改性生物质的电磁处理的制作方法

文档序号:1552023阅读:282来源:国知局
专利名称:改性生物质的电磁处理的制作方法
改性生物质的电磁处理
背景技术
1. 才支术领域
本发明涉及一种处理改性生物质流的方法。所述处理得到易于在温和 条件下由生物质随后转化成气体、液体燃料和/或化学品的敏化或活化材 料。
使生物质对电磁场敏感所必要的生物质改性可通过基因改性生物质或 通过使生物质与优选包含电磁材料納米颗粒的溶液接触而实现。
本发明的独立实施方案为使生物质转化成可用于生产液体燃料或特定 化学品和/或聚合物的特定结构单元化学品。
2. 相关领域描述
随着容易获得的原油供应的缩减,对其他来源的液体燃料的需要曰益 增长。某些碳基能源载体材料可大量获得。实例包括煤、焦油砂、页岩油 和生物质。已开发出将这些能源栽体材料转化成液体燃料的方法。这类方 法的实例包括热解和水热转化。然而,这些方法需要较苛刻的条件,这些 条件会对产品质量有不利影响。因此,需要开发出敏化("活化,)的碳基能源 载体材料如生物质使得它们更易于在较温和条件下转化成液体燃料和/或 化学品。 发明概述
本发明涉及一种使生物质易于在温和条件下液化或解聚的方法,该方 法包括下列步骤
a) 将易于吸收电磁辐射的材料引入生物质而形成吸收辐射的生物质;
b) 使吸收辐射的生物质经受电磁辐射而形成活化生物质。 说明性实施方案的描述
下文为本发明某些实施方案的描述,仅举例说明。 化学反应通常需要参与的分子越过称作活化能的能垒。因此,需要高活化能的化学反应倾向于緩慢进行,因为反应混合物中存在的分子中仅一 小部分具有要求的活化能。同理,化学反应随着反应温度升高而进行地更 快,因为在较高温度下具有要求活化能的分子比例增加。
催化可定义为导致活化能降低的与反应分子的相互作用。非均相催化 通过将分子吸附于表面位置破坏电子结构和这些分子性质而起作用。遗憾 的是,大量分子不能到达某些位置。
或者,在分子中选择性地活化参与化学反应的化学键。这可通过用记
号(例如K+—C-O)在分子中"标记"位置,然后4吏用电能和/或磁能来活 化这些标记的位置。
在最宽的方面,本发明涉及一种使生物质易于在温和条件下液化或解 聚的方法,该方法包括下列步骤
a) 将易于吸收电磁辐射的材料引入生物质而形成吸收辐射的生物质;
b) 使吸收辐射的生物质经受电磁辐射而形成活化生物质。
本文使用的术语"电磁辐射"包括由振荡电场和磁场组成的辐射。该 术语包括雷达波和无线电波、微波、AC加热和振荡磁场。
易于吸收电磁辐射的材料的选择取决于待使用的电磁辐射的类型。最 合适的辐射形式包括雷达波和频率为lkHz至5MHz的振荡磁场。
易于吸收电磁辐射的材料包括金属,尤其是过渡金属。因为其成本而 优选非贵过渡金属。合适的金属包括Fe、 Mn、 Zn、稀土。尤其优选Fe。
可通过将可溶性化合物溶于合适溶剂中并用该溶液浸渍生物质而将所 需金属引入生物质中。本文使用的术语"浸渍"包括其中使金属扩散^ 生物质的任何方法并包括诸如浸泡、早期润湿浸渍(incipient wetness impregnation)等的技术。
优选金属化合物为水溶性的并且将水用作溶剂。
在一个优选实施方案中,将金属通过产生生物质的植物本身引入生物
引入其聚合物结构中。由这种遗传工程改造的植物产生的:物质自动包含 对辐射敏感的材料。
本发明方法优选^f吏用光合成来源的生物质。尤其优选包含纤维素和/或木素纤维素的生物质。认为浸入包含(木素)纤维素的生物质的金属优选 位于(木素)纤维素的P-1键附近。当使该吸收辐射的生物质经受电磁辐射
时,|3-1键将被选择性活化。因为M键提供了(木素)纤维素的吡喃葡糖单
元之间的连接,所以这些键的活化导致(木素)纤维素的解聚。应理解的是 本发明并不拘泥于该理论。
在一个优选实施方案中,用于活化吸收辐射的生物质的电磁辐射具有
微波范围内的频率。该频率优选为300MHz至300GHz,更优选1-100 GHz。 产生该类型辐射的技术已开发很好,所以该辐射广泛用于诸如雷达和微波 炉的应用中。可将用于产生微波辐射的所谓磁控管设计成具有65%或更高 效率。
在另一实施方案中,易于吸收电磁辐射的材料包括磁性材料纳米颗粒 并且电磁辐射包括振荡磁场。合适的磁性材料为顺磁材料、铁磁材料或超 顺磁材料。铁磁材料的实例包括金属Co、金属Fe和Fe304(=FeO.Fe203)。 超顺磁材料为粒度非常小的(铁)磁性材料。由于粒度小,颗粒磁矩方向改 变所需的能量接近环境热能。因此,颗粒以显著速率随机变换方向。
可经由湿法接触(浸渍、浸泡或涂覆)和/或干法接触(将颗粒与生物质一 起混合、磨碎、研磨、流化、流化研磨)将磁性颗粒引入生物质中。由此, 可将磁性颗粒涂覆于生物质颗粒表面或甚至深入生物质颗粒中。
本文使用的术语"浸渍"包括其中使金属扩散进入生物质或吸附于生 物质上的任何方法并包括诸如浸泡、早期润湿浸渍等的技术。
当使对磁场敏感的生物质经受高频振荡磁场时,生物质中的磁性颗粒 产生振荡运动。这导致生物质的局部加热,由此使生物质中的化学键活化。
一旦活化,生物质就可在较温和条件下液化或解聚。本文使用的术语 "温和条件,,指20-500。C的温度和1-50巴的压力。在一个优选实施方案 中,温和条件包括环境温度至350。C的温度和巴的压力。
取决于所需产品,使所述活化生物质所经受的温和条件可包括水热转 化条件、温和热解条件、温和水解条件、温和加氢转化、加氢裂解或加氢 处理条件、催化裂解或酶转化条件。
在又一实施方案中,原料为可在生物质材料或活化生物质材料的热解或热转化中获得的生物质液体。
因此,在该实施方案中,本发明涉及一种使生物质液体易于在温和条
件下解聚的方法,该方法包括下列步骤
液体;
b)使吸收辐射的生物质液体经受电磁辐射而形成活化生物质液体。
将生物质液体用作原料提供了如下优势,将易于吸收电磁辐射的材料
混合而进行。该液体源可以为溶液或例如在磁性颗粒情况下为悬浮液。 随后的辐射〗吏生物质液体转化成活化生物质液体,该活化生物质液体
可通过在较温和条件下反应而转化成有用的燃料或特定化学品。
在一个具体实施方案中,使吸收辐射的生物质在连续工艺中经受电磁辐射。例如,可将吸收辐射的生物质在连续带上输送通过其中产生合适电 磁辐射形式的区域。该区域可以为连续辐射反应器或该反应器的一段。
可进一步将活化生物质转化成液体和/或气体产物。该进一步转化可通 过已知技术如热解或水热转化完成,应理解由于前面的活化,这些技术才 可以在比未进行生物质活化的情形温和的条件下进行。
热解或水热转化可在分开工艺步骤中进行,优选在活化步骤之后立即 进行。例如,可将吸收辐射的生物质置于穿过电^兹辐射区域并随后通过具 有适合水热转化或热解条件的区域的输送带上。
在又一实施方案中,活化步骤和热解或水热转化在一个>^应器中进行。 例如,水热转化反应器或热解反应器可安装有产生电磁辐射的装置。向反 应器供入吸收辐射的生物质。使反应器中的条件分别在适于水热转化或热 解的范围内,同时使生物质经受电磁辐射。
因此,通过参考上迷某些实施方案描述本发明。应意识到这些实施方 案可进行本领域熟练技术人员所熟知的各种改进和替换形式。
除了上述那些改进外,可在不偏离本发明主旨和范围内对本文所述的 組成和技术做许多改进。因此,虽然已描述了具体实施方案,但这些仅为 实例并不限制本发明范围。实施例
实施例1(湿法磨碎/固体添加剂)
首先将生物质材料(白松木片)用机械混合机粉碎5分钟而使粒度降至 约5mm。在行星式高能研磨机(Pulverisette 6)中将该木料与舍生高铁 (Fe二40。/o)的铝土矿(铝土矿与木料之比为5:100)—起湿法磨碎[基于木料的 干燥重量(150。C)为15重量%的浆料。使磨碎的浆料经受微波辐射,由此 活化生物质材料。
制备下列参考样品 未用孩t波处理的上述湿法磨碎的木料/铝土矿浆料。 用微波处理的湿法磨碎的木料。
上述浆料的干燥样品的热分解4吏用Mettler-Toledo TGA/SDTA851e热 天平进行。将样品(10-15mg)装入铝坩埚(70ml)中并在氩气流(30ml/min)下 以5。C/min的加热速率从25。C加热到700oC。
由相应的重量-温度曲线计算出DTG曲线。以样品的初始重量(在25。C 下)与剩余重量(在600。C下)之差确定减少的总重量。在木料-铝土矿混合物 的情况下,减少的总重量通过初始重量与剩余重量减去铝土矿的量确定, 假设铝土矿在实验过程中不变。
微波处理的木料-铝土矿样品显示出比各参考样品高的重量减少,同时 该樣t波处理的木料-铝土矿样品的分解在比各参考材料低的温度下开始。
在微波处理之后,使磨碎的木料-铝土矿浆料在200。C的高压釜中进行 水热处理2小时。
来自该水热处理的产物产生与一些固体残留物一起的两种液相,含有 可溶性有机化合物的水相和轻经相。与对各参考材料观察到的相比,最大
量的轻油相由该微波处理的木料-铝土矿材料产生。 实施例2(湿法磨碎/固体添加剂)
重复实施例1,不同之处在于用"红泥,,代替铝土矿,"红泥"为来 自由铝土矿生产铝的拜尔工艺的废产品。该废产品的名称源自其高的氧化 铁含量。它还含有钛、钠、硅石和其他杂质。因其在拜尔工艺过程中已经 受氢氧化钠处理而腐蚀性极高,pH值超过13,2。在行星式高能研磨机(Pulverisette 6)中将该木料与"红泥"("红泥" 与木料之比为5:100)—起湿法磨碎[基于木料的干燥重量(150。C)为15重量 %的浆料1。使磨碎的浆料经受微波辐射,由此活化生物质材料。
制备下列参考样品 未用微波处理的上述湿法磨碎的木料-"红泥,,浆料。 用孩i波处理的湿法磨碎的木料。
上述浆料的干燥样品的热分解使用Mettkr-Toledo TGA/SDTA851e热 天平进行。将样品(10-15mg)装入铝坩埚(70ml)中并在氩气流(30ml/min)下 以5°C/mm的加热速率从25。C加热到700。C。
由相应的重量-温度曲线计算出DTG曲线。以样品的初始重量(在25。C 下)与剩余重量(在600。C下)之差确定减少的总重量。在木料-"红泥,,混合 物的情况下,减少的总重量通过初始重量与剩余重量减去"红泥"的量确 定,假设"红泥"在实验过程中不变。
微波处理的木料-"红泥,,样品显示出比各参考样品高的重量减少,同 时该微波处理的木料-"红泥,,样品的分解在比各参考材料低的温度下开始。
在微波处理之后,使磨碎的木料-"红泥,,浆料在200。C的高压釜中进 ;f亍水热处理2小时。
来自该水热处理的产物产生与一些固体残留物一起的两种液相,含有 可溶性有机化合物的水相和轻烃相。与对各参考材料观察到的相比,最大 量的轻油相由该微波处理的木料-"红泥"材料产生。 实施例3(湿法磨碎/可溶性添加剂)
重复实施例l,不同之处在于用疏酸铁代替铝土矿。
在行星式高能研磨机(Pulverisette 6)中将该木料与硫酸铁(硫酸铁与木 料之比为5:100)—起湿法磨碎[基于木料的干燥重量(150。C)为15重量%的 浆料。使磨碎的浆料经受微波辐射,由此活化生物质材料。
制备下列参考样品 未用微波处理的上述湿法磨碎的木料/硫酸铁浆料。 用微波处理的湿法磨碎的;Mt。
上述浆料的干燥样品的热分解使用Mettler-Toledo TGA/SDTA851e热天平进行。将样品(10-15mg)装入铝坩埚(70ml)中并在氩气流(30ml/min)下 以5。C/min的加热速率从25。C加热到700。C。
由相应的重量-温度曲线计算出DTG曲线。以样品的初始重量(在25°C 下)与剩余重量(在600。C下)之差确定减少的总重量。在^-硫酸铁混合物 的情况下,减少的总重量通过初始重量与剩余重量减去;P克酸铁的量确定, 假设硫酸铁在实验过程中不变。
微波处理的木料-硫酸铁样品显示出比各参考样品高的重量减少,同时 该微波处理的木料-硫酸铁样品的分解在比各参考材料低的温度下开始。
在微波处理之后,使磨碎的木料-硫酸铁浆料在200。C的高压釜中进行 水热处理2小时。
来自该水热处理的产物产生与一些固体残留物一起的两种液相,含有 可溶性有机化合物的水相和轻烃相。与对各参考材料观察到的相比,最大 量的轻油相由该微波处理的木料-硫酸铁材料产生。 实施例4(湿法磨碎/固体添加剂)
重复实施例1,不同之处在于用氟碳铈镧矿(一种主要由铈和镧与较少 量的其他稀土组成的稀土碳酸盐矿物)代替铝土矿。
在行星式高能研磨机(Pulverisette 6)中将该木料与氟碳铈镧矿(氟碳铈 镧矿与木料之比为5:100)—起湿法磨碎[基于木料的干燥重量(150。C)为15 重量%的浆料]。使磨碎的浆料经受微波辐射,由此活化生物质材料。
制备下列参考样品 未用微波处理的上述湿法磨碎的木料/氟碳铈镧矿浆料。 用微波处理的湿法磨碎的木料。
上述浆料的干燥样品的热分解使用Mettler-Toledo TGA/SDTA851e热 天平进行。将样品(10-15mg)装入铝坩埚(70ml)中并在氩气流(30ml/min)下 以5。C/min的加热速率从25°C加热到700oC。
由相应的重量-温度曲线计算出DTG曲线。以样品的初始重量(在25。C 下)与剩余重量(在600。C下)之差确定减少的总重量。在木料-氟碳铈镧矿混 合物的情况下,减少的总重量通过初始重量与剩余重量减去氟碳铈镧矿的 量确定,假设氟碳铈镧矿在实验过程中不变。微波处理的^#-氟碳铈镧矿样品显示出比各参考样品高的重量减少, 同时该微波处理的木料-氟碳铈镧矿样品的分解在比各参考材料低的温度 下开始。
在微波处理之后,使磨碎的木料-氟碳铈镧矿浆料在200。C的高压釜中 进行水热处理2小时。
来自该水热处理的产物产生与一些固体残留物一起的两种液相,含有 可溶性有机化合物的7jC相和轻经相。与对各参考材料观察到的相比,最大 量的轻油相由该微波处理的木料-氟碳钟镧矿材料产生。 实施例5(湿法磨碎/可溶性添加剂)
重复实施例3,不同之处在于由另一生物质材料玉米秸代替木料。
在行星式高能研磨机(Pulverisette 6)中将玉米秸材料与硫酸铁(硫酸铁 与玉米秸之比为5:100)—起湿法磨碎[基于玉米秸的干燥重量(150。C)为15 重量%的浆料]。使磨碎的浆料经受微波辐射,由此活化生物质材料。
制备下列参考样品 未用微波处理的上述湿法磨碎的玉米秸/石克酸铁浆料。 用孩i波处理的湿法磨碎玉米秸。
上述浆料的干燥样品的热分解使用Mettler-Toledo TGA/SDTA851e热 天平进行。将样品(10-15mg)装入铝坩埚(70ml)中并在氩气流(S0m!/min)下 以5。C/min的加热速率从250C加热到700°C。
由相应的重量-温度曲线计算出DTG曲线。以样品的初始重量(在25°C 下)与剩余重量(在600°C下)之差确定减少的总重量。在玉米秸-硫酸铁混合 物的情况下,减少的总重量通过初始重量与剩余重量减去石克酸4失的量确定, 假设硫酸铁在实验过程中不变。
微波处理的玉米秸-硫酸4失样品显示出比各参考样品高的重量减少,同 时该微波处理的玉米秸-疏酸铁样品的分解在比各参考材料低的温度下开 始。
在微波处理之后,使磨碎的玉米秸-硫酸铁浆料在200。C的高压釜中进 行水热处理2小时。
来自该水热处理的产物产生与一些固体残留物一起的两种液相,含有可溶性有机化合物的水相和轻烃相。与对各参考材料观察到的相比,最大 量的轻油相由该微波处理的玉米秸-硫酸铁材料产生。
实施例6(干法磨碎/固体添加剂)
首先将生物质材料(白松木片)用机械混合机粉碎5分钟而使粒度降至 约5mm。在行星式高能研磨机(Pulverisette 6)中将该木料与含生高铁 (Fe-40。/。)的铝土矿粉末(铝土矿与;Mf之比为5:100)—起干法磨碎。使所得 干法磨碎的混合物浆料化并经受微波辐射,由此活化生物质材料。
制备下列参考样品 未用微波处理的上述干法磨碎的;1^阡/铝土矿浆料。 用孩史波处理的干法磨碎的木料。
使用上文实施例1中描述的热分解方法,微波处理的干法磨碎的木料-铝土矿样品的重量减少比各参考样品的高,同时该微波处理的干法磨碎的 木料-铝土矿样品的分解在比各参考材料低的温度下开始。
在微波处理之后,使干法磨碎的木料-铝土矿粉末在200°C的高压釜中 进行水热处理2小时。
来自该水热处理的产物产生与一些固体残留物一起的两种液相,含有 可溶性有机化合物的水相和轻烂相。与对各参考材料观察到的相比,最大
量的轻油相由该孩"皮处理的木料-铝土矿材料产生。
实施例7(浸渍)
使由疏酸铁溶液浸渍的木料颗粒经受微波辐射,由此活化生物质材料。
制备下列参考样品 未用孩"皮处理的上述石危酸《失浸渍的木料颗粒。 用微波处理的木料。
使用上文实施例1中所述的热分解方法,微波处理的疏酸铁浸渍的木 料样品的重量减少比各参考样品的高,同时该微波处理的硫酸铁浸渍的木 料样品的分解在比各参考材料低的温度下开始。
在孩i波处理之后,使硫酸铁浸渍的木料样品浆料化并在200°C的高压 釜中进行水热处理2小时。
来自该水热处理的产物产生与一些固体残留物一起的两种液相,含有可溶性有机化合物的7jC相和轻烃相。与对各参考材料观察到的相比,最大 量的轻油相由该微波处理的硫酸铁浸渍的木料产生。
实施例8(捏合)
将铝土矿在水中的悬浮液(20%铝土矿)与由市购锯屑获得的白松木片 (约1/2英寸宽xl/32英寸厚)一起加入Kneadermaster5USG混合机中。混 合^L室装有两个水平的重叠的S刀片并能够在50psig工作压力下操作至 148。C。加入足够的铝土矿悬浮液而制得可加工的饼。木料与铝土矿之比 为85:15。将得到的饼在150°C的温度下捏合2小时。使捏合的饼浆料化 并经受微波辐射,由此活化生物质材料。
制备下列参考样品 未用微波处理的上述捏合的木料/铝土矿浆料。 用微波处理的捏合的木料。
上述浆料的干燥样品的热分解使用Mettler-Toledo TGA/SDTA851e热 天平进行。将样品(10-15mg)装入铝坩埚(70ml)中并在氩气流(30ml/min)下 以5。C/min的加热速率从25。C加热到700oC。
由相应的重量-温度曲线计算出DTG曲线。以样品的初始重量(在25。C 下)与剩余重量(在600。C下)之差确定减少的总重量。在捏合木料-铝土矿混 合物的情况下,减少的总重量通过初始重量与剩余重量减去铝土矿的量确 定,假设铝土矿在实验过程中不变。
微波处理的捏合木料-铝土矿样品显示出比各参考样品高的重量减少, 同时该微波处理的捏合木料-铝土矿样品的分解在比各参考材料低的温度 下开始。
在孩i波处理之后,使捏合木料-铝土矿在200°C的高压釜中进行水热处 理2小时。
来自该水热处理的产物产生与一些固体残留物一起的两种液相,含有 可溶性有机化合物的水相和轻烃相。与对各参考材料观察到的相比,最大 量的轻油相由该孩i波处理的捏合木料-铝土矿材料产生。 实施例9(捏合)
重复实施例8,不同之处在于用"红泥"代替铝土矿。制备下列参考样品 未用微波处理的上述捏合木料/ "红泥"浆料。 用樣i波处理的捏合木料。
使用上文实施例1中描述的热分解方法,微波处理的捏合木料-"红泥" 样品的重量减少比各参考样品的高,同时该孩£波处理的捏合木料-"红泥,, 样品的分解在比各参考材料低的温度下开始。
在微波处理之后,使捏合木料-"红泥"样品在200。C的高压釜中进行 水热处理2小时。
来自该水热处理的产物产生与一些固体残留物一起的两种液相,含有 可溶性有机化合物的水相和轻烃相。与对各参考材料观察到的相比,最大 量的轻油相由该微波处理的捏合;M^ "红泥"材料产生。
权利要求
1. 一种使生物质易于在温和条件下液化或解聚的方法,该方法包括下列步骤a)将易于吸收电磁辐射的材料引入生物质而形成吸收辐射的生物质;b)使吸收辐射的生物质经受电磁辐射而形成活化生物质。
2. 根据权利要求l的方法,其中所述易于吸收电磁辐射的材料包括过 渡金属。
3. 根据权利要求l的方法,其中所述易于吸收电磁辐射的材料包括稀土。
4. 根据权利要求2的方法,其中所述过渡金属为非贵过渡金属。
5. 根据权利要求4的方法,其中所述非贵过渡金属选自Fe、 Mn、 Zn、 Cu、 Ni及其混合物。
6. 根据权利要求5的方法,其中所述非贵过渡金属包括Fe。
7. 根据上述权利要求中任一项的方法,其中通过用易于吸收电磁辐射 的材料的化合物溶液浸渍生物质而将该材料引入生物质中。
8. 根据权利要求7的方法,其中所述溶液为水溶液。
9. 根据权利要求l的方法,其中步骤a)包括遗传工程改造植物使得该 植物将对辐射敏感的材料引入其聚合物结构中以及由遗传工程改造的植物 产生生物质。
10. 根据权利要求1的方法,其中步骤a)包括将富含对辐射敏感的材 料的营养素供入植物使得对辐射敏感的材料进入植物的聚合物结构中;以 及使植物转化成生物质材料。
11. 根据权利要求l的方法,其中所述生物质为光合成来源的。
12. 根据权利要求11的方法,其中所述电磁辐射具有300MHz至300GHz的频率。
13. 根据权利要求12的方法,其中所述电磁辐射具有l-100GHz的频率。
14. 根据权利要求1的方法,其中所述易于吸收电磁辐射的材料包括 磁性材料纳米颗氺立。
15. 根据权利要求14的方法,其中所述磁性材料为顺磁材料、铁磁材 料或超顺磁材料。
16. 根据权利要求14或15的方法,其中所述磁性材料为氧化铁。
17. 根据权利要求14的方法,其中步骤b)包括通过使生物质经受频率 为lkHz至5MHz的AC磁场来加热生物质。
18. 根据权利要求1的方法,其中使所述活化生物质在温和条件下进 行液化。
19. 根据权利要求18的方法,其中所述温和条件包括150-500。C的温 度和1-50巴的压力。
20. 根据权利要求18的方法,其中所述温和条件包括环境温度至 3S0。C的温度和1-25巴的压力。
21. 根据权利要求18的方法,其中所述温和条件包括水热转化条件。
22. 根据权利要求18的方法,其中所述温和条件包括温和热解条件。
23. 根据权利要求18的方法,其中所述温和条件包括水解条件。
24. 根据权利要求18的方法,其中所述温和条件包括加氢转化、加氢 裂解或加氢处理条件。
25. 根据权利要求18的方法,其中所述温和条件包括催化裂解条件。
26. 根据权利要求18的方法,其中所述温和条件包括酶转化条件。
27. —种使生物质液体易于在温和条件下解聚的方法,该方法包括下列步骤:b)使吸收辐射的生物质液体经受电磁辐射而形成活化生物质液体。
28.根据权利要求1的方法,其中步骤b)包括使吸收辐射的生物质转化成活化生物质的连续工艺,该工艺包括将吸收辐射的生物质输送通过其 中产生电磁辐射的区域的步骤。
29. 根据权利要求l的方法,其包括使所述活化生物质转化成液体和/ 或气体产物的额外步骤。
30. 根据权利要求29的方法,其中使对吸收辐射的生物质电磁辐射和 活化生物质的转化在一个步骤的工艺中进行。
全文摘要
本发明公开一种使生物质易于在温和条件下解聚或液化的方法。该方法包括将易于吸收电磁辐射的材料引入生物质而形成吸收辐射的生物质。使吸收辐射的生物质经受电磁辐射而形成活化生物质。
文档编号C11C3/00GK101511466SQ200780033680
公开日2009年8月19日 申请日期2007年7月13日 优先权日2006年7月17日
发明者D·施塔米雷斯, P·奥康纳 申请人:BIOeCON国际控股有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1