电池寿命的持续时间可以是至少七天。在一些实施例中,电池是可再充电的并且可以通过将电池与标准120v墙面插座耦合来再充电,并且电池可以可选地利用如由其他系统部件(例如,临床医生编程器)使用的相同电力电缆或适配器。通常,epg是电流控制的。可以用脉宽在60-450us之间、最大刺激频率在2到130hz之间、最大幅度在0到12.5ma之间、双相电荷平衡不对称的刺激波形、约0.05ma的最小幅度步长、连续或循环操作模式、设定数量的神经刺激程序(例如,两个程序)、斜升能力、以及内置于epg中的可选的警报来配置epg。

在局部麻醉或全身麻醉下植入永久设备。在下背部上形成切口,并且将电引线放置成与(多个)骶神经根部接触。将引线在皮肤下延伸到囊袋切口,在囊袋切口处将脉冲发生器插入并连接到所述引线。在植入之后,医生将脉冲发生器编程为针对该患者的最佳配置。

针对治疗膀胱功能障碍的常见处理的一个示例是对满足所有以下标准的患者采用使用经皮引线或完全植入式引线的骶神经调节的试验期:(1)诊断以下各项中的至少一项:急迫性尿失禁;尿急-尿频综合征;非阻塞性尿潴留;(2)存在对至少两种常规疗法(例如,诸如膀胱训练、提示排尿、或骨盆肌肉练习训练之类的行为训练,进行药物治疗达至少足够的持续时间以完全评估其功效,和/或手术校正治疗)的有记录的失败或不耐受;(3)患者是合适的手术候选人;以及(4)失禁与神经系统状况无关。

骶神经调节设备的永久植入可被认为对满足所有以下标准的患者是医学上必要的:(1)满足前段中的所有标准(1)到(4);以及(2)试验刺激期在至少一周的时间段上展示出至少50%的症状改善。

骶神经神经调节的其他泌尿/排泄应用被认为是研究性的,包括但不限于由于神经形态病症(例如,逼尿肌反射亢进、多发性硬化症、脊髓损伤、或其他类型的慢性排尿功能障碍)引起的压力性尿失禁或急迫性尿失禁的治疗。(参见可在如下网址在线获得的由蓝十字蓝盾(bluecrossblueshield)提供的骶神经神经调节/刺激覆盖范围的保险单描述:http://www.bcbsms.com/com/bcbsms/apps/policysearch/views/viewpolicy.php?&noprint=yes&path=%2fpolicy%2femed%2fsacral_nerve_stimulation.html)

在另一常规方法中,在周围神经刺激(pns)治疗系统中使用了类似的方法。通常,对周围神经刺激的候选人进行评估以确定他们对于经受pns过程的适合性。在手术之前,患者将经历包括常规血液检查以及神经心理评估的手术前检查。pns过程本身通常以两个单独阶段执行。每个阶段花费约一小时,并且患者可以在同一天回家。

在此方面,阶段1包括经由连接到通常佩戴在患者的腰带上的外部脉冲发生器(epg)的小针植入试验电极。在接下来几天内施用数个刺激程序。如果该试验展示了患者头疼或面部疼痛上的显著改善,则可以进行永久植入。在阶段2,将天使面(angelhairpasta)宽度的新的一组电极植入到皮肤下。这些电极连接到植入在胸部、腹部或背部的皮肤下的较小的可植入脉冲发生器。

与这些常规方法相关联的缺点之一是与佩戴epg相关联的不适。诸如在pne和阶段1试验期中的试验期的有效性并不总是指示使用永久性植入式系统的有效治疗。在一个方面,由于在试验期中的治疗的有效性可能部分地依赖于患者的主观经验,所以期望如果可以将患者佩戴epg的不适和不便最小化,使得患者能够恢复普通的日常生活而不一直意识到epg和治疗系统的存在。此方面在膀胱过度活动和勃起功能障碍的治疗中可以是特别重要的,其中患者对设备的意识可能干扰患者对与这些病症相关联的症状的体验。

在一个方面,本发明通过提供具有改善的患者舒适度的试验系统,使得患者能够更容易地认识到治疗的益处和有效性,从而允许在试验期期间的改善的功效的评估。在另一方面,epg递送治疗的部分与永久系统中的ipg基本上相同,使得在永久治疗中的效果应该与在试验系统中所见的那些效果更一致。

在某些实施例中,本发明提供了佩戴在患者皮肤上的epg贴片,以便改善患者舒适度。可选地,在阶段1中使用的epg可以小于相应的在阶段2中使用的ipg,使得epg可以由覆盖epg的粘附贴片容易地支撑并密封以防止感染。在一个方面,epg是在阶段2中使用的可植入的ipg的修改版本。可以通过移除一个或多个部件来修改ipg,诸如移除具有较小的电池和相关联的部件的远程充电线圈之类。此外,epg可以使用比ipg的外壳更薄更轻的外壳,因为epg不需要像ipg将是的那样维持许多年。因此,epg可以配置成一次性的。这些方面允许在方便和舒适的位置处粘附到患者皮肤的贴片内支撑epg。

图1示出了具有epg贴片10的示例试验神经刺激系统100。如所示,神经刺激系统适配成刺激骶神经根部。神经刺激系统100包括附接到下背部区域的epg40,神经刺激引线60从下背部区域穿过骶骨的孔延伸到设置在骶骨根部附近的电极(未示出)。神经刺激引线60进一步包括设置在骶骨的背侧上的锚(未示出)。然而,应当理解,也可以将锚设置在骶骨的腹侧上或孔本身之内。在一个方面,epg40是一次性的并且在试验完成之后丢弃。通常,试验可以持续4天到8周。通常,可以在4-7天之后获得初始评估,并且如果需要,可以在几周(通常为约2周)之后检查治疗的有效性。在一方面,epg贴片10的epg40具有与如果试验被证明成功则将被植入的ipg基本上类似的设计,然而,可以移除一个或多个部件以允许epg的尺寸更小、质量更低、和/或使用不同的材料,因为该设备可能旨在一次性使用。应当理解,可以通过各种其他方法(诸如通过使用医用胶带、腰带或皮套之类)来在试验期间支撑epg40。

图2a更详细地示出了类似于图1的神经刺激系统100的神经刺激系统100的实施例。可以看出,神经刺激引线60在远端处包括配置用于pne使用的神经刺激电极62,并且通过近侧接触连接器66(通常通过试验电缆)电连接到epg40。当附接到患者的皮肤时,epg40被支撑在粘附贴片11内。可选地,可以将另一粘附贴片16和医用胶带17用于覆盖引线或电缆离开患者身体处的切口。在图8a-10b中进一步详述了近侧接触连接器66的特征。

图2b更详细地示出了类似于图1的神经刺激系统100的神经刺激系统100的替代实施例。系统100包括经由连接器21处的引线延伸电缆22附接到epg40的尖齿形神经刺激引线20。引线延伸电缆22包括逆行止动器74。可以看出,神经刺激引线20包括在引线的远端处的多个神经刺激电极30,以及刚好布置在电极30的近侧的具有多个尖齿的锚50。逆行止动器74阻止引线在次要切口部位处移动到患者体内。尖齿形锚被设置在多个电极的附近和近侧,以便提供将引线的相对靠近电极的锚定。当附接到患者的皮肤时,epg40被支撑在粘附贴片11内。可选地,可以将另一粘附贴片16和医用胶带17用于覆盖引线或电缆离开患者身体处的切口。图3b、图3c和图11-13b中进一步详述了逆行止动器和引线延伸件的示例。

图3示出了替代配置,其中引线足够长以允许epg贴片10被放置成允许患者更多的移动性和自由以恢复不影响坐着或睡觉的日常活动。多余的引线可以由附加的粘附贴片16和医用胶带17固定,如由图3a中的中心贴片所示的。在一方面,引线被硬接线至epg,而在另一方面,引线通过柔性贴片11的顶表面中的端口或孔口被可移除地连接到epg。在一个方面,epg贴片和延伸电缆是一次性的使得在不将引线的远端从目标位置移除的情况下可以将植入的引线断开并使用在永久性植入式系统中。在另一方面,整个试验系统可以是一次性的并且可以使用永久引线和ipg来替换。在一个方面,通过患者遥控器以与永久性植入式系统的ipg将使用的相似或完全相同的方式来无线地控制epg单元。医生可以通过使用便携式临床医生单元来改变epg所提供的治疗,并且所递送的治疗被记录在设备的存储器上,以供用于确定适合于在永久性植入式系统中使用的治疗。此类系统可以包括诸如图8a-8b所示的引线之类的试验pne引线。

图4示出了替代配置,其中尖齿形神经刺激引线20通过在第一切口部位处的连接器21经由隧穿到尖齿形神经刺激引线20离开身体处的第二切口部位的引线延伸件连接。这允许植入的引线用于试验和永久系统两者。这还允许使用具有适于在永久系统中植入的长度的引线20。示出了三个接入位置:两个经皮穿刺部位,一个用于在骶骨区域上的引线植入并且一个用于延伸离开部位,同时在穿刺位置之间制造用于引线20与延伸电缆22的连接部位的切口(>1cm)。引线延伸件22包括逆行止动器74,逆行止动器74定位在身体外部,以便接合患者的外部皮肤并阻止在试验期间或移出期间引线的后续逆行进入患者的身体。该方法使在试验系统向永久性植入式系统的转换期间的植入的引线20的移动最小化。在转换期间,引线延伸件22可以与连接器21和附接到ipg的植入的引线20一起被移除,所述ipg被永久性植入在第一经皮切口部位处或第一经皮切口部位附近的位置。在一个方面,连接器21可以包括在设计上类似于ipg上的连接器的连接器。这允许引线20的近端通过连接器21耦合到引线延伸件22并且在向永久性植入式系统的转换期间容易地分离并耦合到ipg。

图5示出了根据本发明的各种方面的用于在神经刺激试验中使用的示例epg40。epg40包括基本上刚性的外部壳体或外壳41,其中包封了刺激脉冲发生器、电池和相关联的电路。epg40还包括连接器插座42,连接器插座42通过在外壳41中的开口或端口接入并适配成与神经刺激引线20′的近侧引线连接器24电连接。虽然epg40示出为与神经刺激引线20′连接,但是引线20、电缆22也可以连接到epg40。连接器插座42包括多个电触点(例如,六触点引脚,八触点引脚),取决于连接器的类型,这些电触点中的全部或一些可以连接到耦合到其的连接器上的相应触点。连接器插座42可以根据超出所示的连接器标准之外的各种类型的连接器标准(例如,usb或闪电线缆连接器)配置。引线连接器24可以包括近侧插头或保护罩25,当引线连接器24在连接器插座42内配合地连接时,近侧插头或保护罩25密封地接合端口以进一步固定配合的连接器并密封端口免受水、湿气或碎片的侵入。保护罩25可以由柔韧材料(诸如弹性体聚合物材料之类)形成,该柔韧材料被适切地接收在端口内,以便提供进入防护(ingressprotection)。在一些实施例中,该配置提供了提供在ip24或更好的进入防护等级(ipr)。在该实施例中,连接器插座42包括多个电触点,每个电触点与刺激脉冲发生器可操作地耦合,使得当epg耦合到连接器插座42时,epg可以将神经刺激脉冲递送到引线的多个神经刺激电极。

在一个方面,epg40配置有多用途连接器插座24。例如,连接器插座42可以与如上所述的神经刺激引线20′耦合,或者可以与充电线的电源连接器耦合以允许对epg40的内部电池再充电。这样的配置是有利的,因为它允许epg外壳41被设计成具有单个开口或接入端口,这进一步降低了内部部件对水和碎片的潜在的暴露,因为在试验期期间的治疗递送期间,端口由引线连接器密封地占用。相反,具有单独的充电端口的设备将可能保持打开或可能需要使用可移除的插头或盖来密封额外的端口。

在另一方面,epg40被设计为具有平行的主表面的基本上平面的多边形棱柱体(诸如图5所示的矩形棱柱体),当在试验期期间被粘附到患者时,所述主表面定位成平坦抵靠患者身体。

图6示出了具有多用途连接器插座42的示例epg40的示意图。epg40包括刺激脉冲发生器46和可再充电电池48,刺激脉冲发生器46和可再充电电池48各自经由相关联的电路47耦合到连接器插座42,电路47控制递送去往和来自可再充电电池48和刺激脉冲发生器46以及连接器插座42的电力。电路47可包括一个或多个处理器、控制器和可记录存储器,该可记录存储器上记录有可编程指令以实现对刺激脉冲生成、可再充电电池放电和充电、以及指示器44的控制。在一些实施例中,存储器包括配置成实现多个不同操作模式(例如治疗模式和充电模式)的可预编程的指令。在治疗模式,电路47使用可再充电电池48为刺激脉冲发生器46供电,刺激脉冲发生器46产生经由连接器插座42递送到连接的神经刺激引线的刺激脉冲。在充电模式,电路47控制经由连接器插座42递送到可再充电电池48的电力的递送。在一些实施例中,电路47包括在不同模式之间切换的控制器,这可以在特定连接器类型连接到连接器插座42中时实现。例如,在一些实施例中,epg40可以包括能够检测特定类型的连接器(例如,引线连接器,充电连接器)的检测器。在其他实施例中,连接器类型可以由连接的电特性的测量结果或检测来确定。例如,充电连接可能需要与仅特定数量的电触点(例如,一个、两个等)和地的电连接,而神经刺激引线可以与所有指定的电触点连接而不需要任何接地。在一些实施例中,模式可以根据需要由用户手动设置或无线地设置。

在另一方面,试验神经刺激系统100包括粘附设备,该粘附设备在epg40被连接到植入在患者内的目标组织处的神经刺激引线时将epg40固定到患者。通常,粘附设备配置成通过直接施加到患者皮肤的粘附贴片或通过可被可释放地附接到患者的服装的夹紧设备将epg固定在患者的中部(例如,下背部区域)或髋部上。本文描述了不同类型的粘附设备的各种示例。

图7a-7b示出了替代的egp50,其包括外壳51,短电缆连接器52从外壳51延伸到引线连接器53。在该实施例中,引线连接器53是适合于通过中间适配器或引线延伸电缆(参见图13)电连接到具有多个电极的神经刺激引线的多引脚连接器。通常,电缆连接器52相对较短,例如长度在1英寸到12英寸之间,优选地在3英寸到6英寸之间。在该实施例中,多引脚连接器是适合于连接到具有四个电极的神经刺激引线的4引脚连接器,然而,应当理解,引线连接器可以包括不同数量的引脚,以便适合于与具有更多或更少神经刺激电极的神经刺激引线连接。在其他实施例中,引线连接器可以配置有插座42,用于与神经刺激引线的近侧引线连接器连接,诸如先前在其他实施例中描述的。epg可以与尖齿形引线试验或临时引线(pne引线)试验一起使用。将到引线的连接配置在外壳的外部允许该epg比那些具有集成在设备内的连接的epg甚至更小且更轻。这样的配置还允许一些移动以用于epg的调整或处理同时最小化近侧引线连接器的移动,可以用胶带将近侧引线连接器固定到连接器的刚好近侧的患者身体。

在一些实施例中,短电缆连接器52或“尾纤(pigtail)连接器”与epg集成,使得电缆和epg的内部电子器件之间的电连接被永久地附接和密封。这允许epg进一步承受试验刺激期期间的流体和湿气的侵入。

取决于期望使用的电缆的选择,epg可以与pne引线(其可具有一个或多个电极和导体)或永久引线一起使用。此外,当在epg和引线之间使用双边连接器电缆时,epg可以用于双边刺激(使用两个引线,对于患者的左侧和右侧每侧各一个)。

在一些实施例中,epg包括不可再充电的单次使用电源(例如,电池),该电源具有足够的电力以至少在试验期的持续时间(例如,数天、数周、数月)内用于epg的操作。在此类实施例中,电源可以是集成的并且不可由患者移除或替换。

如在图7b中可以看出的,epg外壳51可以被定义为两个相接的壳体,顶部壳体51a限定外主表面和大部分的侧表面,并且底部壳体51b限定底侧表面。在该实施例中,epg具有有圆形边缘的基本上矩形的(例如,正方形)的棱柱体。顶部主表面可以成形为具有稍微凸起的轮廓,而下侧包括用于抵靠患者放置的基本上平坦的表面。通常,相接的壳体51a、52b由刚性或半刚性材料(诸如硬化的聚合物之类)形成,以便保护和密封其内的电子器件。

在一些实施例中,epg包括一个或多个用户接口特征。此类用户接口特征可以包括按钮、开关、灯、触摸屏、或音频或触觉特征中的任一者。在图7a-7b所示的实施例中,epg50包括按钮55和led指示器54。按钮55配置成将epg50从关闭或休眠状态开启。当epg开启时,epg可以与外部设备(诸如临床医生编程器之类)通信以接收编程指令,并且当epg处于操作状态时,epg可以向连接的神经刺激引线递送刺激。虽然按钮55可以由患者使用以开启epg50,但是应当理解,该功能可以与本文描述的任何其他功能并发。例如,epg50可以进一步配置成通过使用患者遥控器从关闭或休眠状态开启epg50,或可以配置成在神经刺激引线分离时暂停刺激的递送。应当理解,虽然在该实施例中描述了按钮,但是可以使用通常在至少两个状态之间可致动的任何可致动的用户接口特征(例如,开关、触发器、触摸传感器)。

在该实施例中,epg50配置成使得按压按钮55开启epg的通信功能。一旦被致动,epg具有预定的时间段(例如,60秒、90秒)以无线地连接到外部编程器(例如,临床医生编程器)。如果epg连接到临床医生编程器,则epg保持开启状态以促进编程和操作以按照编程指令递送刺激。如果连接不成功,则epg自动关闭。如果在epg开启时按下按钮55,则不发生任何事情并且通信或操作保持不变。如果患者期望关闭刺激,则可以使用患者遥控器,或替代地,神经刺激引线的分离也可以暂停刺激。由于在操作期间按钮55的后续按压不使epg转到关闭或休眠状态,所以该按钮可以被定位在epg的下侧,当在试验刺激期期间佩戴该epg时,该epg被放置成抵靠患者,尽管应当理解,该按钮可以被设置在epg外壳上的任何地方。因此,在该实施例中,按钮55的功能促进在试验期的设置期间的初始编程或用于重新编程,但是在试验期期间不需要患者的交互。通常,由患者控制或调整刺激将通过使用患者遥控器来执行。在一些实施例中,epg提供为休眠模式并且可以通过致动在epg上的按钮来发起通信以促进用cp(临床医生编程器)编程。在一些实施例中,当用患者遥控器关闭刺激时,epg返回休眠状态并且仅cp可以将epg完全转到关闭状态。在一些实施例中,epg包括在其上的单个按钮,该按钮如本文实施例中的任一个所描述的那样配置。

图8a-8b描绘了配置成使用用于在试验(诸如pne)中使用的临时引线的示例性神经刺激引线。图9a-10b示出了在试验期期间促进引线的改善的保持的引线的近侧连接器的特征。应当理解,与临时引线相关的本文描述的特征中的任一者可应用于任何神经刺激引线,包括用于在长期或永久性植入式神经刺激系统中使用的完全植入的引线。

如图8a所示,由线圈导体61和远侧电极部分62定义神经刺激引线,线圈导体61具有沿其长度的绝缘涂层,远侧电极部分62由线圈导体的没有绝缘涂层的暴露部分定义。电极62的远端包括防损伤尖端63以避免对组织的损伤。在一些实施例中,防损伤尖端通过融化暴露的线圈导体的远端尖端来形成,例如,通过加热或焊接,以便形成球形尖端。在一些实施例中,受热影响的尖端从尖端延伸不超过0.03英寸。线圈引线可以包括沿引线中部的一个或多个标记64a、64b以促进引线在目标组织处的定位和植入。在该实施例中,标记由开放线圈部分定义,引线的其余部分被闭合缠绕。在其他实施例中,标记部分被拉伸以形成开放线圈部分。在一些实施例中,引线被缠绕以形成闭合缠绕部分和定义标记的开放线圈部分。后一种方法在拉伸部分上是有利的,因为它避免了导体的塑料变形和导体上沿开放线圈部分的相关联的应力。应当理解,标记可以由各种其他特征定义,例如可见标记,诸如施加到线圈导体上的涂层。

在一个方面,根据神经刺激引线的给定应用限定引线的尺寸。图8a描绘的实施例被配置用于用作用于骶神经调节的pne引线,将单个电极通过穿过骶骨孔插入的孔针插入并定位成邻近骶神经根部。足够长度的引线保持在患者外部以直接地或通过中间电缆附接到外部脉冲发生器以供神经刺激评估或试验。对于此类应用,引线的总长度可以在12英寸到24英寸之间,通常为约16英寸。远侧电极的长度可以在0.1英寸到1英寸的范围内,通常在约0.2英寸到0.6英寸的范围内,优选地为约0.4英寸。在一些实施例中,远侧电极的暴露的表面积在0.01平方英寸到0.1平方英寸的范围内,通常在0.02平方英寸到0.05平方英寸之间,优选地为约0.027平方英寸。在一些实施例中,引线的长度和/或表面积对应于永久性植入式神经刺激引线的引线。

通常,引线的外径为约0.025英寸以促进通过孔针。引线包括两个标记,视觉标记a(64a)和视觉标记b(64b),它们定位在对应于两个不同长度的相应的孔针的两个不同位置。视觉标记a定位在距离引线的远端的第一距离(例如4-5英寸)处,用于与相应长度的第一孔针一起使用,并且视觉标记b定位在距离引线的远端的第二距离(例如约6-7英寸)处,用于与相应长度的第二孔针一起使用。不同长度对应于如适合于特定患者或应用的、目标区域所位于的不同位置。开放线圈标记可以在0.1英寸到0.5英寸之间,或任何合适的长度。在闭合缠绕部分中,节距(pitch)(取为10匝的平均测量结果)为0.005英寸到0.05英寸之间,通常约0.010英寸。在开放线圈部分中,节距在约0.01英寸到0.05英寸的范围内,通常为约0.03英寸。在该实施例中,每个开放线圈标记长度为约0.2英寸。应当理解,此类线圈可以包括根据针对给定应用的需要的对应于不同位置的单个标记、两个标记、或多个标记。

如图8b所示,导体可以由具有外绝缘涂层60b的多纤丝导体60a组成。在该实施例中,导体60a是不锈钢(例如,316ss)的7股线并且绝缘涂层的厚度在0.0005英寸到0.005英寸之间。内径可以在0.001英寸到0.01英寸的范围内。外径可以在0.01英寸到0.05英寸的范围内。应当理解,以上引线的尺寸适用于本文所述的骶神经调节的特定应用,并且可以根据针对给定类型的刺激(例如,脊髓神经调节,深部脑刺激)的需要利用各种其他尺寸。

在另一方面,引线60的近端耦合到近侧接触连接器66,导体电耦合并固定地附接到近侧接触连接器。在一些实施例中,近侧连接器66被尺寸设计用于通过孔针,例如,在上文所述的应用中,近侧连接器具有约0.025英寸的外径。外部覆盖物65a(例如,热缩管)被施加在线圈导体和近侧连接器66之间的接口上。图9a-10b示出了近侧接触连接器66的各种详细视图(示出为附接到线圈导体之前)。

如图9a-9c可以看出的,近侧接触连接器66包括远侧部分66a和近侧部分66b,远侧部分66a用于与线圈导体的导体电耦合,近侧部分66b用于与外部脉冲发生器或中间电缆耦合并促进引线的处理。远侧部分66a包括远端69、保持凸缘68和在保持凸缘的近侧的耦合部分67。在线圈导体的近端处的一个或多个线圈(例如,通过钎焊或激光焊接)被固定地附接到耦合部分67。远端69被尺寸设计成适切地接收在线圈引线的内径内。保持凸缘包括面向远侧的斜坡表面68a,斜坡表面68a是锥形的以促进将线圈导体引入到凹陷的耦合部分67上。在该实施例中,斜坡表面68a仅部分地围绕连接器的圆周延伸并且包括凹口68b,凹口68b允许引入导体的近端以将其馈送经过凸缘并馈送到耦合部分上,例如通过拧或轻推并旋转导体以使一个或多个线圈前进到耦合部分67上。保持凸缘68进一步包括面向近侧的保持表面68c,保持表面68c基本上垂直于引线和连接器的纵轴,以便通过与在耦合部分上的线圈导体的线圈的接合来保持线圈导体。

线圈导体的一个或多个线圈抵靠面向近侧的保持表面的接合抵抗来自线圈引线上的张力的负载并移除来自沿线圈部分的导体的焊接接头的负载和应力集中,由此保护焊接接头。在该实施例中,保持表面被配置成当线圈导体在远侧方向上被拉扯时承受最小拉力。在该实施例中,保持凸缘68的保持表面与连接器66的纵轴垂直。

连接器的近侧部分66b延伸足够长以促进近侧接触连接器到脉冲发生器或中间电缆的连接。近侧部分具有在0.1英寸到0.5英寸之间(通常为约0.25英寸)的长度l,并且近侧部分可以包括缩进特征65b以用作用于由任何合适的材料(例如,聚合物、pet)形成的覆盖物(例如,热缩管)的对准的视觉指示器。缩进部分可以与连接器的近端间隔开l1的距离,通常在0.1英寸到0.2英寸之间。近端66c包括开口,通过该开口,可以将管丝通过近侧接触连接器66并通过引线插入到远端以硬化引线并促进引线通过孔针的插入。在将远侧电极放置在目标电极处之后,可以移除孔针并撤出管丝。在该实施例中,接触连接器66的近端是成角度a1的锥形,该角度可以在30-60度之间,通常为约40度。近侧接触连接器的外径与引线的外径基本相同,以促进通过孔针。在该实施例中,外径为约0.023英寸。

图10a-10b示出了近侧接触连接器66的远侧部分66a的进一步细节。如所示,保持表面具有围绕耦合部分的至少一部分周向地延伸的0.005英寸的宽度。在一些实施例中,保持表面基本垂直(90度+/-10度)。应当理解,止动特征可以稍微成角度并且仍承受期望的最小拉力。在该实施例中,保持特征被配置成承受最小拉力,例如至少5n,优选地为至少10-12n。应当理解,该最小拉力可根据导体/引线配置的机械性质、以及引线被植入的区域而不同。面向远侧的斜坡表面68a可以以与纵轴成角度a2地远侧地锥形化。在一些实施例中,角度a2在30到60度之间,在所示的实施例中,该特征为约45度。斜坡表面可以延伸合适的距离,例如,0.002英寸到0.01英寸之间。凹口68b可以围绕圆周沿角度a3(例如,在90度到180度之间)延伸。在该实施例中,角度a3为围绕圆周约140度。凹陷的耦合部分67延伸足够距离以使一个或多个线圈沿该部分定位并且(诸如通过接合、钎焊或激光焊接)电耦合并固定地附接到该部分。在一些实施例中,耦合部分延伸0.01英寸到0.05英寸之间。在该实施例中,耦合部分67延伸约0.02英寸。虽然上述尺寸提供了保持以承受针对上述导体线圈配置的最小期望拉力,但是应当理解,可以根据需要修改这些尺寸以提供针对给定导体或引线配置或应用合适的不同的期望的保持力。

在另一方面,试验系统可以利用与永久植入的尖齿形引线的设计类似或相同的尖齿形神经刺激引线,该尖齿形神经刺激引线通过引线延伸电缆电耦合到外部脉冲发生器。此类尖齿形神经刺激引线通常包括多个电极并且通常利用模仿ipg的连接器插座的近侧连接器。此类连接器插座比上述pne引线的近侧接触连接器相对更大。此类试验系统可被使用数周或数月以评估由植入的多电极神经刺激引线施加的神经刺激程序的功效。如上在图4的试验系统中所述的,引线的近侧连接器通过第一切口区域(通常位于植入式脉冲发生器稍后可被植入的位置)植入在身体内并且耦合到在第二切口处隧穿离开身体的引线延伸电缆以电耦合到外部脉冲发生器。由于在部分植入式系统中电缆延伸穿过的第一切口区域具有较高感染风险,所以该方法避免了该切口区域的潜在感染。在试验期期间延伸电缆沿它离开身体的位置的移动可引入污染物或细菌从而导致感染。与引线延伸电缆相关联的的另一挑战是在引线延伸电缆的移除和系统向完全植入式系统的转换期间,远侧连接器通过第二切口的逆行。为了避免与引线延伸电缆的使用相关联的这些挑战,延伸电缆可以包括引线逆行止动器,该引线逆行止动器适配成与皮肤的外表面(或放置在其上的绷带或纱布)接合,以便防止在试验期期间或在向永久性植入式系统的转换期间的引线延伸件的移除期间引线延伸件向患者身体中的逆行。止动器被尺寸设计有面向远侧的表面以接合患者的外部皮肤(或相关联的纱布),但仍足够小以允许整个止动器通过从第一切口隧穿的套管或递送护套并通过第二切口。

图11示出了示例引线延伸电缆70,其具有用于耦合到植入的尖齿形引线的远侧连接器71,适配成与epg(或中间连接器电缆/适配器)耦合的近侧连接器73,以及将近侧连接器与远侧连接器电耦合的引线延伸电缆72。远侧连接器71包括模仿ipg的连接器插座的倾斜螺旋弹簧设计的触点d1、d2、d2、d3(例如,巴塞尔(bal-seal)触点),这些触点电耦合到近侧连接器73的四个触点p0、p1、p2、p3,如图12b所示的,这些触点对应于引线延伸件的四个导体和四电极尖齿形神经刺激引线。远侧连接器71在试验期期间保持植入在患者身体内的第一切口处,而引线延伸电缆的其余部分通过从第一切口隧穿的接入路线并通过第二切口离开身体。为了便于通过隧穿区域,近侧连接器73和逆行止动器74具有对应于隧穿工具的内径的减小的递送轮廓,例如,0.4英寸或更小,或通常小于0.2英寸。逆行止动器74包括面向远侧的表面74a,当引线延伸件被朝向身体向内拉扯(诸如通过植入的引线的挠曲或在植入或移除过程期间)时,面向远侧的表面74a抵靠患者的外部皮肤(或相关联的绷带或纱布)接合。对于本文所述的应用,延伸电缆的总长度l1相对地长,例如,30-40英寸。远侧连接器71和逆行止动器74之间的长度l2为约10-20英寸,通常为约14英寸,并且近侧连接器的长度l3为约0.5-1英寸。图13a示出了引线延伸件70和内部连接器部件的附加的视图,并且图13b示出了相关联的横截面视图(未示出逆行止动器)。

如所示,逆行止动器74的形状基本上为圆柱形,然而,应当理解,可以根据上述概念利用各种其他形状和设计。在一些实施例中,逆行止动器74可以包括用于耦合到可移除止动器特征的特征,例如,具有进一步放大的直径的止动器部件。逆行止动器可以由聚合物、金属、或任何合适的材料形成。通常,逆行止动器是相对刚性的,然而,为了患者舒适,止动器可以是半刚性的或可延展的。

图14a-14b示出了利用具有逆行止动器74的此类引线连接器22的示例试验系统100。

图14b描绘了引线延伸件22,其包括与可植入神经刺激引线20和可植入引线连接器插座21上的引线连接器类似或相同的近侧引线连接器24,可植入引线连接器插座21可以连接到完全植入的神经刺激引线20的近侧引线连接器24和如上所述的逆行止动器74。近侧连接器24被配置用于经由连接器插座42附接到epg40。

图15示出了根据本发明的方面的试验系统100和永久系统200的示意图,以进一步证明本文所述的神经刺激引线中任一者的适用用途。可以看出,试验系统和永久系统中的每一个都与无线临床医生编程器和患者遥控器一起使用兼容。epg通过其与临床医生编程器和患者遥控器无线通信的通信单元可以利用medradio或蓝牙功能,该功能可以提供约两米的通信范围。在试验系统和永久系统中的每一者中,临床医生编程器可以用于引线放置、编程和刺激控制。此外,每个系统允许患者使用患者遥控器来控制刺激或监测电池状态。该配置是有利的,因为其允许在试验系统和永久系统之间几乎无缝的过渡。从患者的观点来看,该系统将以相同的方式操作并且以相同的方式来控制,使得患者使用试验系统的主观体验与使用永久性植入式系统中将体验到的更紧密地匹配。由此,这种配置减小了患者可能具有的关于系统将如何进行操作和如何对其进行控制的任何不确定性,从而使得患者将更有可能转变试验系统为永久系统。

图16描绘了组装神经刺激引线的方法。此类方法可以涉及包括试验引线(诸如pne引线)的组装,以及用于永久性植入式系统的引线的组装。此类方法可以包括:在近侧接触连接器的远侧保持凸缘上馈送至少一个线圈导体,以便沿该远侧保持凸缘的近侧的近侧接触连接器的减小轮廓的耦合部分定位所述至少一个线圈导体的一个或多个线圈,以及通过钎焊或焊接将线圈导体电耦合并固定地附接到耦合部分。此类方法进一步包括将远侧保持凸缘的面向近侧的表面与设置在保持凸缘的近侧的该一个或多个线圈的一部分接合,以便承受由引线中的张力施加的拉力,由此维持线圈导体和近侧接触连接器之间电连接的完整性。在一些实施例中,在线圈导体和近侧接触连接器的接口上推进诸如热缩管之类的绝缘聚合物覆盖物用于保护。

图17描绘了利用引线延伸件的方法。此类方法可以包括:在患者的身体中植入神经刺激引线,使得该引线的近端被设置在第一切口区域;从第一切口区域隧穿到第二切口;在第一切口区域处连接引线延伸件的远侧连接器并在第一切口区域处植入远侧连接器,远侧连接器经由包括逆行止动器的延伸电缆与引线延伸件的近侧连接器电耦合;以及使近侧连接器和逆行止动器通过从第一切口隧穿的工具或套管并通过第二切口到患者身体外部。随后移除该工具或套管。用逆行止动器接合患者的外部皮肤或设置在患者的外部皮肤上的垫或纱布,以便阻止引线在试验期期间或在引线延伸件的移出期间逆行进入患者。这防止第二切口部位的感染并促进在试验之后移除引线延伸件。

关于试验引线(例如,pne引线),通常期望此类引线被配置成适合在递送针或套管内,诸如具有0.025英寸id(内径)的20号(gauge)针。通常,此类引线包括至少一个导体和一个远侧电极以供单极刺激。在一些实施例中,试验引线可包括多个引线以允许在试验期间在不同点处进行单极刺激,或允许在不同电极之间进行双极刺激或顺序刺激。在一些实施例中,试验引线包括组织保持特征,该组织保持特征在试验期期间最小化引线的急性迁移。

图18-23c描绘了神经刺激引线的各种其他特征。应当理解,此类特征可以涉及任何类型的神经刺激引线,例如试验引线,诸如pne引线,或涉及永久植入的引线,以及任何类型的神经刺激应用。

图18描绘了具有倒钩75的神经刺激引线20的涂层。此类倒钩75可以单向地配置以阻止引线在一个方向上的迁移,或双边地配置以便阻止引线在任一方向上迁移。倒钩可以切入导体的绝缘涂层。替代地,导体可以通过包括倒钩保持特征的引线主体。

图19a-19c示出了由多导体带78定义的线圈导体引线76。如图19c的横截面中所示,多导体带78包括多个导体77,每个导体77具有绝缘涂层并被沿带固定在一条线上。引线主体由多导体带定义并且可以被完全闭合缠绕、开放盘绕、或具有闭合缠绕和开放盘绕的部分的组合。每个导体的远侧部分可以被暴露,以便形成远侧电极,沿引线的不同位置暴露不同导体,以便提供多电极引线。

在另一方面,可以由沿螺旋或螺旋形引线主体缠绕的多个导体定义多电极神经刺激引线。在一些实施例中,此类引线可以包括由附接在管腔管的外侧上的导体的螺旋体定义的引线主体。沿引线主体的长度的螺旋形扭曲提供了提供改善组织保持的纹理表面。应当理解,本文所述的其他特征中的任一者(例如倒钩)还可以与这些特征结合使用。图20a-20b示出了此类神经刺激引线的两个示例的横截面视图。图20a示出了围绕中心芯或中心管腔79缠绕的四个导体78,所述导体被附接到管腔管79a的外表面。图20a示出了围绕中心管腔79缠绕的八个绝缘导体78,所述导体被附接到管腔管79a的外表面。可以沿导体的外侧施加附加的外部涂层80’。

在另一方面,提供了用于与可植入神经刺激引线一起使用的锚定特征。此类特征可以应用于试验引线(诸如pne引线),以便保持引线的位置并改善试验评估的准确性,以及可以应用于永久植入的引线。在一些实施例中,神经刺激引线包括可伸缩的锚、生物可吸收的锚、和/或具有不透射线标记的生物可吸收的锚。

图21a-21b示出了由线圈导体91定义的神经刺激引线90,线圈导体91包括通过缩回耦合到远侧锚92的细长构件93(诸如拉线(pullwire)或系绳)从而可伸缩到中心管腔中的远侧锚92。图21a和21b示出了缩回锚92之前和之后的引线90。

图22示出了由线圈导体91定义的神经刺激引线90’,并且神经刺激引线90’具有由生物可吸收的聚合物制成的远侧锚94,该生物可吸收的聚合物在植入的时间段内溶解,以便允许在移出期间容易地移除引线。可选地,生物可吸收的引线包含不可吸收的不透射线标记94a,其被留下用作用于永久植入的位置标记。该标记可以由金或铂/铱、或任何合适的材料制成。

在一个方面,线圈引线包括开放节距线圈设计或具有沿植入的引线部分的开放节距线圈设计的一个或多个部分。以上关于标记指出的开放线圈标记保持在体外。通过包括沿可植入长度的此类开放线圈部分,线圈之间的间隙和/或开放线圈的纹理提供对引线迁移或逆行的更大抗性。该特征可以使用在任何类型的神经刺激引线中。

在另一方面,锚定特征可以包括附接到引线的螺旋尖齿形锚。此类螺旋尖齿形锚可以沿引线主体、沿电极或邻近电极附接在引线的外侧上。在一些实施例中,可以通过将螺旋形锚放置在引线的开放节距盘绕区域内来附接。在其他实施例中,螺旋尖齿形锚可以被附接到引线的远端并且还可以用作管丝的引线止动器。

图23a示出了由线圈导体91定义的神经刺激引线110,并且神经刺激引线110具有沿电极部分附接在引线主体的外侧上的螺旋尖齿形锚95。图23b示出了具有交缠在引线主体的开放节距区域内的螺旋尖齿形锚96的神经刺激引线120。图23c示出了神经刺激引线130,其具有附接到引线远端的远侧螺旋尖齿形锚96,并且进一步包括远侧防损伤尖端97,远侧防损伤尖端97在植入期间用作管丝的端止动器。在任何此类实施例中,螺旋尖齿形锚的螺旋节距可以定义为匹配其附接到的引线主体的区域内的节距。该锚可以由任何合适的材料(例如聚合物、金属等)形成。在一些实施例中,螺旋形锚由切成螺旋形结构的镍钛诺(nitinol)管形成。突出的尖齿可以被热定型到展开位置。镍钛诺螺旋形底座可以被热定型成比引线主体小的内径以提供过盈配合,随后可以将其扭曲打开并随后装载到引线主体上。在释放时,螺旋形底座自动拧紧到引线主体上,从而提供到引线的牢固附接。虽然关于通常作为试验引线使用的单个电极线圈导体引线描述这些特征,但是应当理解,这些特征中的任一者可以用于各种其他类型的引线(诸如多电极引线或永久植入的引线),或各种其他应用。

在前述说明书中,参照其特定实施例描述了本发明,但是本领域的技术人员将会认识到,本发明并不局限于此。上述发明的不同特征和方面可以单独使用或者共同使用。进一步,在不脱离本说明书的更广泛的精神和范围的情况下,可以在超出本文中所描述的环境和应用的任何数量的环境和应用中利用本发明。因此,本说明书和附图应被视为说明性的而不是限制性的。将认识到,如本文中所使用的术语“包括(comprising)”、“包括(including)”以及“具有”具体旨在被理解为本领域的开放性术语。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1