位置和取向的磁方式确定的制作方法

文档序号:1050105阅读:611来源:国知局
专利名称:位置和取向的磁方式确定的制作方法
技术领域
本发明涉及利用磁场确定对象位置和取向的装置和方法,其中包括利用磁场监测就治病人体内探头位置的装置和方法。
本发明背景已有种种方法用于确定对象的空间位置和取向。例如常常需要确定病人体内医疗仪器的位置和取向,举例来说,需要监测导管、内窥镜或其它探头的位置和取向。人们希望给出的数据以叠加在诸如内部器官图像这种病人图像上的方式来显示对象。实现这种愿望的一个简单方法是摄取立即成像的X射线图像,例如X射线荧光图像,来显示病人和插入的探头。这种方法的缺点在于,每当探头移动,都必须重复全部成像过程以得到病人图像。在某些外科手术过程中,虽可以进行诸如X射线荧光图像这种X射线成像,但这本身要使病人受到不希望的电离辐射。某些种类的成像过程例如MRI成像,在外科和其他治疗过程中是不能重复的。
如英国专利申请2,094,590和美国专利5,186,174举例说明的那样,探头可以机械方式约束或联接于导臂或座标系上,这样,探头的位置便相对于固定的基准座标系受到约束,得到的是相对于此基准座标系的位置。利用固定基准座标系得出的位置数据,可将探头图像叠加在病人图像上。但这些系统使得探头不太灵活,在治疗过程中带来严重的不便。举例来说,一种这样的系统需要探头按直线行进至有关区域。这类系统更适合于使探头定位于体外而非体内。
授予Bryer等人的美国专利4,697,595和Bryer等人所著的Ultrasonically Marked Catheter—a Method for Positive Echo-graphic Catheter Position Identification[Medical and BiologicalEngineering and Computer,Vol.22,No.3(1984),PP.268—271]都揭示了装有超声探测器的心脏内导管。导管的位置由病人外部的超声换能器至导管的传递时间测量结果导出,再将此导出的位置叠加在以超声方式发生的图像上。
授予Van Steenwyk等人的美国专利4,173,228,Pfeiler等人的美国专利5,042,486和Dumoulin等人的美国专利5,211,165揭示的各种设计方案,都在插入体内的医用导管末端的一个天线和体外的几个天线之间传播电磁信号。据称,导管末端的位置和取向是根据在这些天线之间传输的信号确定的。具体来说,该相对位置和取向是根据这些天线间的信号传播路径的特性导出的,举例来说,是根据天线间传播的信号的衰减程度导出的。Van Steenwyck等人的专利虽提到利用磁场和霍尔效应换能传感器的可能性,但未就如何在一实用的设备中实现这种可能性提供细节。Dumoulin则建议,可以将射频导出的导管末端的位置叠加在成像系统得到的图像上。
已提出过许多利用磁场定位人体外面物体的系统。授予Blood的美国专利4,945,305、4,849,692和4,613,866所揭示的系统均利用置于所要定位的对象上的磁线圈和置于固定基准框架中的定线圈,在三维空间内确定对象的位置和取向。其他这类系统还包括Voisin的美国专利5,172,056和5,168,222、Constant的美国专利4,396,885、Cantaloube的美国专利5,109,194、Weed等人的4,317,078、Hansen的美国专利4,642,786和Morgenstern的美国专利5,047,715。这些系统一般都采用一磁场发送器,和一用于接收器的类似结构,其中包含几个绕制在与铁芯正交的轴上的线圈。发送器线圈按顺序和/或不同的频率启动,接收器的线圈检测到的信号经分析用来确定发送器相对于接收器的位置和取向。这类系统的应用有计算机三维数据输入设备和检测头盔位置和取向的系统。
此外,如Remel著的An Inexpensive Eye Movement MonitorUsing the Scleral Search Coil Technique[IEEE Transactions OnBiomedical Engineering,Vol.BME—34,#4 April 1984,pp 388—390]所述,研究人员试图跟踪眼球的转动,通过缝合或把线圈装在接触晶体中,在眼球表面安装了小环形的传感线圈。把装有这样一种线圈的研究对象置于各对正交取向的探向线圈之间,这些线圈由两种不同频率的高频交变电流激励。眼睛上的线圈感应出的电压就会包括两种频率的分量,而且这些分量的相对幅值取决于眼睛的取向。
本技术领域尽管作了这么多努力,但仍然有前面提及的需要,即需要改进确定对象空间位置和取向的装置和方法,尤其是改进确定活体内探头位置和取向的装置和方法。
本发明概述本发明的某些方面提供种种确定探头位置和取向的装置和方法。本发明的一种装置包括可选择地工作以产生多个不同磁场的磁装置,各个磁场具有至少一个非零分量,其幅值相对于传感容积范围内的基准方向上的距离呈“准线性”,即为常量、线性或近似线性的关系。
本装置还包括用于驱动磁装置按预先选定的顺序产生不同磁场的控制装置;与被监测对象连接以便可以随该对象在传感容积范围内移动的传感器。传感器配置成至少在两个不同的方向上,最好是相对于传感器的正交方向、本地方向上检测磁场分量。希望传感器配置成在三个不同的方向上,最好是相对于传感器的正交方向、本地方向上检测磁场分量。本地方向是传感器基准座标系中的方向,通常与磁装置的基准方向不同。本装置还包括在磁装置工作产生各种磁场时,根据传感器检测出的磁场分量确定传感器相对于磁装置位置和取向的计算装置。
由于传感容积范围内的磁场随距离存在准线性分量(要么均匀,要么接近线性变化),因而在相对较大的传感容积范围内,例如在其最小尺度约为30cm以上的传感容积范围内,尽管最大磁场相对较低,仍然可以提供显著可测的磁场和明显可见的单位距离磁场分量幅值的变化率。这就允许采用合适灵敏度的磁场传感器精确监测位置和取向。进而允许采用极小的传感器,最好是固态传感器,它可以极方便地置于导管、内窥镜或其它医用探头的末端。
磁装置希望设置成在传感容积范围内以第一基准方向产生大致均匀的第一磁场。磁装置还可有选择地工作,以便在传感容积范围内以与第一基准方向不同的第二基准方向产生大致均匀的第二磁场。第二基准方向最好与第一基准方向正交。磁装置还可选择地工作,在传感容积范围内产生第一和第二梯度场,从而第一梯度场在传感容积范围内的第一基准方向上具有预先规定的变化样式。第二梯度场在传感容积范围内具有预先规定的变化样式,最好是一种在第二基准方向上预先规定的变化样式式。
较佳的磁装置还可以产生这样一种场,即磁场的某一分量随第三基准方向上按预先规定的变化样式变化,第三基准方向不同于第一和第二基准方向,最好是与它们正交。而且,计算装置设计成不仅确定探头在第一和第二方向上的位置和取向,还确定探头在第三方向上的位置和取向。在第三方向上变化的分量可以作为不同于第一和第二梯度场也不同于均匀场的第三磁度场的一部分。作为替代,也可以在第一梯度场,第二梯度场或两者中提供在第三方向上变化的分量。磁装置还可以设计成在第三基准方向上产生第三均匀场。
磁装置最好包括多组,每一组包括一对设置于传感容积相对两侧的磁场导向单元。磁场导向单元可以设计成互相在同一方向上引导磁通量,在传感容积中提供一基本上均匀的磁场,并且可以互相在相反方向上引导磁通量,在传感容积中提供一梯度场。每一对这种磁场导向单元希望是导电线圈,最好是大体上互相共轴设置的探向线圈,使每一对的轴沿某一基准方向延伸。
本发明的另一装置包括包含至少两对探向线圈在内的磁结构,每一对线圈基本上互相共轴,并限定一对子轴。每一对线圈设置在传感容积的相对两侧,使各对线圈的轴基本上互相正交。本装置还包括控制装置,利用围绕成对两线圈的对子轴流动的同向电流驱动每对探向线圈处于均匀场状态,由此产生方向平行于对子轴并且在传感容积范围内具有基本上均匀场强的磁场。控制装置还可以利用在成对的两线圈中流动的反向电流驱动各对探向线圈处于梯度场状态,以便产生其分量方向平行于对子轴,并且在传感容积中具有基本上线性的幅值梯度的磁场。
希望控制装置这样工作来驱动磁结构,以便按预定的时序把各对线圈驱动处于不同状态,具体来说,任何时候只将一对线圈驱动为仅仅某一状态。本发明的这种装置最好还包括可在传感容积范围内移动的传感器,传感器配置成测量相对于该传感器至少两个(最好是三个)互相正交的本地方向上的磁场分量。这样,当线圈对处于前面提及的均匀场状态时,传感器就测定本地方向上的均匀场本地分量。当线圈对处于前面提及的梯度场状态时,传感器就测定梯度场相对于该传感器本地方向的本地分量。
本发明的这种装置还包括计算装置,以根据均匀场本地分量确定传感器相对于对子轴的取向,根据均匀场本地分量和梯度场本地分量确定传感器在传感容积范围内的位置。控制装置最好设计为使磁装置处于非工作状态,磁装置在此状态下在传感容积范围内不产生任何磁场,而且,计算装置设计成当磁装置处于关闭状态时,它记录由传感装置测定的前述本地方向上磁场分量的本底值。这样,计算装置便设计成当磁装置处于其它状态时,它就通过减去该本底值来校正测得的本地分量。
上述装置使用的传感器最好装有其最大尺寸小于5mm、最好小于1mm的磁敏元件。整个传感器最好可以有3mm或以下的长度和0.75mm或以下的横向即宽度尺寸。换言之,传感器可以适合置于3.0mm3或以下(最好是2.0mm3或以下)的容积当中。传感器最好安装在探头上,诸如适合置于病人体内的探头,例如导管、内窥镜等。例如探头可以做成具有近端和末端的细长结构,传感器则可以安装在末端,以便当末端插入体内时测量末端的位置和取向。
本装置还可以进一步包括迭加装置,用以显示病人身体的图像和迭加其上的探头,从而使探头图像叠加在人体图像上的位置对应于体内探头的位置。迭加装置可以包括人体图像数据接收装置,人体图像数据表示不同于磁装置基准方向所确定的基准座标系的人体图像基准座标系中的人体图像;关系数据接收装置,关系数据表示人体图像基准座标系和磁装置基准座标系之间的相互关系;以及变换装置,对磁装置基准座标系中的探头位置、人体图像数据或两者进行变换,从而提供在一公共基准座标系中的探头位置数据和人体图像数据。本装置可以配备一个或多个基准标志器,以及将各个所述基准标志器加到病人身体上使迭加装置要显示的图像包括各个基准标志器图像的装置。本装置还可以进一步包括确定各个基准标志器在磁装置基准座标系中位置的装置。在一特定的较佳方案中,各个基准标志器包括一个测定磁场分量的传感器,计算装置设计成根据该基准标志器的各个传感器测定的磁场确定各个基准标志器的位置和取向。这样,若由磁场测定结果所得出的各个基准标志器位置和取向与图像数据所表示的基准标志器位置和取样之间有差异,关系数据将会包括有关此差异的数据。
本发明的其他方面还提供在传感容积范围内确定传感器方位的方法。本发明这方面的方法包括在传感容积范围内产生多个磁场的步骤,各个磁场包括如上所述的一个或多个准线性分量。多个磁场中希望包括第一和第二均匀磁场,它们在第一和第二基准方向上在整个传感容积范围内具有基本上均匀幅值的非零分量,并且包括第一和第二梯度场,它们具有以预先规定的变化样式变化的分量。如上所述,对于本装置来说,设置在传感容积内的传感器在加有各个上述磁场期间,测定至少二个(最好是三个)不同的相对于传感器的本地方向上的磁场分量。相对于均匀场基准方向的探头方向是由加均匀场期间传感器所测定的均匀场本地分量确定的。探头在梯度场基准方向上的位置,是由均匀场本地分量和加第一和第二梯度场期间所测定的梯度场本地分量确定的。
本发明这方面的方法可以提供与就装置所作的上述说明相似的优点。本方法最好包括一停止该装置产生所有磁场和驱动传感器检测诸如地磁场、杂散磁源之类分量的步骤。这种本底分量数据可用于校正该传感器得到的其它数据。传感器最好是如上所述的小型传感器,安装在插入活体对象中的探头上。探头图像可以叠加在诸如X—射线、MRI或CAT图像之类的对象图像上。
本发明的其他方面还提供显示监测探头在活体对象中位置的方法。本发明这方面的方法最好包括在相对于对象固定的位置上提供至少一个基准标志器和得到一包含该基准标志器图标的对象图像的步骤。本方法还包括通过测定发往或发自基准标志器和监测探头的磁场来确定各个基准标志器和监测探头在公共基准座标系中位置的步骤,从而知道监测探头相对于基准标志器的位置。本发明这方面的方法最好包括在与利用磁场方法确定的监测探头相对于基准标志器的位置相对应的相对基准标志器图标的位置上,在对象图像上叠加该监测探头标示的步骤。这些方法还可以包括确定监测探头和基准标志器在磁场的公共基准座标系中方向和相应使叠加在对象图像上的监测探头的标示取向的步骤,以便监测探头的标示相对于叠加图像上基准探头图标的取向与监测探头相对于基准探头的真实方向相对应。
本发明的其他方面提供一种对出现在外科手术和治疗过程中的诸如某一身体部分、外科手术器材之类单元进行描绘的方法。本发明这方面的方法包括在相对于该单元基本上固定的位置上设置传感器,并且当该单元处于第一方向时得出该单元图像的步骤。本方法还包括通过监测发往或发自探头的磁场来监测探头方向的步骤,由此当该单元处于不同于第一方向的移动过的方向时对该单元方向进行监测。本方法还包括将该单元在第一方向上的图像变换为其移动过的方向上的图像和显示该变换后的图像的步骤。最好随该单元在所移动的方向范围内的移动,重复监测、变换和显示步骤,以便当该单元处于这种移动好的方向上时,基本上实时地显示与各次这种移动好的方向相对应的变换图像。
这种方法可以对多个单元同时进行。这样,可以对多个单元的每一个单元加接分立的传感器,得到单元图像的步骤可以包括得到所有单元在各自第一位置的图像的步骤。监测传感器方向和确定单元方向的步骤可以包括监测所有传感器方向和确定各个单元分开移动后的方向的步骤。变换图像的步骤可以包括将各单元的图像变换为该单元在其各自移动后方向上的图像的步骤。显示步骤可以执行成显示所有的变换图像,因而互为相关的变换图像的方向与互为相关的单元的方向相对应。举例来说,单元是骨骼关节处互相连接的骨头的时候,医师就可以观察骨头变换后的图像,从而在治疗过程中就可以观察构成关节各部分的相对方向,而不必随骨头的移动照射另外的X射线。
本方法最好包括当各单元处于它们各自的起始方向时和处于各自的移动后方向时确定各个传感器在固定基准座标系中位置的步骤,因而变换和显示步骤可以包括调节互相相关的经显示和经变换的图像位置的步骤,以补偿各单元的相对运动。从而,显示出的图像就会正确表示互相相关部分的位置。
本发明还有一个方面包括绘制生物体内生理学变量的方法。本发明这方面方法最好包括在身体内或身体上安置探头,利用探头上的换能单元传感生量学变量,通过监测到达或来自探头上磁场传感器的磁场来确定探头位置的步骤,从而给出与位置关联的生理学变量的测定结果。本发明这方面方法最好进一步包括重复上面所述步骤的步骤,以给出与多个位置关联的多个测定结果,从而提供一幅多个位置的生理学变量图。本方法还可以包括将这种图以例如一组等值线、彩色色块或灰度块(带有或不带其他成像方式得到的其他特征)这种可视图像形式显示的步骤。例如可以将人体温度、氧水平或其他生理学变量的图重叠在MRI、CAT等图像上。
本发明又一方面提供的装置包括在磁场基准座标系中产生一个或多个磁场的装置,以便这样产生的至少一个磁场至少具有一个非零参量,该参量在磁场基准座标系范围内相对于点与点间的距离呈准线性。本发明这方面装置还包括适宜置于病人体内的探头;装在该探头上的传感器,当探头置于病人体内时监测位于该探头处的磁场,并送出表达所监测磁场至少一个参量的信号。本装置最好还包括计算装置,当探头置于病人体内时,根据磁场传感器给出的信号确定探头在磁场基准座标系中的位置。本装置还可以包括迭加装置,用探头标示来显示病人身体图像,使探头的标本在身体图像上与计算装置给出的探头位置数据一致的位置上叠加在显示的图像上。探头最好包括一个带有近端和末端的细长结构,磁场传感器装置用于监测细长结构末端处的磁场。这种装置可以用于例如包括内窥外科手术在内的内窥手术。本发明另一方面包括操纵前述装置的方法。
本发明再有一方向提供磁敏传感器和组合式磁/生理传感器以及制作方法。本发明这方面传感器可包括片状支承和设置在该支承上的多个磁敏元件,每一元件具有预先选定的敏感方向。支承对折,磁敏元件就变成非共面的。该支承可以配备一长方形或正方形的带两个侧面的中心面板,末端面板和细长条均由该中心面板的各边延伸出去,形成十字形。传感元件可以安装在各面板上,面板可以对着电解质芯折合。传感器最好配有对生理学变量敏感的生理学传感元件,这种传感元件附加在同一支承上作为磁敏元件。整个器件可以做得极其紧凑。
本发明上述和其他目的、特征以及优点通过结合附图对以下给出的较佳实施例所作的详细说明将会更加清楚。
附图的简要说明

图1为本发明一实施例设备的概略部分透视图;图2为图1所示设备一部分概略视图;图3至图5表示图1-2设备中产生的某些磁场的曲线图;图6为与图1-2设备工作有关的矢量图;图7和图8为描绘本发明另一实施例设备部分的概略局部正视图;图9为描绘本发明再一实施例设备部分的局部透视图;图10为图9设备另一部分的局部正视图。
本发明的最佳实施方式本发明一实施例的设备包含一框架结构30,该结构30大体上包围了一传感或病人接收容积32。框架结构30支持着三对探向线圈34,36,38,使每对线圈相互共轴地配置在三个互为垂直的对子轴X,Y,Z上。相交的对子轴形成传统的直角座标系,其传感容积中心有一座标原点39,从该原点起沿每个轴X,Y和Z具有正、负方向。每对线圈配置在该传感容积32相反的两侧。所有线圈是环状的,有相等的直径和相同的匝数。各对的两线圈相互同向缠绕。因此,沿X轴排列的两线圈34具有从X轴正端看右旋或逆时针方向包围X轴的绕组。为图示清楚起见,图1中两线圈间的间隔被放大了。当沿对子轴测量时,线圈对间距离最好在各线圈直径的约0.5倍与1.4倍之间。在文章“调整探向线圈磁驱动小偶极子”[“ModifyingHelmholtz Coils to Magnetically Drive a Small Dipole”,Lucas,P.,Am.J.Phys.,54(7),PP.666—667(1986)]中提出了设计探向线圈的准则,用以提供匀磁场和提供基本上线性梯度的磁场。因此,上述揭示通过引用结合于本发明。线圈及框架30的结构和布局可将病人身体部分插入传感容积32中。框架最好有与各线圈共轴的开口40,使病人身体可经这样的一个开口40插入传感容积32中,并且当病人位于该传感容积中时,医生可通过其它开口接触该病人。该框架可用任何刚性材料制作。但最好采用介质材料,因为磁场变化时介质材料不会产生涡流。该框架在各线圈和框架构件之间可包括可快速松开或拆开的连接机构。这样使医生在紧急情况下可将线圈和框架迅速撤离病人而完全不会妨碍接触该病人。
所有线圈被连接到线圈驱动器42,再依次通过输出接口44进行连接,以便接收计算机46的输出。计算机46可以是通常称为工作站的数字计算机或专用计算机。输出接口44被设置成接受计算机的指令并根据这种指令激励线圈驱动器42。线圈驱动器42包括常用的直流电源47和简略标注48的常用开关装置,用于当经接口44接到计算机46指令时以正向形态或反向形态将各对线圈连接于电源47。在正向形态中,线圈的正向串联结构连接,使通过该对两线圈的电流绕该对子轴以同一方向流动。例如,当X轴线圈组的线圈34处于正向或正向串联状态时,它们被串联连接,从正X端看,通过两线圈的电流都将绕X轴作逆时针流动。当某对的两线圈处于反向状态时,它们串联连接为相反,使电流通过串联的两线圈,但在该对两线圈中以相反方向绕轴流动。电流在一个线圈34中绕X轴作顺时针流动,而在另一线圈34中绕X轴作逆时针流动。
该设备进一步包含病人监测探头50。监测探头50包含带有近端54和远端56的细长体52,适合插入病人体内。在图示特定实施例中,该探头体52是一个细长的柔性轴(shaft),适合于安装到传统的内窥镜(endoscope)53中,进而可装入身体。内窥镜53有一个或多个孔(bore)或通道,用以引导手术器械、液体等,以便将这些东西引入病人体内,且探头体52可安装到这样的一个孔内。这种孔或通道也可用作内窥镜这种手术器械或其它治疗装置或物质的通道。作为可选用件或附件,探头体52或内窥镜53可包含如电视摄像机和光导纤维束那样的电、光或电-光装置,提供远端56周围组织的局部成像。该内窥镜可连接到常用的医疗设备58,用以引入和/或抽吸液体,利用电或电-光装置观察末端周围组织,和通过将探头插入人体通常进行的其它常规医疗应用。
传感器60安装到邻近于远端56的探头体52。最好参看图2,传感器60包括多个平面敏感元件62、64和66。元件62设置成垂直于公共传感器轴X′。于是,矢量X′如图2所示在传感器轴X′上延伸,与平面敏感元件62垂直。同样,元件64垂直于传感器的Y′方向,元件66垂直于方向Z′。方向X′、Y′和Z′相互正交,因此,元件62、64和66的平面也相互垂直。每个敏感元件含有霍尔效应的材料,使敏感元件给出与传感器附近的垂直于该特定敏感元件面的磁场分量成比例的输出电压。因此,敏感元件62其表面上含有如砷化铟、砷化镓等电磁材料制作的薄膜片,连接到该膜片两相对边的一对励磁引线68,和连接到剩余两边的一对输出电压引线70。工作中,当电流在两边68间通过并在传感器周围出现磁场时,则两引线70间就出现与该传感器表面垂直的磁场分量成比例的电压。换一种表述就是,当B为本地磁场矢量,X′为沿垂直于元件62的传感器轴X′的矢量时,则元件62的输出电压VO62为VO62=K(B·X′)+VI62这里,VO62为输出电压,K为比例因子,VI62为磁场为零时元件62的输出电压。元件64有同样的引线(未图示)并以同样方式产生输出电压VO64=K(B·Y′)+VI64这里,VO64为元件64的输出电压,Y′为Y′方向的单位矢量,VI64为零磁场时元件64的输出电压。同样,元件66产生输出电压VO66VO66=K(B·Z′)+VI66其中,Z′为Z′方向的单位矢量,VI66为零磁场时元件66的输出电压。由于传感器设置在探头体52的远端56中,所以传感器60的位置和取向相对于框架构造30和线圈34-38的参照方向X、Y和Z是不固定的。因此,传感器60的自身轴X′,Y′,Z′相对于线圈和框架结构的轴X,Y,Z可任意取向。
传感器60的引线,包括引线68和70和与其它敏感元件(未图示)相连的其它引线,经延伸通过探头体52的电缆75连接到驱动和放大单元72(图1)。驱动和放大单元72用来将适当的励磁电压加给传感器60的元件并放大各敏感元件的输出电压VO66,VO64,VO62。该驱动和放大单元72连接到模/数转换器74,再依次连接到计算机46的输入端。虽然仅图示了一路连接,但应当理解,转换器74是一种带有多路连接和/或多路转接装置的多通道装置,用于将来自传感器60所有敏感元件的所有输出信号的数字信息传送给计算机46。
该设备进一步包含基准标识器(fiducial marker)76(图1),它包括传感器80和标识体78。标识体78安装到病人身体部分,相对于该身体部分基本上处于固定位置。因此,该标识体78可配上夹具,绑带,环,或条,用以将其固定到病人的头、四肢或躯体的外部。作为另一种或可选的方法,标识体78可包括开口或凹槽,用以容纳缝合线、针、手术钉或其它固定器具。该基准标识体也可用常用的外科粘带、绷带等固定到病人身上。基准标识器至少一部分,如标识体78,传感器80或两者,用对病人成像技术当中可检测的材料制作,这类成像技术可包括如X射线,磁共振成像(“MRI”),计算机56的轴向层析X射线摄影法(“CAT”),或其它常用的成像方式。基准标识器的传感器80基本上与监测探头50的传感器60相同。传感器80连接到驱动和放大单元82,再依次能过模/数转换器84连接到计算机46。单元82和转换器84类同于驱动和放大单元72和模/数转换器74。
该设备进一步包含图像存储单元86,用于以数字形式存储病人或病人身体部分图像。通常,图像存储单元86包括常用的计算机存储装置。还包括一图像输入装置88。输入装置88可包括如磁盘驱动器,数据通信链路等常用的数字数据输入装置,以数字形式接收来自如X射线装置、MRI、CAT或视频装置等任何一种合适成像装置的图像,并将该输入图像传送给图像存储装置86。显示监视器90连接于计算机46。显示监视器90备有如操纵钮92、94和96等的手动输入装置,也连接于计算机46,使这些操纵钮的设置能与计算机沟通。该数据输入装置还可包括鼠标器,跟踪球,游戏杆或键盘。
按照本发明一实施例的方法,病人的身体部分,如头部用如MRI、CAT、X射线等进行成像,同时基准标识器76安装到该身体部分。这样,所获取的图像数据包含着该基准标识器的标识。在这种情况下,此处理阶段整个基准标识器未必一定要安装在病人身上。如果磁敏传感器80可拆离标识体78且所采用成像方式会见到标识体78,那末在该处理阶段可将传感器80拆离标识体。同样,在该处理阶段,基准标识器的传感器也可拆离设备的其余部分。在该处理阶段,病人不需要且通常也不置于框架30或成像容积32中。通常,病人成像是在一个完全隔开的房间或试验室中进行的。在这一成像步骤之后,该基准标识器在剩余的所有处理中一直保留在病人身上。描绘病人身体部分的成像数据。包括基准标识器76的描绘,经输入装置88传送给图像存储单元86。图像数据可包括单个平面图像,或更好是多个平面图像,或如在包含身体部分的三维体积上的磁共振或辐射图那样的全三维图像。该图像数据可存储作为输出数据,其中各数据单元代表要显示在图像再现图上的密度或色彩。另一方向,图像数据可按如时域或频域再现磁共振信号或未处理的层析X射线摄影数据那样的输入数据形式存储,由这些数据可重建再现图。
在该方法的下一阶段中,把病人身体部分定位于传感容积32中。用传统的医疗技术将探头50推入病人体内。计算机46激励线圈驱动器48使线圈按预定重复序列工作。该序列包含一个调零态,在该状态中,所有线圈断电,传感容积32中仅存在由外部源引入的磁场,这种外部源有诸如地磁场,来自邻近设备的杂散磁场等。该序列还包含一个用于各线圈组的正向(forward)或均匀场期。当各组线圈处于正向期驱动时,在前面所述的正向串联两线圈中有同向电流流动的结构中,这组线圈提供沿其轴取向的基本上均匀的单向磁场。例如,正向状态的X方向线圈34所提供的磁场,其磁力线基本上平行于X轴方向,在邻近传感容积中点(即座标原点或X、Y、Z轴交点39)的传感容积32整个中心区,磁场大小基本上相等。通常,在从原点延伸并包围线圈间距离的约62%,并从各轴径向朝外延伸一段约等于线圈直径25%的距离的整个范围内,磁场均匀度在1%以内。在序列期间的不同时间分别激励这三组线圈,使得在正向模式下任何时刻只有一组线圈被激活。
该序列还包含对每组线圈的梯度或反向形态模式的激励。在反向或梯度模式中,即电流在各组的两线圈中反方向流动,各线圈组产生的磁场在线圈间组合成沿轴取向的分量,沿轴形成基本上线性、均匀的梯度。例如,当X方向线圈34受到梯度模式激励时,其磁场具有图3、4和5所示的形态。在图3中,RX是X方向即平行于X轴的反向或梯度场分量。从图3可见,该分量在传感容积的一端具有低负值。该X取向的分量RX随X值增加呈单调线性增加,在X近似等于0即座标原点39处通过0点。沿X轴任何给定位置上的X取向分量的值或幅度对于任何Y和Z都是相同的,因此,RX仅仅是X的函数且相对于Y和Z不变。
由X轴线圈34产生的反向或梯度场还包含垂直于X轴的径向分量。该径向分量围绕X轴对称,并指向远离X轴的方向。该径向分量分解成Y方向分量和Z方向分量。如图4可见,由X线圈34产生的反向或梯度场的Y向分量RY随Y单调变化,在Y=0即X—Z平面上达到0。X线圈的反向或梯度场的Z向分量Rz具有相同的形态(图5)。于是,RZ与Z成比例。RY与Y的比例常数或斜率大约为RX与X的比例常数的1/3。同样,RZ与Z的比例常数或斜率也大约为RX与X的比例常数的1/3。
上述关于图3、4和5的讨论论述了X轴线圈34产生的单一反向或梯度场的各种分量。Y轴线圈36和Z轴线圈38所产生的反向或梯度场具有相同的形态,但它们是沿不同的轴。因此,Y轴线圈36产生的反向或梯度场的分量RY随Y值的增加(即随着沿Y轴在+Y方向位移的增加)而单调增加,但其在任何给定的Y值上基本上不随X或Z的变化而变化。该分量在Y=0处即在原点和沿X-Z平面也有近似0的值。该Y轴梯度场有垂直于Y轴的径向分量。该径向分量分解为与X成比例的X向分量和与Z成比例的Z向分量。X和Z分量与X和Z距离的比例常数各自大约为Y分量与Y距离比例常数的1/3。
同样,Z轴线圈38提供的反向或梯度场的Z向分量随Z的变化而单调变化,并在座标原点(Z=0)处近似为0,在传感容积32的中心区,该分量相对于X和Y为常数。线圈38产生的反向或梯度场包含与X成比例的X向分量和与Y成比例的Y向分量,两者的比例常数都小于Z向分量的比例常数。
对于这种反向或梯度场,各线圈组与是分别在相互不同的时间上激励的,使得在任何给定时刻仅有一组线圈受激励,因而在某组线圈处于均匀场模式时,其它任何线圈组都不受梯度场模式的激励。各种激励形态不断重复循环。每次循环中的特定序列是不重要的。因此,每个循环可包含激励各组线圈产生其各自的均匀场;随后激励各组线圈产生它的反向或梯度场,再随后对所有线圈组都去激励。另一种方法是,该序列可包括激励X向线圈以产生其所述的均匀场,然后产生其反向或梯度场,随后以同样方式激励Y和Z线对,然后停止所有线圈的激励,或将这些模式任意组合。然而,计算机46保留着序列中每个时刻线圈激励的记录,使传感器60和80输入的数据与特定线圈组激励相关联。整个序列重复极快,每个序列大约需时10至100毫秒。
随着各磁场依次接通和截止,计算机46控制着对传感器60和80的数据采集,以便在每个开关周期(switching cycle)在预选采集时间上获取代表各场的信号。于是,当各线圈对以特定模式接通时,该线圈对产生的磁场幅值按照下面等式以指数方式增大到某个常数。
Mi=Mc(1-e(-t/tau))其中t时间;Mi时刻t的瞬时磁场幅值;Mc常数或稳态幅值;tau时间常数,它正比于线圈组的电感而反比于串联电阻。
由于所有开关周期中的采集时间相同。所以采集时间时的瞬时磁场幅值Mi总是一个与稳态磁场幅值Mc或比例的常量。例如,开关周期的起始和采集时间之间的延迟可以约等于一倍时间常数tau,也即约为基本达到稳态条件所需延迟的20%。在这种情况下,各周期中采集时间时的瞬时磁场幅值大约为稳态值的63%。由于各开关周期会结束,并在采集时间过后立即开始一个新的开关周期,所以上述方案比另一种在数据采集前使各线圈对进入稳态的方案,每单位时间可作更多次的测量。上述方案的一种变型是,能通过监测经过线圈组的瞬时电流来控制采集时间。该系统可设计成当特定线圈组中瞬时电流被激励上升到一预定触发值(最好小于平衡电流)时,获取各周来自传感器60和80的数据。还是在该方案中,传感器数据采样是在各周磁场幅值一致的情况下进行的。线圈经反复激励,从传感器60和80获取的信号经放大、数字化,馈给计算机46。这些信号用来在X、Y和Z座标系中确定传感器和附加探头在传感容积32中的位置和取向。在各周的各阶段,计算机获取代表传感器60在X′、Y′和Z′方向中磁场各分量的数据,使各线圈激励期间磁场在各上述本地方向上有独立的数据输入。通过在同一周期中减去对应于线圈截止零场状态下输入的数据来校正各个输入数据。例如,元件62在X′方向产生磁场的全部读数是通过减去零场状态期间所获得的磁场在′方向的分量值进行校正的。这样能排除线圈提供外的其它任何磁场的作用。下文涉及的传感器读数的“校零”值就是指以上述方法校正了的值。产生均匀场期间所获得的传感器读数的校零值称为“Hm,n”,其中m代表获得该值的敏感元件的字符,n代表采集该值期间产生该均匀场的线圈对的字符。下面表1表达了这种符号标记法。
表1敏感元件的均匀场读数X Y Z敏感元件 线圈对线圈对线圈对X′—62 HX′,XHX′,YHX′,ZY′—64 HY′,XHY′,YHY′,ZZ′—66 HZ′,XHZ′,YHZ′,Z所有均匀场期间获得的值形成3×3的矩阵。通过用特定线圈对产生的磁通幅值,即该线圈对施加的总磁通矢量的幅值除上述各值,使这些值归一化。上述幅值依次为各个传感器读数平方和的平方根HX=sqrt[(Hx′,x)∧2+(Hy′,x)∧2+(Hz′,x)∧2]HY=sqrt[(Hx′,y)∧2+(Hy′,y)∧2+(Hz′,y)∧2]HZ=sqrt[(Hx′,z)∧2+(Hy′,z)∧2+(Hz′,z)∧2]其中,Hx是由X轴线圈组34在均匀磁场激励期间施加的磁通幅值,而Hy2和Hz3是分别由Y轴线圈组36)和Z轴线圈组38施加的同样的磁通幅值。术语“sqrt”是指括号中表达式的“平方根”;“∧2”是指此前表达式的平方。然后用这些幅值计算归一化值。也就是说,用给定的均匀场激励期间产生的磁通幅值去除该激励期间读取的各传感器的读数H′x′,x=Hx′,x/HxH′x′,y=Hx′,y/HyH′x′,z=Hx′,z/Hz;H′y′,x=Hy′,x/HxH′y′,y=Hy′,y/HyH′y′,z=Hy′,z/Hz;H′z′,x=Hz′,x/HxH′z′,y=Hz′,y/HyH′z′,z=Hz′,z/Hz传感器的取向——传感器轴X′、Y′和Z′相对于框架30和线圈组的轴X、Y、Z的角度,能直接由归一化值确定。根据所有均匀场计算取向所需的值少于全部这些值。该系统选择一组具有最大幅值的值,因而具有最大信噪比的值用于这种计算。
传感器相对于线圈的X、Y、Z座标系的取向可由许多方式来表达。然而,比较好的方法是,把取向表达为与仰角(pitch)、倾角(roll)和方位角(yaw)相关的三个角。所有这些涉及到设定“原点”或零位,其中,传感器的本地方向X′、Y′、Z′与线圈系统的基准方向X、Y、Z要对准(align)。仰角为传感器本地方向Z′和Z基准方向Z之间的夹角93(图2)。它可按下式计算Pitch(仰角)=arc cos(H′z′,z)方位角(yaw)为传感器Z′在X-Y平面上的投影和基准方向Y之间的夹角94,它可计算为
Yaw=arc tan(H′z′,y)在这种标记法中,方位角对零仰角条件是不确定的。倾角定义为传感器本地方向X′和系统基准方向Z之间的夹角95。它可计算为Roll=arc tan(H′y′z/H′x′,z)任何其它一组内部协调的角度,都可用来指定方向。而且,利用X、Y、Z基准座标系指定传感器本地座标系中的任何两个单位向量,就能完全指定该传感器的取向。作为举例X′=i(H′x′,x)+j(H′x′,y)+k(H′x′,z)其中,X′为方向X′中的单位向量;和i,j,k是基准方向X、Y、Z中的单位向量。
该系统也获取代表施加梯度场期间获取的传感器读数的数据。利用象上面产生均匀场期间所获取的数据,梯度场数据也是通过减去各传感器的零场值进行校正的。然后,把校正后的值作为表述传感器读数的数据,因而也表述不同线圈组施加梯度场期间的特定X′、Y′和Z′方向中的场分量。于是,如下面表II所示,Rx′,x表示传感器X′的读数,因而也表示当X轴线圈工作在反向或梯度场模式时传感器60本地方向X′中的场分量,Rx′,y表示Y轴线圈对工作在梯度场期间的本地方向X′中的类似分量,等等表II梯度场的检测元件读数检测元件 X线圈对Y线圈对Z线圈对X′—62 Rx′,xRx′,yRx′,zY′—64 Ry′,xRy′,yRy′,zZ′—66 Rz′,xRz′,yRz′,z当每个线圈组在梯度模式中驱动时,在传感器60处的总磁通矢量的大小由计算机46计算
|Bx|=sqrt[(Rx′,x)∧2+(Ry′,x)∧2+(Rz′,x)∧2]|By|=sqrt[(Rx′,y)∧2+(Ry′,y)∧2+(Rz′y)∧2]|Bz|=sqrt[(Rx′,z)∧2+(Ry′,z)∧2+(Rz′,z)∧2]其中|Bx|是当X轴线圈组34工作于梯度或反向模式时在传感器处的通量大小,|By|是当Y向线圈组36工作于梯度场时在传感器60处的通量矢量的大小,而|Bz|是当Z轴线圈组38工作时在传感器处的通量矢量的大小。
虽然如上所述可由梯度场传感器读数Rx′,x,…,Rz′,z容易地算出每个梯度场总通量矢量的大小,但是单由这些值还不能在由线圈决定的XYZ参考座标系内确定梯度场通量矢量的方向。这样,Rx′x,…,Rz′,z值代表沿传感器X′,Y′和Z′局部方向的分量。用归一化的均匀场值H′11,…,H′33以及每个线圈组的梯度场分量值来对每个线圈组得出总梯度场矢量在该线圈组轴上的投影,从而得出梯度场矢量在被驱动而产生梯度场的线圈组轴上的分量。
首先,系统计算总梯度场矢量与由同一个线圈对产生的归一化的单位幅度均匀场矢量之差矢量的大小。例如,由图6所示,系统计算差矢量dx的大小,该差矢量代表当X轴线圈组工作于梯度模式时的总通量Bx与归一化的单位长度矢量H′x(它代表当X轴线圈组工作于均匀场模式时沿通量方向的单位矢量)的矢量差。当然,后一矢量的方向沿线圈组的X轴。差矢量沿传感器的本地座标系X′,Y′,Z′的分量可直接由当X线圈组工作于梯度模式时获得的梯度场传感器值Rx′,x,Ry′,x,Rz′,x以及当同一线圈组工作于均匀场模式时获得的归一化的均匀场传感器值H′x′,x,H′y′,x,H′z′,x算得。这样|dx|=sqrt[(Rx′,x-H′x′,x)∧2+(Ry′,x-H′y′,x)∧2+(Rz′,x-H′z′,x)∧2]其中|dx|是差矢量的大小。由于单位矢量H′x、梯度场总通量矢量Bx以及差矢量dx的大小都是已知的,因此这些矢量之间的角度能够用余弦定理算出。特别,当x方向线圈组工作于梯度模式时在传感器处的总梯度场矢量Bx与单位矢量H′x之间的夹角Tx可计算为Tx=arccos[(1+|Bx|∧2-|dx|∧2)/(2*|Bx|)]由于X轴线圈组产生的均匀场具有沿X轴指向的通量,夹角Tx代表梯度场总通量矢量Bx与X轴之间的夹角。梯度场总通量矢量Bx沿X轴参考方向的分量可简单地表示为Rx=(|Bx|)cos(Tx)它表示当X轴线圈组34工作于梯度场或反向场模式时在传感器60处沿X方向的通量的分量。如上所述,当X方向的线圈组这样工作时的通量的分量大体上与沿X方向的位置成正比(图3)。于是X位置(毫米)=(Mx)(Rx)其中Mx是换算因子。换算因子代表有关通量Rx的X分量与沿X方向的距离的函数的斜率。也可对Mx加以定标,以计及传感器中各个元件的灵敏度以及各个放大通道的增益(假设所有这些量对于所有的传感器是相等的)。用另一种做法,可以用附加的灵敏度定标因子将从每个检测元件得出的电压VO62,VO64,VO66转换为磁通量分量的实际数值,从而将分立的定标因子用于来自不同检测元件的读数。
以精确的模拟方式计算差矢量和夹角,用以得出当Y方向线圈组工作于梯度模式时在传感器60处检测得的通量矢量By的Y轴分量RY以及得出当Z轴线圈工作于梯度模式时沿z方向的Z轴分量RZ。差矢量的大小可计算为|dy|=sqrt[(Rx′,y-H′x,y)∧2+(Ry′,y-H′y′,y)∧2+(Rz′,y-H′z′,y)∧2]和|dz|=sqrt[(Rx′,z-H′x′,z)∧2+(Ry′,z-H′y′,z)∧2+(Rz′,z-H′z′,z)∧2]其中,|dy|和|dz|是以与上述计算|dx|的相同方式算得的与Y轴和Z轴相关的差矢量大小。夹角TY和TZ以与计算TX的相同方式利用余弦定量算得TY=arccos[(1+|BY|∧2-|dy|∧2)/(2*|BY|)]TZ=arccos[(1+|BZ|∧2-|dz|∧2)/(2|BZ|)]Y方向和Z方向位置用与计算X方向位置完全相同的方式从这些分量和夹角算得。于是RY=(|BY|)Cos TYRZ=(|BZ|)Cos TZY位置=(MY)(RY)Z位置=(MZ)(RZ)这样,每当线圈循环经过零、均匀场和梯度场状态时,计算机46就重新计算传感器60的位置和取向。由于传感器60装在探头体52的远端56,因而由这些计算得出探头体远端的位置和取向。
在以前的讨论中,假设X方向位置与X方向分量RX的大小相关的换算因子MX对于所有的Y和Z值是完全恒定和完全均匀的。同样,假设Y方向位置与Y方向通量分量的大小相关以及Z方向位置与Z方向通量分量的大小相关的相应的换算因子也是恒定的。通过对仪器进行校准以得出在传感容积内各个位置的实际换算因子的对照图,可以提高定位准确度。在校准步骤中,当与某一轴相关联的线圈组作为反向或梯度场工作时,在各个X,Y和Z的已知值处测量沿该轴方向的场分量的实际大小。例如,当Y轴线圈组作梯度场工作时,在已知位置处测量Y方向分量。每个梯度场基本上对于相关联的线圈组的轴对称。因此,可以在包含线圈组轴的单个平面上的一些点处进行校准测量,并且可以假设把相同的值用于相应于实际测量点绕组的轴旋转的点。用测量得到的大小来得出适用于每个已知位置的实际换算因子。用同样的数据来得出每个方向的平均换算因子,这些值可用于整个传感容积,其做法是对每个给定方向找出一个因子,它能对校准中获得的所有数据拟合得最好。
在工作中,用平均换算因子以及梯度场分量RX、RY和RZ的测量值作为一次近似确定为传感器的X、Y和Z座标。然后用这些一次近似座标用补插法确定实际换算因子,补插是在最接近点的实际换算因子之间进行的,而在过程的校准步骤中对这些最接近的点作过测量。然后用得到的换算因子连同梯度场RX、RY和RZ的测量值来确定二次近似座标,再用二次近似座标通过对校准数据的补插来确定新的实际换算因子的值。重复这一步骤直至近似值收敛至不同座标的恒定值,这些值代表位置的最佳近似。
以完全相同的方式,计算机从基准标志器76上的传感器80的检测元件获得通量分量值。在线圈的每一循环中,计算机还驱动基准标志器的位置和取向。
计算机46从存储装置86中取出确定病人身体部分的图像的数据,并且将图像I的图形表示显示在监视器90上。由于在前面的成象步骤中获取的病人身体部分的图像包括了基准标志器76的描绘图形,因此显示的图像I将包含基准标志器76的描绘图形102,计算机还使监视器90在监视器屏幕上的某个位置显示基准标志器76的图形表示104。把图形104在相应于它在XYZ参考座标系中的位置处(即,相应于由磁场测量得出的基准标志的位置)显示出来。设置图形104的取向,使之相应于由磁场测量确定的基准标志器的取向。如果在监视器屏幕上基准标志的图形104与同一标志的描绘图形102对准,这就表明在监视器屏幕上显示的病人身体部分的图像其位置和取向相应于该身体部分在XYZ参考座标系内的位置和取向。
在显示步骤的一开始,病人身体部分的图像一般是对准失调的。这样,包含在图像中的基准标志器的描绘102与从磁的位置和取向数据得出的基准标志器的图形104不对准。使用者以人工方式向计算机发出指令,通过把合适的输入加至手动输入装置92、94和96以移动和转动图像,使图像重新取向直至描绘102与图形相重叠,从而这两个图形元素相互准确地对准。由于存储的图像包括在多个穿过身体部分的平面上的图像或“切片”,对图像的手动调节可以包括选择正确平面内的图像以真实的尺寸显示基准传感器的描绘图形102,使成象平面与传感器相割。用这些手动控制输入,使用者有效地将关系数据输入到系统中,通知系统有关图像的原始参考座标系与系统的X-Y-Z参考座标系之间的关系,而系统将图像转换成X-Y-Z参考座标系中的图像。
一旦进行了手动控制,使基准标志的描绘图形102和图形表示104互相重叠,还通过通常的数据输入装置(如键盘106)把“锁定”信号送至计算机,表明已完成这种对准。计算机在接收到“锁定”信号后就持续地保持图像中基准标志器的描绘图形102与由磁数据得出的基准标志器的表示图形104对准。这样,如果通过磁场测量获得的基准标志器76的位置和取向数据示出的基准标志器76的位置、取向或两者有改变,则计算机将在监视器90上相应地移动由磁场测量得出的基准标志的表示图形104,并将以相同的方式变换图像I,包括基准标志器的描绘图形102。这样,在治疗过程中病人就不必保持在一固定位置上。
例如,示于图1的特殊图像I是取自平行于Y-Z轴的切割平面的图像。如果由磁场测量得出的基准标志76的位置和取向数据指出自从图像起初对准以来病人的身体部分已沿+Y方向移动并且已绕+X轴作顺时针转动,那末计算机46将变换图像并使监视器90在其屏幕上显示经过相应方向位移和转动的图像。在现有技术中,变换存储的图像以显示二维和三维位移和转动的方法是众所周知的,因而不必在此详述。然而,这些方法通常用于显示响应于任意输入位移和位置而经变换的图像。这里,响应于由磁场监测系统测得的身体部分的真实位移和转动而运用变换技术。
这里,在监视器90屏幕上显示的病人身体部分的图像I的位置相应于它在座标系和线圈的XYZ参考座标中的真实位置和取向。计算机使显示器90至少显示探头50的远端56的图形表示108。图形表示108的位置和取向相应于用传感器60作磁场测量得出的远端56的位置和取向。由于图形表示108和图像I都显示在监视器90上,其位置和取向相应于探头的以及病人身体部分在X,Y,Z参考方向座标系中的真实位置和取向,因而在监视器屏幕上组合的图形表示108和图像I准确地描绘了探头远端56相对于病人身体部分的位置。而且,当探头远端56的位置和取向改变时,计算机也将在监视器屏幕上变更探头图形表示108的位置和取向。监视探头端部56和基准标志器76的图形表示可以是图画表示或者是诸如线段、箭头等示意性表示。
这样,系统将持续地显示探头端部与病人身体部分之间的真实关系。事实上,系统提供的结果类似于在医疗过程中对病人进行连续获取X光、CAT或MRI像以显示探头端部所得的结果。然而,按照本发明此实施例的磁场监测步骤不会干扰正在进行的医疗过程。不采用电离辐射。此外,由于使用的磁场很小,因而它们对检测区域内的磁性材料不施加任何显著的可觉察的力。此系统对于在传感容积内存在的磁性物质和/或杂散电磁场基本上也是不敏感的。一般,线圈提供至传感容积内位置的良好通路,以通过开口40到达病人,因此医生可进行所需的过程。此外,在过程进行中,出现危急情况时,可将线圈及其支撑结构立即移走以利于接近病人。
在许多医疗过程中,本系统提供准确位置信息以及把探头的图形表示叠加在病人身体的图像上的能力是有用的,而在脑内使用内窥镜器械的过程中,这种能力特别有价值。虽然内窥镜器械一般装备有诸如超小型电视摄像机、光导纤维等装置,它们能提供紧靠内窥镜远端周围的组织的图像,但这些图像不允许医生建立远端在脑中的位置,其原因就在于脑部的许多区域呈现相同的内窥镜图像。用上述方法,通过观察探头远端对于脑部图像的图形表示,医生能监视器械的位置和取向。这样,装备有探头的内窥镜器械可用于在脑中施行外科手术或其他治疗,用探头对内窥镜定位,从内窥镜外壳53的腔中移去探头,然后通过内窥镜腔送入常规的内窥镜外科器械。另一种做法是,内窥镜有两个腔,或一个大腔,从而让探头留在原地而把器械送入。也可以将传感器60装在内窥镜本身的远端,从而将内窥镜外壳53用作探头外壳。上述方法和设备也能用于身体的所有其他部位,例如,用于脊柱、心脏、耳鼻喉管和器官、泌尿道和器官、腹部和肺部。本发明的另外一些实施例提供了无座标系趋实体性系统。在通常的趋实体性系统中,由放置在病人体外并固定于身体的某一部分的座标系引导一刚性探头,从而探头的端部可被置于体内精确的位置处。这样,可将座标系固定于头部而使探头沿由座标系设置的预选直线前进。采用如上所述的系统,不需要座标系,探头相对于病人的位置由在病人身上探头处以及在基准标志器处测得的磁场分量确定。由于探头是刚性的,探头上的磁敏传感器可以放在探头的近端,在治疗过程进行中,该端保持在病人的体外。在此情形下,安排计算机根据传感器的位置和取向来计算探头端部的位置。
在按照本发明的又一种方法中,对多个身体部分(如病人在共有关节处相连的肢体174和175的部分)(图7),可以分别提供探头176A和176B。每个这样的探头类似于上述参照图1讨论过的基准标志器76。用带子180将探头176A固定于肢体174,从而使探头基本上保持在相对于肢体部分174内的骨头182的固定位置上。为确保更大的准确度可以直接把探头176固定至骨头,例如像用外科术将探头插入肢体一样,或者把探头连至针(未示出),这些针经肢体的软组织延伸至骨头。同样,把探头176B固定至肢体部分175,从而把探头保持在相对于骨头183的固定的位置上。这里,仍然用X光、CAT、MRI或其它成像方式获取这些身体部分的图像。图像包括探头176A和176B的图像以及骨头182和183的图像,并且还包括诸如周围软组织等其它身体部分的图像。
用上述参照图1—6的相同的方式,把图像输入并存储在与计算机46相关联的图像存储单元中。然后将肢体放入设备的传感容积32内,把包含在探头176A和176B中的传感器连至设备的驱动和放大单元72和82。根据上述参照图1—6的相同的方式进行磁场测量,由设备获得这些探头的位置和取向。同时监视两个传感器的位置和取向。如图8所示,表示两根骨头182和183的图像I182和I183由计算机显示在监视器屏幕90上。显示的图像包含探头176A的描绘图形186A以及探头176B的描述图形186B。用上述相同的方式,计算机还在相应于由磁场测量确定的探头位置处显示探头176A和176B的图形表示188A和188B。利用与计算机相关联的手动输入控制钮,使用者使计算机改变图像I182的位置,直至图像中探头176A描绘图形186A与基于磁场的图形表示188A重叠并与之对准,随后使用者输入一个锁定信号。使用者独立地手动调节图像I183的位置,直至探头176B的描绘图形186B与从磁场数据得出的图形表示188B重叠,并与之正确对准。此时,使用者又输入一个锁定信号。
一旦用这种方式把两个图像与磁场参考座标系对准,这两个身体部分就处于初始的参考位置。其后把由磁场测量检测得的探头176A或176B的移动取作显示相关的身体部分174或175的移动。这样,当探头176A移至在图7中以虚线表示的经移动的位置176A′时,计算机将相关的骨头182的图像I182变换至经变换的图像I′182(图8)。加至图像I182的转动和/或平移以构成经变换的图像I′182相应于探头从其起始位置176A转动和平动至其经移动的位置176A′。
根据从相关联的探头得出的位置和取向数据,独立地处理每个身体部分的图像特别当两根骨头182和183互相移动时,系统以真实的相对位置和取向显示这些身体部分的图像。实际上,系统提供了等效于诸如荧光分析成像系统等连续成像系统的系统,但没有其缺点。同样的系统也能显示一个或多个医疗器械(诸如上述参见图1的探头50的配备有传感器的一个或多个探头)的取向和位置。由于以相互之间以及相对于座标系和线圈的XYZ参考方向座标系的真实位置和取向显示出两个身体部分的图像,以及由于器械的图形表示也同样以真实的位置和取向显示出来,因而器械以相对于两个身体部分的特殊位置和取向呈现出来。
在图8中,所示图像I182和I183包含探头的描绘图形186A和186B。然而,在通过将探头的描绘图形与基于磁场的图形表示188A和188B对齐而使图像与XYZ座标系对准之后,就不需要再显示探头的描绘图形186或探头的图形表示188。此时,显示可只描绘所需区域,例如关节177。
在上述每种系统中,病人的图像与XYZ座标系对准,其做法是将由磁场得出的探头的图形表示或是与带有探头描绘图形的标光或是与图像内的标志手动对齐。然而,当用自动图形识别装置检测病人图像中的基准标志器或探头的描绘图形时,可自动进行这一步骤。在这样自动进行时,就不需要显示基准标志器或探头的可视的描绘图形或图形表示。在上述参照图1的系统中,在病人的身体部分上只设有一个基准标志器。于是图像数据与座标系的对准就取决于个标志的位置和取向数据。为了获得较高的准确度和较大的灵活性,在病人身体部分采用多个基准标志器,最好采用相距一定距离且不共线的三个基准标志器。如在图7-8的实施例中那样,当对多个可独立活动的身体部分定位时,可对每个部分放置多个探头。
换一种做法或采取其他做法,病人的身体部分可以采用除基准标志器之外的装置与XYZ参考座标系对准。在最简单的做法中,把病人的身体部分以已知的位置和取向固定至座标系30,而在监视器90上在相应于此已知位置的地方显示身体部分的图像I。换一种做法,病人的身体部分(如图1所示的头部)的位置和取向可以用机械的或其他非磁的测量装置确定,而用那些数据来确定图像I在屏幕90上的特定位置和取向。
在本发明的又一实施例中采用的传感器包括三个具有半导体芯片250形式的场检测元件(图9)。每个芯片包括一根或多根用磁致电阻材料做的伸长的条。每个这样的芯片对于沿条的方向的磁场分量敏感。传感器还包含一个可折叠的片状支撑物254,该支撑物有一电介质层,电介质层上有导体256。支撑物254最好用聚酰亚胺材料制成,其类型为通常用于可弯曲的带状电子线路的那种。支撑物254的形状起初大体如图9中所示的十字形。支撑物包括一矩形或正方形的中心板262,从中心板262的一边凸出的顶端板264以及从中心板的相对边凸出的一对侧板266和288。此支撑物还包括一条从中心板262与顶端板264相对一侧凸出的伸长的带266。
在中心板262上装有一块芯片250,另一块芯片装在顶端板264上,而第三块芯片250装在侧板266上。装在侧板266上的芯片的磁致电阻条252平行于装在顶端板264上的芯片的磁致电阻条252,但这两个磁致电阻条都与装在中心板262上的芯片的磁致电阻条垂直。在支撑物的另一块侧板268上装有一块对温度敏感的芯片258,该芯片可包含一个或数个热敏电阻、热致电阻元件或其他温度敏感元件。将一块放大用芯片260装在支撑物的伸长带266上,并使该芯片的接头处与中心板262相邻。可以采用通常适用于平面电路板的半导体安装和连接技术把这些元件装在支撑物上。在把这些元件安装在支撑物上之后,把支撑物折叠包在一个芯子270外。芯子270大体上具有长方体或立方体形状,最好用电介质材料制成。中心板262定位于支撑物的一面272上。顶端板264、侧板266和268以及带266沿芯子的边折叠,从而使这些部分定位于与272邻接的芯子的面上。把板和带紧固在芯子上的适当位置处。
在此情况下,已做好的传感器在立方体的三个正交的面上都有磁致电阻性的检测元件250,而三个元件的磁鼓电阻条沿三个正交的方向延伸。包括磁致电阻元件、温度传感器258和放大器260的整个传感器最好小于约5mm,而宽度和厚度小于约1mm则更好。
根据本实施例的传感器可装在伸长的探头体280中,从而使检测元件位于或接近探头体的远端,并使传感器的伸长的带266以及带上的导体256向探头体的近端延伸,以与外部的导体(示示出)相连。传感器的紧凑结构允许使用一个直径很小(以约0.8mm或更小为好)的探头体。按照此实施例的探头可用于上述方法。在此传感器中,每个检测元件对沿平行于传感器的一个方向的场分量敏感,而不是如上述的传感器那样对垂直于传感器面的场分量敏感。装在传感器内的放大器还提高了信噪比。否则,以上述相同方式使用探头。
在按照本发明的又一方面的一种方法中,采用图9和10的探头在病人体内作生理温度测量。如上所述,将探头插入病人体内,而探头的远端可在体内的一定范围内移动。当探头移动时,磁场监视系统在座标系的XYZ参考方向座标系内保持对远端位置的跟踪,从而每个温度测量与座标系内的一个位置相关联。这样,在计算机46的存储器内存储了温度对位置的分布图。这样一幅分布图最好连同病人的有关身体部分的图像一起显示或存储。如上所述,通过采用基准标志器或其他手段将这样一种图像与磁场设备的参考方向座标系对准。这样,由探头测得的温度可以标绘在身体部分的特征上,例如,可以将相应于不同温度的图像的各个部分以不同的明暗程度或色彩来表示,或者如图11所示那样示出,在身体图像上叠加的等值线。
参照图9-11描述的探头和方法可用于例如通过将探头经天然的身体孔穴插入身体以探测腔室(这些腔室包括肠道、泌尿道以及呼吸道)并检测温度局部升高的区域。这些区域时常伴随诸如恶性肿瘤等病理情况。此外,一旦这样一个区域被定位并精细地标绘,医生就能用相同的或不同的探头来对该区域作目视检查和/或进行活组织检查、手术、切除或其他治疗。
温度敏感元件258可以用对其他生理变量敏感的一个或多个元件作替代或补允,这些生理变量包括PH值、离子浓度等。对温度或对其他生理变理敏感的一个或数个元件也可与磁敏传感器分开来构成。
作为将标绘的生理数据叠加在身体部分的图像上而加以显示的一种替代做法,可以将标绘的数据单独以图形方式或其他方式显示。例如,示出一温度升高区域的图形表示甚至可以在不作叠加时也能显示肿瘤的尺寸和形状。最好在过程进行中实时地得出和显示生量数据的分布图,从而所显示的分布图(与身体部分的图像叠加或不叠加)可指引医生作进一步的标绘。这样,医生可首先在所需检查区域内数目有限的大间距位置上移动探头,以得出一幅粗略的分布图。这幅粗略的分布图可用来确定需要通过标绘小间距的点而作细致检查的区域。
在上述设备和方法的又一些变型中,省略了Z轴线圈和相应的均匀场和梯度场。这样,系统只采用来自两个线圈组的两个沿正交方向的均匀场和梯度场。然而,系统仍能以三维方式得出探头的位置和取向。X、Y和Z的均匀场的通量矢量相互正交,因此任一均匀场的通量矢量可以通过计算其它两个通量矢量的叉积而求得。换句话说,假想的第三个均匀场通量矢量在传感器的X′,Y′,Z′座标系内的分量可以由其它两个均匀场通量矢量在同一座标系中的实际分量算出。这样,假想的Z方向均匀场通量矢量的归一化分量H′m′,n可以由对X方向和Y方向场测得的实际的归一化分量算得
H′x′,z=(H′y′,x*H′z′,y-H′y′,y*H′z′,x)H′y′,z=(H′z′,x*H′x′,y-H′z′,y*H′x′,x)H′z′,z=(H′x′,x*H′y′,y-H′x′,y*H′y′,x)这样,只要在均匀场模式中运行X和Y线圈组就能获得所有的H′m′,n分量。
在上述采用三个实际线圈组的方法中,系统对每个线圈组计算反向场或梯度通量矢量在该线圈组轴上的投影的大小。然而,可以省去从一个线圈组得到的反向场通量矢量的测量值。为求出相应于省略线圈组的轴的位置,系统从两个剩下的线圈组中的一组计算通量矢量中的一个在第三根轴上的投影以及在该线圈组自身轴上的投影。这只要将对于一个线圈对的值(表II中的一列)复制为对于第三个线圈对的值就行了。这样,如果省去Z方向线圈,则系统设置RX′,Z=RX′,YRY′,Z=RY′,YRZ′,Z=RZ′,Y否则就用上述相同方式完成计算。然而,由于Y方向场的主要分量沿Y轴,而只有一个径向分量沿Z轴,因此,对于在任何离原点给定Z方向距离上,Z轴分量的大小RZ将是在相等的Y方向距离处的Y方向分量大小RY的-0.36倍。这样,Z方向的梯度dRZ/dZ约为Y方向梯度dRY/dY的-0.36倍,而用来将Z轴通量分量换算成z轴距离的换算因子MZ也要作相应调整。采用上述校准步骤,当Y轴线圈组被激励时,即可测量Z轴换算因子。
按照这一实施例变型的系统只需两个正交的线圈组,因而可以为医生提供更好的接近病人的方法。
在上述设备和方法中,各个线圈组是交替地被激励的,因而在任一给定时刻,只有一个线圈组在工作。然而,在本发明的其他实施例中使用的磁场的预定时序可以包括同时施加的两个或两多个场。同时施加的场最好以不同的频率改变。在此情形下,来自代表磁场的传感器的信号将包括以这些不同频率变化的独立的分量。每个这样的分量代表一个场的传感器读数。可以采用通常的滤波技术对这些分量加以分离,然后加以分开计算,从而为各别的场提供各别的读数。例如,每个频率的交流波形的幅值可以分开计算。在上述每一种变型中,磁场是由轴向放置的亥姆霍兹线圈施加的。然而,也可采用诸如永久磁铁或其它线圈装置等其它磁场产生装置。此外,还特别希望采用均匀场以及如上所述具有其分量随距离作线性变化(均匀梯度)的场。然而,还能采用磁场的其它组合。场不必非要包含均匀场,而能包含多个不同的场(这些场具有不同的、已知的梯度),只要能从采用这些场获得的传感器读数在数学上可对位置和取向消卷积。还可采用具有不均匀梯度的场以及一个或多个分量随距离作非线性变化的场。这些场的效果稍差些。此外,在本发明中测得的每个场分量的大小最好在检测容积内沿某一方向与距离成准线性关系。如在此揭示中所采用的,如果某个分量的大小可以用一个沿某一特定方向的距离(位置)的多项式函数形式a0q0+a1q1+a2q2+a3q3…anqn来表示,则该分量大小沿某一特定方向随距离是“准线性”的,其中,q是位置,而常数(零次幂)项、一次幂项或者这些项之和比起其它项来起主要作用。换句话说,当时检测容积内的任何距离q进行计算时,和(a0q0+a1q1)应该至少是和(a2q2+a3q3…anqn)的两倍。(a0q0+a1q1)至少是和(a2q2+a3q3…anqn)的五倍较好,是十倍则更好。在上述最佳配置中,在均匀场中,a0q0起主要作用,而其它项尽可能接近于零,在梯度场中,a1q1起主要作用,而所有其它项尽可能接近于零。如果一特殊的场包含了在确定位置或取向时是不测量的分量,那末这些额外的分量就不必是准线性的。
由于可利用上述特性的这些和其他的变化和组合而不背离由权利要求所确定的本发明,上述较佳实施例的描述应视为本发明的说明而不是限制。
权利要求
1.一种确定对象位置的装置,其特征在于,(a)磁装置(34,36,38),在传感容积(32)内产生多个不同的磁场,各个所述磁场至少具有一个分量,其幅值在所述传感容积范围内相对于基准方向上的距离呈准线性,所述幅值在所述传感容积(32)范围内至少某些位置上为非零;(b)控制装置(42),启动所述磁装置(34,36,38)按预定顺序产生所述磁场;(c)传感器(60),与对象连接,可在传感容积(32)内移动,并且适合在相对于传感器(60)的至少两个不同的本地方向上检测磁场分量;以及(d)计算装置(46),在所述磁场产生期间根据所检测的所述磁场分量确定所述传感器(60)的位置。
2.如权利要求1所述的装置,其特征在于,所述磁装置(34,36,38)包括在所述传感容积(32)内第一基准方向上产生第一基本均匀磁场,和在所述传感容积(32)内与所述第一方向不同的第二基准方向上产生第二基本均匀磁场,和在所述传感容积(32)内产生第一和第二梯度的装置,各个所述梯度场在所述传感容积(32)范围内具有预定的变化形式,所述控制装置用于启动所述磁装置(34,36,38)随所述均匀场一起按顺序产生所述梯度场,所述计算装置(46)用于在所述梯度场和所述均匀场产生期间根据所检测的所述磁场分量确定所述传感器(60)在所述传感容积内所述第一和第二基准方向上的位置。
3.如权利要求2所述的装置,其特征在于,所述磁装置包括在所述传感容积(32)范围内不同于所述第一和第二基准方向的第三基准方向上产生第三基本均匀磁场,和在所述传感容积(32)内产生具有预定变化形式的第三梯度场的装置,所述控制装置(42)用于启动所述第三磁装置随所述第一和第二均匀场和梯度场一起按顺序产生所述第三均匀场和梯度场,所述传感器(60)装置用于在相对于所述探头的三个不同的本地方向上检测磁场分量,所述计算装置(46)用于确定所述探头(60)在所述传感容积(32)内所述三个基准方向上的位置。
4.如权利要求1或2或3所述的装置,其特征在于,所述传感器(60)的最大尺寸小于约5mm。
5.如权利要求4所述的装置,其特征在于,所述最大尺寸小于约1mm。
6.如权利要求4所述的装置,其特征在于,所述传感器(60)适于置入病人体内。
7.如权利要求6所述的装置,其特征在于,所述传感容积(32)的最小尺寸至少约30cm。
8.如权利要求4所述的装置,其特征在于,所述传感器(60)包括具有面向不同方向的多个面和设置于所述面上的磁敏层的检测体(52)。
9.如权利要求2或3所述的装置,其特征在于,所述磁装置(34,36,38)适合产生所述梯度场,以使各个所述梯度场包括一其幅值随所述传感容积内一个所述基准方向上的基本上线性的单调梯度而变化的分量。
10.如权利要求1或2或3所述的装置,其特征在于所述磁装置(34,36,38)包括多对线圈,各对线圈置于所述传感容积(32)的相对两侧。
11.如权利要求10所述的装置,其特征在于,所述各对线圈(34,36,38)是基本上互相共轴设置使得各个所述线圈对的轴沿一所述基准方向延伸的探向线圈。
12.如权利要求1或2或3所述的装置,其特征在于,所述控制装置(42)用于使所述磁装置(34,36,38)处于其特征在于所述磁装置(34,36,38)在所述传感容积内不提供磁场的关闭状态,所述计算装置(46)包括当所述磁装置(34,36,38)处于所述关闭状态时记录所述传感器在所述本地方向上检测的磁场分量的本底值,并在所述磁装置(34,36,38)处于其它状态时根据所述本底值对所检测的分量进行校正的装置。
13.如权利要求1或2或3所述的装置,其特征在于,所述计算装置(46)包括根据所述传感器(60)检测的磁场分量确定所述传感器(60)在所述传感容积(32)内方向的装置。
14.一种确定取向和位置的装置,其特征在于,(a)磁结构(34,36,38),包括至少两对探向线圈,所述各对线圈基本上互相共轴,并确定一对子轴,设置在传感容积(32)的相对两侧,所述线圈对子轴基本上互相正交;(b)控制装置(42),有选择地启动各个所述取向线圈对使之处于均匀场状态,该对两个线圈具有同向电流,从而在所述传感容积内产生方向与该对子轴平行、强度基本上均匀的磁场,所述控制装置(42)还用于启动各个所述探向线圈对,使之处于梯度场状态,该对两个线圈具有反向电流,从而在所述传感容积内产生其分量的方向与该对子轴平行、且具有基本上线性的幅值梯度的磁场,所述控制装置用于启动所述磁结构使之任何时候只有一对线圈被驱动处于只有一个状态;(c)探头,可在所述传感容积内移动,所述探头(50)具有安装在其上的传感器装置(60),它在相对于该探头的至少两个不同的本地方向上测定磁场分量,由此,当线圈对处于所述均匀场状态时所述传感器装置(60)就会在所述本地方向上测定均匀场分量,而当所述线圈对处于所述梯度场状态时所述传感器装置(60)便会在所述本地方向上测定梯度场分量;以及(d)计算装置(46),根据所述均匀场分量确定所述探头(50)相对于所述对子轴的方向,并根据所述均匀场分量和所述梯度场分量确定所述探头(50)在传感容积(32)内的位置。
15.如权利要求14所述的装置,其特征在于,所述磁结构包括三对所述探向线圈(34,36,38),其特征还在于所述传感器装置(60)包括在互相正交的三个所述本地方向上测定磁场分量的装置。
16.如权利要求14所述的装置,其特征在于,所述探头(50)适合置入病人体内。
17.如权利要求16所述的装置,其特征在于,所述探头(50)是包括有近端和远端(56)的细长、柔性元件,所述传感器装置(60)邻近所述远端(56)设置。
18.如权利要求16所述的装置,其特征在于,所述探向线圈对(34,36,38)互相间隔开至少约30cm距离。
19.一种在传感容积(32)内确定对象位置的方法,其特征在于具有以下步骤(a)按预定顺序在所述传感容积(32)内产生多个不同磁场,各个磁场具有至少一个这样的分量,其幅值在传感容积(32)范围内相对于某一基准方向上的距离呈准线性;(b)在所述磁场产生期间在相对于传感器(60)的至少两个不同的本地方向上测定磁场分量;(c)根据所述测定的磁场分量确定所述传感器(60)在所述传感容积(32)内的位置。
20.如权利要求19所述的方法,其特征在于,所述产生磁场的步骤包括在所述传感容积(32)内第一和第二基准方向上产生第一和第二基本均匀磁场,和在所述传感容积(32)内产生第一和第二梯度场的步骤,各个所述梯度场在所述传感容器(32)内的一个所述基准方向上具有预定的变化形式,所述测定磁场分量的步骤包括在加所述均匀磁场期间测定均匀场分量,而在产生所述梯度期间测定所述传感器在所述本地方向上的梯度场分量的步骤,所述确定步骤包括根据所述测定的均匀场和梯度场分量计算所述传感器(60)在所述传感容积(32)内所述基准方向上位置的步骤。
21.如权利要求20所述的方法,其特征在于还包括在所述传感容积(32)内不同于第一和第二基准方向的第三基准方向上产生第三基本均匀磁场,和在所述传感容积(32)内所述第三基准方向上产生具有预定变化形式的第三梯度场的步骤,测定所述均匀场分量的所述步骤包括在产生所述第一、第二和第三均匀场期间测定在相对于所述探头(50)的三个不同本地方向上均匀磁场分量的步骤,测定所述梯度场分量的所述步骤包括在产生所述第一、第二和第三梯度场期间测定在所述三个本地方向上梯度场分量的步骤。
22.一种显示活体内探头(50)位置的方法,其特征在于包括以下步骤(a)在相对于活体的固定位置设置至少一个基准标志器(76);(b)获得包括所述至少一个基准标志器(76)的图标(102)在内的活体图像;(c)通过测定发往或发自所述探头(50)和所述基准标志器(76)的磁场来确定所述至少一个基准标志器(76)和所述探头(50)在公用基准座标系中的位置,从而得出所述探头(50)相对于所述至少一个基准标志器(76)的位置;(d)在与所述探头(50)在所述公用基准座标系中相对所述至少一个基准标志器(76)的位置对应的相对所述至少一个基准标志器(76)所述图标(102)的位置上将所述探头(50)的标示(108)叠加在所述活体的所述图像上。
23.如权利要求22所述的方法,其特征在于还包括在所述公用基准座标系内确定所述探头(50)和所述至少一个基准标志器(76)的方向的步骤,执行将所述监测探头(50)的所述标示叠加在所述活体的所述图像上的所述步骤,使得所述监测探头标示(108)相对于所述至少一个基准标志器(76)图标的方向与所述公用基准座标系中所述监测探头(50)相对于所述至少一个基准标志器(76)的方向对应。
24.如权利要求22所述的方法,其特征在于,所述叠加步骤包括在显示基准座标系中显示所述监测探头(50)的所述标示(108)以便所述监测探头标示(108)的位置与所述监测探头(50)在所述公用基准座标系中的位置相对应,并且在所述显示基准座标系中显示所述活体的所述图像以便所述各个基准标志器(76)标示(102)在所述显示基准座标系中的位置与这种基准标志器(76)在所述公用显示座标系中的位置相对应的步骤。
25.一种描绘身体部分(173)的方法,其特征在于包括以下步骤(a)在相对身体部分(174)的固定位置上设置一传感器(176a),并且在固定的基准座标系中确定所述传感器(176a)的方向;(b)得到身体部分在初始方向上的图像;(c)通过监测发往或发自所述基准传感器(76a)的磁场来监测所述传感器(176a)在所述基准座标系中方向,从而确定所述身体部分(174)在身体部分(174)从所述初始方向移动后的移动过的方向;(d)将所述身体部分(174)在所述初始方向上的所述图像变换为所述身体部分在所述移动过方向上的图像;(e)显示经变换的图像。
26.如权利要求25所述的方法,其特征在于,所述监测、变换和描绘步骤随所述身体部分(174)在移动方向范围内移动而重复进行,从而当身体部分(174)处于这种移动方向时,基本上实时显示与所述各个所述移动后的方向相对应的变换图像。
27.如权利要求25所述的方法,其特征在于,所述监测、变换和显示步骤在医治过程中进行,并执行所述显示步骤使得显示图像可由进行医治的医师观察,其特征在于医师在治疗过程中可在任何时候观察与身体部分(174)当前实际方向相对应的变换图像。
28.如权利要求26或27所述的方法,其特征在于,所述设置传感器(176)的所述步骤包括设置固定了各个多个身体部分(174,175)的分立传感器(176a,176b)的步骤,所述得到图像和确定传感器(176)取向的步骤包括当所述身体部分(174,175)处于各自的初始方向时得到所有所述身体部分(174,175)图像和确定所有所述传感器(176)取向的步骤,所述监测所述传感器(176)取向和确定身体部分(174,175)移动后方向的步骤包括监测所有所述传感器(176)方向和确定各个所述身体部分(174,175)独立移动后方向的步骤,所述变换步骤包括将各个所述身体部分(174,175)的图像变换成该身体部分(174,175)在其移动后方向上的图像的步骤,所述显示步骤包括将所有所述经变换图像一起显示,以便所述经变换图像互相之间的方向与所述身体部分互相的取向相对应的步骤。
29.如权利要求28所述的方法,其特征在于还包括当所述身体部分(174,175)处于所述初始方向时确定所述传感器(176)在所述固定的基准座标系中的位置,而当所述身体部分(174,175)处于所述移动后方向时确定所述传感器(176)在所述基准座标系中位置的步骤,所述变换和显示所述图像的步骤包括对所述身体部分的所述显示出的经变换图像互相之间的位置进行调整以补偿所述身体部分(174,175)之间的相对移动,从而所述显示的图像正确表示所述身体部分(174,175)互相之间位置的步骤。
30.如权利要求28所述的方法,其特征在于,所述身体部分是在一共同关节(177)处互相连接的骨头(182,183)。
31.如权利要求27所述的方法,其特征在于,还包括在医疗仪器上设置仪器探头和通过监测发往或发自所述仪器探头的磁场来监测所述仪器在所述治疗过程中的方向,并结合所述身体部分(174)的所述图像来显示所述仪器的标示,以便所述仪器标示相对所述身体部分(174)的所述显示图像的方向与所述仪器相对所述身体部分(174)的方向相对应的步骤。
32.如权利要求31所述的方法,其特征在于,还包括当所述身体部分(174)和所述仪器处于所述初始方向时确定所述传感器(176)和所述仪器探头在所述固定的基准座标系中位置,而当所述身体部分(174)和所述仪器处于所述移动后方向时确定所述传感器(176)和所述仪器探头在所述固定的基准座标系中位置,而当所述身体部分(174)和所述仪器处于所述移动方向时确定所述传感器(176)和所述仪器探头在所述基准座标系中位置的步骤,显示所述图像和所述仪器所述标示的步骤包括对所述仪器的所述标示相对所述身体部分的所述显示的经变换图像的位置进行调整,以使所述显示的图像和标示正确表示所述仪器相对所述身体部分(174)位置的步骤。
33.一种标绘活体生理学参量的方法,其特征在于,还包括以下步骤(a)在活体内的位置范围中移动探头(50),同时通过监测发往或发自所述探头(50)的磁场来确定所述探头(50)在活体内各个位置上的位置;(b)在所述移动步骤期间,利用所述探头上的换能器(258)测定所述生量学变量,以便在至少一个所述位置上得到测量值;(c)使各个所述参量的所述测量值与测定这种值时活体内的所述探头(50)的位置相关。
34.如权利要求33所述的方法,其特征在于,测定所述生理学变量的所述步骤在所述探头(50)的多个所述位置上进行,从而提供多个测量值。
35.如权利要求34所述的方法,其特征在于还包括在图像显示器(90)上显示所述测量值,使显示器内各值的位置与活体内的位置相对应的步骤。
36.如权利要求35所述的方法,其特征在于还包括使上述步骤循环重复以提供一系列基本上实时标绘参量变化的所述可见标示的步骤。
37.如权利要求33所述的方法,其特征在于所述生量学参量是温度。
38.一种内窥镜装置,其特征在于,(a)在磁场基准座标系中产生磁场,使得所述磁场的至少一个参量相对于所述磁场基准座标系中点与点间的距离呈准线性的装置(34,36,38);(b)适于置入病人体内的探头(50);(c)安装在所述探头(50)上的传感器(60),当所述探头(50)置入病人体内时监测所述探头(50)处的磁场分量,并送出一个或多个表示所述分量的传感器信号;(d)计算装置(46),当所述探头置入病人体内时根据所述传感器信号确定所述探头(50)在所述基准座标系内的位置,并根据所述传感器信号提供表示所述探头在所述磁场基准座标系中位置的探头位置数据。
39.如权利要求38所述的装置,其特征在于,还包括叠加装置,将表示所述探头(50)的图像(108)叠加在其上显示病人身体图像,以使表示所述探头(50)的图像(108)叠加在依赖于所述确定装置提供的所述探头位置数据的所述身体的某一位置上。
40.如权利要求39所述的装置,其特征在于,所述探头(50)包括具有近端和远端(56)的细长结构(52),所述传感器(60)安装在所述远端(56)。
41.如权利要求39所述的装置,其特征在于,所述探头(50)还包括靠近所述结构(52)的所述远端(56)安装的局部成像装置,以得出所述远端(56)周围的身体部分图像。
42.如权利要求39所述的装置,其特征在于,所述叠加装置(46)包括接收在身体图像基准座标系而非磁场基准座标系中表示所述身体图像的身体图像数据的装置,接收表示所述身体图像基准座标系和所述磁场基准座标系之间关系的关系数据的装置(92,94),和对至少一个所述探头位置数据和所述身体图像数据进行变换的装置,提供在公用基准座标系中的所述探头位置数据和所述身体图像数据。
43.如权利要求42所述的装置,其特征在于所述确定装置(46)还包括确定所述探头在所述磁场基准座标系中方向的装置。
44.如权利要求39所述的装置,其特征在于所述产生磁场的装置(34,36,38)包括产生所述磁场的装置,在预先选定序列的样式当中使所述至少一个参量在不同时刻随多个不同样式变化。
45.如权利要求44所述的装置,其特征在于所述产生磁场的装置(34,36,38)用于在预先选定的传感范围中产生基本上具有方向和强度的至少一个均匀场,和产生一个或多个梯度场,每个场至少有一个参量在所述传感范围内基本上随距离呈线性变化。
46.一种在病人体内操纵探头的方法,其特征在于包括以下步骤(a)在磁场的基准座标系中产生磁场,以使所述磁场的至少一个参量相对于所述基准座标系中点与点间的距离呈准线性;(b)将探头(50)置入病人体内,使得所述探头处于所述磁场中;(c)所述探头(50)置入病体内时,检测所述探头(50)处的磁场,送出表示所述探头(50)处这种磁场的至少一个参数的传感器信号;(d)当所述探头(50)置入病人体内时,根据所述传感器信号确定所述探头在所述磁场基准座标系中位置,并提供表示所述探头(50)在所述磁场基准座标系中位置的探头位置数据。
47.如权利要求45所述的装置,其特征在于还包括将所述探头(50)的标示叠加在其上来显示病人身体图像,以便根据所述探头位置数据在所述身体图像的位置上叠加所述探头(50)的标示(108),并观察所述叠加的标示来监测探头(50)在病人体内位置的步骤。
48.如权利要求47所述的方法,其特征在于还包括通过所述探头监测或影响病人体内状态的步骤。
49.如权利要求48所述的方法,其特征在于所述插入探头(50)的步骤包括将所述探头(50)插入病人身体中的步骤,以便所述探头置入病人脑部,所述监测或影响状态的步骤包括在脑部进行外科手术的步骤。
50.如权利要求47所述的方法,其特征在于所述确定步骤包括根据所述传感器信号确定所述探头(50)在所述磁场基准座标系中取向,并提供表示这种取向的取向数据的步骤,所述显示步骤包括将所述探头(50)的标示(108)叠加在表示病人身体的图像上的步骤,以便所述探头相对所述身体图像的所述标示方向取决于所述取向数据。
51.一种磁敏传感器,其特征在于包括一片状支撑物(254),和设置在所述支撑物(254)上的多个磁敏元件(250),每一个磁敏元件具有预先选定的敏感方向,所述片状支撑物(254)拆迭成所述磁敏元件(250)互相不共面。
52.如权利要求51所述的传感器,其特征在于,所述支撑物(254)包括一中心板(262)、在第一边与所述中心板(262)相交的末端板(264),和在所述第一边的横向上即第二边与所述中心板(262)相交的第一侧板(268),所述磁敏元件(250)设置在所述中心板(262)、第一侧板(268)和末端板(264)上,所述末端板(264)和所述第一侧板(268)经折迭,沿所述第一和第二边与所述中心板(262)的平面分开。
53.如权利要求52所述的传感器,其特征在于,核心为矩形实心体形式,所述中心板(262)置于所述核心的一个面上,所述末端板(264)和第一侧板(268)置于所述核心与所述一个面相邻的其它面上。
54.如权利要求53所述的传感器,其特征在于所述支撑物包括与所述第二边相对的第三边处与所述中心板(262)邻接的第二侧板(268),所述第二侧板(268)覆盖在所述核心的另一面上。
55.如权利要求53所述的传感器,其特征在于还包括一安装在所述支撑物上适于测量生理学变量的生量学传感元件(258)。
56.如权利要求53所述的传感器,其特征在于,所述支撑物包括一在某一边(262)处与所述中心板相接的细长条(266),所述细长条(266)沿所述核心的一个面延伸,所述细长条(266)的一端远离所述中心板(262)从所述核心向外伸出。
57.如权利要求56所述的传感器,其特征在于所述支撑物(254)其上有导体(256),至少某些所述导体(256)沿所述细长条(266)延伸,所述磁敏元件(250)与所述支撑物(254)上的所述导体(252)连接。
58.一种制作磁敏传感器的方法,其特征在于包括以下步骤将各具敏感方向的多个磁敏元件(252)固定到通常呈平面的片状支撑物(254)上,然后将所述支撑物(254)折叠为带不同磁敏元件(252)的所述支撑物(254)的各部分位于不同的平面。
59.如权利要求58所述的方法,其特征在于,所述支撑物(254)包括中心板(262)和由此延伸的多块其它板(264,266),所述折迭步骤包括在核心某一个面上对所述中心板(262)定位,并使所述其它板(264,266)折迭为所述核心的其它面的步骤。
全文摘要
一种磁方式位置和取向的确定系统,所利用的磁场最好是包括位于传感容积相对两侧的探向线圈(34,36,38)产生的均匀磁场和这些线圈产生的梯度场。在加这些磁场期间通过监测该探头处检测出的磁场分量,可以导出该探头(50)在磁场中的位置和取向,可以将探头(50)的标示(108)叠加在单独得到的对象图像上,来显示探头(50)相对于对象的位置和取向。
文档编号A61B1/00GK1132470SQ9419366
公开日1996年10月2日 申请日期1994年10月6日 优先权日1993年10月6日
发明者戴维E·埃可, 伊恩·麦克诺迪, 罗伯特C·帕契可, 维恩·格兰德纳 申请人:巴依奥桑斯股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1