卷曲长丝的高膨松低密度非织造纤维网及其制造方法

文档序号:1723029阅读:313来源:国知局
专利名称:卷曲长丝的高膨松低密度非织造纤维网及其制造方法
技术领域
本发明涉及一种从连续纤维生产的高膨松低密度非织造材料,其中,该非织造材料的膨松特征是构成该纤维网的纤维因改善加工而具有z-方向取向以及所得到的卷曲的结果。这些材料特别适合用于范围广泛的应用,包括但不限于个人护理产品的涌浪层、隔音与隔热、包装材料、填充料、滤料、和清洁材料。
背景技术
在非织造纤维网中,构成该纤维网的纤维一般是在该纤维网的x-y平面上取向的,而且所得到的非织造纤维网材料是相对薄的,即膨松或有效厚度不足。
适合用于个人护理吸收剂物品的非织造纤维网的膨松或厚度促进对使用者的舒适(柔软)、涌浪管理和体液向毗邻层分配。为了赋予非织造纤维网以膨松或厚度,一般来说理想的是构成该纤维网的纤维的至少一部分是在z方向上取向的。惯常地说,膨松非织造纤维网是用短纤维生产的。见诸如美国专利4,837,067,该专利公开一种非织造隔热絮垫,该絮垫包含结构性短纤维并使该絮垫表面部分缠结且实质上平行于该表面的短纤维和实质上垂直于该絮垫表面的短纤维粘合,以及美国专利4,590,114,该专利公开一种絮垫,该絮垫包括重大百分率的热机械法木浆纤维,并通过包括微小百分率的热塑性纤维包括短纤维长度热塑性纤维予以稳定。替而代之,惯常高膨松形成工艺依靠预成形工艺例如在平坦金属丝网或转鼓上形成的纤维卷曲,和后成形工艺例如所形成纤维网的起绉或打褶。
业内其它人已经进行了探索,以通过先形成一种标准非织造纤维然后将该纤维网自身折叠而使该纤维网打褶或起绉来提供膨松材料。然而,在这样的构造中,该纤维网的纤维仍留在该纤维网的平面上,它只是已经扭曲的纤维网本身的平面。
迄今为止与纤维在该纤维网平面以外有真正z-方向取向这一事实有关的发明,例如美国专利申请序号09/538,744和09/559,155,一般可以表征为形成一种有在基础材料纤维中诱发的折叠、从而通过在不同速度成形金属丝网之间转移过程的使用来产生z-方向纤维的膨松材料。
然而,目前业内的确需要替代的高膨松低密度织物,使得该织物可以显示出有迅速摄入、低回流和高水平分布的良好体液控制平衡,及其它上述性能包括绝缘、填充等。

发明内容
针对上述业内需要,本发明利用某些双组分、实质上连续的、A/B型或并列型构造的热塑性纤维的自然卷曲能力来生产高膨松低密度非织造纤维网。虽然这种纤维类型本身是业内已知的,但本发明运用了特殊加工参数来衍生适合于加工成高膨松低密度织物的前体物长丝。然后,在长丝形成后应用新技术使该纤维卷曲成高膨松低密度织物。此外,还开发了新技术来确保该长丝卷曲后所得到的高膨松低密度织物的稳定性。
在本发明的一个方面,该新型织物可以包含一种高膨松低密度非织造纤维网,即一种实质上连续的、纺粘的、螺旋卷曲的、A/B并列形态的双组分纤维的纤维网。在该纤维网内,该纤维是无规卷曲的,产生一种有非均相无规纤维取向包括能产生该纤维网膨松的非均相z-方向取向以及卷曲纤维之间的无规则间隔开松的膨松材料。举例说明,本发明的膨松纤维网可以有约0.3osy~25osy的单位面积重量,显示出约0.002g/cc~0.05g/cc的密度和0.02″~1.5″的膨松度。例如,一种0.5osy纤维网可以显示出约0.03″~0.3″的膨松度和0.022~0.002g/cc的密度范围。另一个实例是,一种3.0osy纤维网可以显示出0.1″~1.5″的膨松度和0.04~0.003g/cc的密度范围。
在另一个方面,该新型织物可以包含一种从高度机器方向取向的、实质上连续的、纺粘的、螺旋卷曲的、A/B并列形态的双组分纤维制造的高膨松低密度非织造纤维网。在该纤维网内,该纤维是无规卷曲的,产生一种因诱发有能产生该纤维网的膨松的起绉z-方向取向的打褶层而有非常高膨松度以及卷曲纤维之间的无规则间隔开松的膨松材料。
按照本发明的高膨松低密度非织造纤维网的制造方法可以包括先生产有未加热纤维牵引单元(FDU)而不使用业内流行的加热FDU的双组分长丝。然后,把这些纤维凝集在成形金属丝网上,并加热以使该聚合物链松弛和引发卷曲。这种加热之后立即使该纤维网冷却,使得该纤维不粘合从而保持该纤维的可移动性并使该纤维能卷曲到所希望的程度。可以控制其它加工参数例如成形金属丝网真空,以进一步使该纤维能不受妨碍地卷曲。卷曲时,产生一种高膨松、低密度织物。然后,施加额外加热以使该纤维网定形。在最后加热段可以控制加工参数,以使该纤维网保持原来高膨松低密度状态,也可以在这一阶段期间控制这些参数来调整该纤维网的密度和膨松度。
附图简单说明本发明的这些及其它目的与特色将会从结合附图所做的以下详细描述更好地理解,其中

图1说明按照本发明的一种实施方案的一种膨松非织造材料的生产工艺和装置;图2是用低机器方向取向和贯穿空气粘合形成的、有z-方向组分的一种高膨松、低密度非织造纤维网的侧视或沿机器方向轴的横截面的照片;图3是用低机器方向取向和静态空气粘合形成的、有z-方向组分的一种高膨松、低密度非织造纤维网的侧视或沿机器方向轴的横截面的照片;图4是用高机器方向取向和贯穿空气粘合形成的、有z-方向组分的一种高膨松、低密度非织造纤维网的侧视或沿机器方向轴的横截面的照片;图5是用高机器方向取向和静态空气粘合形成的、有z-方向组分的一种高膨松、低密度非织造纤维网的侧视或沿机器方向轴的横截面的照片;图6是从一种显示典型紧密卷曲的已知热FDU产生的纤维的照片;和图7是从一种显示松弛卷曲的常温下非加热FDU产生的纤维的照片。
定义本文中使用的“非织造纤维网”或“非织造材料”这一术语系指一种具有相互交织但并非呈一种规则或可识别方式例如针织物或已原纤化的薄膜中那些的个体纤维、长丝或线的结构的纤维网。非织造纤维网或材料是用很多工艺例如熔喷工艺、纺粘工艺、和粘梳纤维网工艺形成的。非织造纤维网或材料的单位面积重量通常以盎司材料/平方码(osy)或克/平方米(gsm)表示,且纤维直径通常以微米表示。(注osy换算成gsm时将osy乘以33.91。)本文中使用的“z-方向”这一术语系指配置在纤维网取向平面以外的纤维。考虑一种纤维网在机器方向上有x-轴、在横跨机器方向上有y-轴、在膨松方向上有z-轴,且其主平面或表面是与x-y平面平行的。“作为成形z-方向纤维”这一术语在本文中可以用来指该非织造纤维网成形期间在z-方向上取向的纤维,这区别于诸如在机械卷曲或起绉或以其它方式打褶的非织造纤维网的情况下由于该非织造纤维网的成形后加工而具有z-方向组分的纤维。
本文中使用的“实质上连续的纤维”这一术语系指在成形为非织造纤维网或织物之前未从其原始长度切断的纤维。实质上连续的纤维可以有范围为约15cm以上至1m以上且可长达所形成纤维网或织物的长度的平均长度。“实质上连续的纤维”的定义包括在成形为非织造纤维网或织物之前未切割但稍后当该非织造纤维网或织物切割时切割的纤维,以及实质上线型或卷曲的纤维。
本文中使用的“贯穿空气粘合”或“TAB”这一术语系指一种非织造纤维网例如双组分纤维网的粘合工艺,其中,热得足以使用来制造该纤维网的纤维的聚合物之一熔融的空气被强制贯穿该纤维网。
本文中使用的“并列型纤维”属于双组分纤维或共轭纤维一类。“双组分纤维”这一术语系指从各自独立的挤塑机挤出但纺在一起以形成一种纤维的至少两种聚合物形成的纤维。双组分纤维有时也称为共轭纤维或多组分纤维。双组分纤维是例如由Pike等的美国专利5,382,400公开的。共轭纤维的聚合物通常是彼此不同的,尽管一些共轭纤维可以是单组分纤维。共轭纤维公开于Kaneko等的美国专利5,108,820、Krueger等的美国专利4,795,668和Strack等的美国专利5,336,552。通过利用两种(或更多种)聚合物不同的膨松与收缩率,可以使用共轭纤维来产生纤维中的卷曲。
“大约”、“实质上”等这样的程度词在本文中是在“当给出所表述情况下固有的制造和材料公差时在或接近于在”的意义上使用的,并用来防止对本发明公开文书的不当利用的不审慎触犯,其中,精确或绝对的数字被说成一种理解本发明的工具。
本文中使用的“机器方向”或MD这一术语系指一种织物在用来生产它的方向上的长度。“横跨机器方向”或CD这一术语系指织物的宽度,即总体上垂直于MD的方向。
“微粒”(单数)、“微粒”(复数)、“颗粒物”(单数)、“颗粒物”(复数)等系指总体上呈分立单元形式的物质。微粒可以包括颗粒、粉状物、粉末或球状物。因此,微粒可以有任何所希望的形状,例如立方体、棒状、多面体、球形或半球形、圆形或半圆形、角形、无规则形状等。最大尺寸/最小尺寸比值大的形状例如尖状、小片状和纤维状,也期待用于本发明中。“微粒”或“颗粒物”的使用也可以描述一种包括不止一个微粒、颗粒物等的附聚作用。
具体实施例方式
图1是一幅示意图,说明本发明通过生产可卷曲双组分并列型实质上连续的纤维并使其在不受限制环境中卷曲来生产高膨松低密度材料的方法和装置。
如图1中所示,两种聚合物A和B用已知热塑性纤维纺丝装置21纺粘,形成双组分并列或A/B形态纤维23。然后,纤维23横穿纤维牵引单元(FDU)25。按照本发明的一种实施方案,与业内标准实践不同,FDU是不加热的,而留在常温下。纤维23仍处于一种实质上连续的状态并沉积在一种移动中的成形金属丝网27上。该纤维的沉积是借助于由负空气压力单元或金属丝网下抽空机29供给的金属丝网下真空进行的。
然后,纤维23在热风刀(HAK)31或热风扩散器33之一下横向加热,两者都在图上显示,但要知道的是它们在通常情况下是用于替代的。惯常的热风刀包括一个有缝的心轴,该缝将一股热风射流吹到非织造纤维网表面上。这样的热风刀是诸如由Arnold等的美国专利5,707,468公开的。热风扩散器33是一种替代物,它以类似方式但以较低空气速度在较大表面积上运行,从而使用相应较低的空气温度。在这种横穿第一加热区期间该纤维群或层可能受到外部皮层熔融或小程度非功能性粘合。“非功能性粘合”是只足以使该纤维固定在供按照本发明的方法加工的位置上但又轻得不能把这些纤维固定在一起的粘合,如同它们是用手工巧妙操作的。这样的粘合可能是偶发性的,如果愿意也可以将其完全消除。
然后,将这些纤维从热风刀31或热风扩散器33的第一加热区送到第二金属丝网35,在此该纤维继续冷却,且在此将金属丝网下抽空机29撤除以便不破坏卷曲。随着这些纤维冷却,它们将在z-方向上或在该纤维网平面外卷曲,并形成一种高膨松低密度非织造纤维网37。然后把纤维网37输送到贯穿空气粘合(TAB)单元39,使该纤维网定形或固定在所希望的膨松度和密度上。替而代之,可以将贯穿空气粘合(TAB)单元39分区,以在热风刀31或热风扩散器33的位置提供第一加热区,随后是一个冷却区,其后又是一个足以使该纤维网固定的第二加热区。然后,固定的纤维网41可以在卷绕辊43等上收集供稍后使用。
按照本发明的一种较好实施方案,该实质上连续的纤维是双组分纤维。本发明的纤维网可以含有单一旦值结构(即一种纤维规格)或混合旦值结构(即多种纤维规格)。特别适合于形成适用双组分纤维的结构组分的聚合物包括聚丙烯和聚丙烯与聚乙烯的共聚物,而特别适用于该双组分纤维的粘合组分的聚合物包括聚乙烯,更具体地说,线型低密度聚乙烯和高密度聚乙烯。此外,该粘合组分可以含有添加剂,以提高该纤维的可卷曲性和/或降低其粘合温度,以及提高所得到纤维网的耐磨性能、强度和柔软性。特别适合于按照本发明的加工的双组分聚乙烯/聚丙烯纤维称为PRISM。PRISM的描述公开于Strack等的美国专利No.5,336,552。按照本发明制造的纤维网可以进一步含有有PP/PE的树脂替代物的纤维,例如但不限于PET、共聚PP+3%PE、PLA、PTT、尼龙、PBT等。纤维可以有各种替代形状和对称性,包括五叶形、三T形、中空、带形、X形、Y形、H形、和不对称横截面。
可用于本发明系统材料的制造的聚合物进一步包括聚烯烃、聚酯和聚酰胺等热塑性聚合物。弹性聚合物也可以使用,并且包括嵌段共聚物,例如聚氨酯、共聚醚酯、聚酰胺聚醚嵌段共聚物、乙烯-乙酸乙烯酯(EVA)、通式A-B-A′或A-B的嵌段共聚物例如共聚(苯乙烯/乙烯-丁烯)、苯乙烯-聚(乙烯-丙烯)-苯乙烯、苯乙烯-聚(乙烯-丁烯)-苯乙烯、(聚苯乙烯/聚(乙烯-丁烯)/聚苯乙烯)、聚(苯乙烯/乙烯-丁烯/苯乙烯)等。
使用单点催化剂-有时称为金属茂催化剂-的聚烯烃也可以使用。很多聚烯烃可用于纤维生产,例如聚烯烃如Dow Chemical公司的ASPUN7 6811A线型低密度聚乙烯、2553LLDPE以及25355和12350高密度聚乙烯就是这样的适用聚乙烯。这些聚烯烃的熔体流动速率分别为约26、40、25和12。成纤聚丙烯包括Exxon化学公司的3155聚丙烯和Montell化学公司的PF-304。很多其它聚烯烃是商业上可得的。
可生物降解聚合物也可用于纤维生产,适用的聚合物包括聚乳酸(PLA)以及BIONOLLE_、己二酸和UNITHOX_的共混物(BAU)。PLA不是一种共混物而是一种像聚丙烯一样的纯聚合物。BAU代表不同百分率的BIONOLLE_、已二酸、和UNITHOX_的共混物。典型地说,短纤维共混物是44.1%BIONOLLE_1020、44.1%BIONOLLE_3020、9.8%己二酸和2%UNITHOX_480,尽管纺粘BAU纤维典型地使用约15%己二酸。BIONOLLE_1020是聚琥珀酸丁二醇酯、BIONOLLE_3020是聚琥珀酸己二酸丁二醇酯共聚物,而UNITHOX_480是一种乙氧基化醇。BIONOLLE_是日本昭和高聚物公司的一种商标。UNITHOX_是Baker Hughes国际公司的分公司Baker Petrolite公司的一种商标。应当说明的是,这些可生物降解聚合物是亲水的,因而较好不用于本发明摄入系统材料的表面。
如上所述,该可卷曲双组分纤维是用HAK31、热风扩散器33或第一加热区中分区的TAB(未显示)加热到聚乙烯结晶区开始使其取向的分子链松弛而且可以开始熔融的温度。用来诱发卷曲的典型空气温度范围是约110~260°F。这个温度范围代表亚熔融程度的温度,这些温度只使分子链在临通过该聚合物的熔融温度之前松弛。来自HAK31的空气流的热量可能由于该纤维通过其狭窄加热区时的短暂滞留时间而变高。进而,当对该纤维的取向分子链加热时,分子链移动性增大。这些链与其取向,不如松弛成无规状。因此,这些链弯曲和折叠,从而引起额外收缩。对该纤维网的加热可以用热风、红外灯、微波或任何其它能使聚乙烯的半结晶区加热到松弛的热源进行。
然后,该纤维网通过一个冷却区,使该聚合物的温度降到其结晶温度以下。由于聚乙烯是一种半结晶材料,因而聚乙烯链在冷却时重新结晶,从而引起该聚乙烯收缩。这种收缩在该并列型纤维的一侧诱发一种力,使其在没有其它主要力限制该纤维在任何方向上自由移动时卷曲或盘曲。利用冷的FDU来构建该纤维,使得它们不会以一种对于经由正常热FDU加工的纤维来说正常的紧密螺旋形式卷曲。相反,该纤维更松弛且无规地卷曲,从而赋予该纤维以更多的z-方向膨松。参照图6,显示的是从正常热FDU产生的、显示出典型紧密卷曲的纤维。比较而言,图7显示从一种常温非加热FDU产生的、松弛得多的、导致高膨松纤维网的宏观卷曲。
会影响卷曲数量与类型的因素包括该纤维网在第一加热区的热量下的滞留时间。影响卷曲的其它因素可以包括材料性能,例如纤维旦值、聚合物类型、横截面形状和单位面积重量。用要么真空、要么吹风、要么粘合来限制纤维也会影响卷曲的数量,从而影响本发明的高膨松低密度纤维网中希望达到的膨松度或体积。因此,当该纤维进入冷却区时,就不施加任何真空来使该纤维保持到成形金属丝网27或第二金属丝网35上。在冷却区同样将吹风控制或消除到实用的或所希望的程度。
按照本发明的一个方面,该纤维可以以高度MD取向沉积在成形金属丝网上,这可以用金属丝网下真空量、FDU压力、和FDU到金属丝网表面的高度来控制。高度MD取向可以用来诱发纤维网的非常高膨松度,如以下进一步解释的。进而,因某些纤维和加工参数而异,FDU的空气射流将显示出自然频率,这可能有助于产生某些形态特征,例如赋予该纤维网的膨松以起绉效果。
按照图1的例示性实施方案,其中,纤维23是在第一加热区中由空气流加热的,并由成形金属丝网27传送到第二金属丝网35,相信发生了有助于该纤维膨松的若干种卷曲机理,这包括但不受理论约束·金属丝网下抽空,会使该纤维网经由它抽吸周围空气而冷却,这防止粘合但限制膨松的形成,·随着该纤维网从该真空区转移到第二金属丝网,该真空力便撤除,不受限制的纤维就自由卷曲,
·在力学上,高MD取向表面层的MD表面层收缩可能引起表面纤维起绉,·会诱发机械切变,因为高MD取向表面抽褶和粘合会让亚表面纤维继续切变,从而通过诱发各层起绉而膨松,·机械起绉图案可能以FDU射流的固有频率产生,这会引起加热纤维以相同频率膨松,·随着纤维在离开真空区时从成形金属丝网27释放出来然后很快又被拉回真空单元29,产生了机械力,和·摩擦静电荷在纤维网上积累并引起纤维相互排斥,使得能在该纤维网内进一步膨松。
参照图2,看到了按照本发明由卷曲纤维形成的、有z-方向组分的高膨松低密度非织造纤维网51沿机器方向轴的侧视或横截面的照片。该纤维网是以纤维在成形金属丝网上的低机器方向取向沉积形成,并以贯穿空气粘合使该纤维网定形。卷曲形成了这些纤维的一种无规非均相的z-方向取向。如同可以看到的,纤维之间的间隔也是无规分布的并产生无规则间隔的开松。涉及经由该纤维网抽吸加热空气以使该纤维网固定成其高膨松状态的贯穿空气粘合,导致该纤维网初始膨松的某种塌陷。该纤维网的膨松度是大约0.25英寸。
参照图3,看到了按照本发明由卷曲纤维形成的有z-方向组分的一种非常膨松低密度非织造纤维网53沿机器方向轴的侧视或横截面照片。该纤维网是以纤维在成形金属丝网上的低机器方向取向沉积形成和静态空气粘合,其中,该纤维网未因抽风或吹风以使该纤维网定形而受扰动。该卷曲形成了这些纤维的一种无规非均相z-方向取向。如同可以看到的,纤维之间的间隔也是无规分布的并产生无规则间隔的开松。不涉及使加热空气经由该纤维网抽吸以使该纤维网固定成其高膨松状态的静态空气粘合,导致该纤维网初始膨松的非常小至没有塌陷。该纤维网的膨松度是大约0.5625英寸。
参照图4,看到了按照本发明由卷曲纤维形成的、有包括以实质上类似于FDU射流的固有频率的频率显示出像59那样的z-方向绉折的总称57的挤压层的z-方向组分的高膨松低密度非织造纤维网55沿机器方向轴的侧视或横截面的照片。其挤压和绉折实质上是无规则的或无规性质的,但在该纤维网内提供较高的膨松度和较大的开松间隔。该纤维网是以该纤维在成形金属丝网上的高机器方向取向沉积和贯穿空气粘合形成的。该卷曲形成了该纤维的无规非均相z-方向取向。涉及热风经由该纤维网抽吸以使该纤维网固定于其高膨松状态的贯穿空气粘合,导致该纤维网初始膨松的一些塌陷。该纤维网的膨松度是大约0.3125英寸。
参照图5,看到了按照本发明由卷曲纤维形成的、有包括以实质上类似于FDU射流的固有频率的频率产生z-方向绉折59的挤压层57的z-方向组分的非常高膨松低密度非织造织物沿机器方向轴的侧视或横截面的照片。其挤压和绉折实质上是无规则的或无规性质的,但在该纤维网内提高较高的膨松度和较大的开松间隔。该纤维网是以该纤维在成形金属丝网上的高机器方向取向沉积和静态空气粘合而使该纤维网固定成初始卷曲构型形成的。该卷曲形成了该纤维的无规非均相z-方向取向。不涉及经由该纤维抽吸热风以使该纤维网固定成其高膨松状态的静态空气粘合,导致该纤维网初始膨松度的微小至没有塌陷。该纤维网的膨松度是大约1.0英寸。
用4.5旦PRISM纤维以约0.14英寸膨松度、约2.9osy单位面积重量和0.027g/cc密度制造了一种高膨松低密度纤维网,并测试了可渗透性、FIFE摄取、返流量、过滤效率、和水平芯吸作用。结果一般来说在每一类别中都优于2.9osy单位面积重量、0.12英寸膨松度、和0.032g/cc密度的已知高毛细管粘梳纤维网。在TSI设备上用穿透试验测定的本发明纤维网的效率一般以55%上下测试。具体地说,本发明纤维网的实测可渗透性为3500达西、FIFE摄取为6秒、返流量为14g,反之,该粘梳纤维网的分别为2500达西、10秒、20g。
试验方法和材料单位面积重量切割一种3英寸(7.6cm)直径的圆形样品,用天平称重。重量以克记录。将重量除以样品面积。测定5个样品,取平均值。
材料caliper(厚度)材料的caliper是厚度的一种量度,是用一台STARRET_型松密度(bulk)测试仪以0.05psi(3.5g/cm2)测定的,单位为毫米。将样品切割成4英寸×4英寸(10.2cm×10.2cm)见方,测试5个样品,结果取平均值。
密度材料的密度是通过将以克/平方米(gsm)表示的样品每单位面积的重量除以以毫米(mm)表示的材料caliper计算的。caliper应当是像以上提到的那样以0.05psi(3.5g/cm2)测定的。将结果乘以0.001,以便该数值换算成克/立方厘米(g/cc)。要评估总共5个样品,并取平均值作为密度值。
可渗透性可渗透性是从材料对液体流动的阻力的测定得到的。迫使一种已知粘度的液体以恒定流量率透过给定厚度的材料,并监测以压降量度的流动阻力。用达西定律(Darcy′s Law)确定可渗透性如下可渗透性=〔流速×厚度×粘度/压降〕〔方程1〕式中各单位是可渗透性cm2或达西 1达西=9.87×10-9cm2流速cm/sec粘度帕斯卡-秒(Pa·s)压降帕斯卡(Pa)该装置由一种安排组成,其中,一个圆筒内的活塞推动液体透过要测定的样品。该样品以垂直取向的圆筒夹在两个铝圆筒之间。两个圆筒都有3.5英寸(8.9cm)的外径、2.5英寸(6.35cm)的内径、和约6英寸(15.2cm)的长度。将3英寸直径纤维网样品由其外沿保持定位,从而完全包容在该装置内。底圆筒有一个能在该圆筒内以恒定速度垂直移动并与一个能监测该活塞所支撑的液柱所遇到的压力的压力换能器连接的活塞。该换能器设置得能随该活塞移动,因而没有任何测定的额外压力,直至该液柱接触该样品并被推过该样品。在这一点上,测定的额外压力是由于该材料对液体经由它流动的阻力的缘故。该活塞是由于一个由步进马达驱动的滑动组件而移动的。该试验始于以恒定速度移动该活塞直至该液体被推过该样品。然后使该活塞停止,并注意基线压力。这修正了样品浮力效应。然后,使该移动恢复一段足以测定新压力的时间。这两个压力之间的差就是由于该材料对液体流动的阻力而产生的压力,而且是方程(1)中使用的压降。活塞的速度就是流速。其粘度已知的任何液体都可以使用,尽管能润湿该材料的液体是较好的,因为这确保达到饱和流动。使用20cm/min的活塞速度、粘度为6厘泊的矿物油(Peneteck Technical Miheral Oil,美国加利福尼亚洲洛杉矶Penreco公司制造)进行测定。
水平芯吸作用这个试验测定当一种织物只有一端浸没于一种液体中且该织物水平放置时该液体在该织物中会移动得多快。要测试的织物是通过在机器方向上将其切割成1英寸(2.5cm)×8英寸(20.3cm)长条制备的。将样品称重,并在长尺度上每0.5英寸(13mm)做一个记号。把该样品放在一个5英寸(12.7cm)×10英寸(25.4cm)水平金属丝格栅上,加轻微重量,使得它在该金属丝网上保持平整。将该样品一端的半英寸浸没于一个0.5英寸深×0.5英寸宽×5英寸长、含10ml染色8.5g/l食盐水溶液的液池中。该样品在液池中的这一端用一根也浸没于该食盐水溶液中的、有1.5英寸(3.8cm)长度和5/16英寸(7.9mm)直径的圆柱形玻璃搅拌棒固定。该样品以浸没的一端在该液池中滞留20分钟,然后小心地水平拉出该液池,在每个0.5英寸记号处切断、每一段称重。
湿样品重量减去干样品重量得到流体克数,浸没于该液池中的0.5英寸不予以考虑。记录总芯吸距离以及芯吸的流体总克数。
NaCl效率所有过滤效率数据都是从NaCl效率试验中采集的。NaCl效率是织物或纤维网阻止小微粒通过它的能力的一种量度。较高的效率一般是较理想的,表明去除微粒的能力较大。NaCl效率是用百分率量度的,按照TSI公司8130型自动过滤试验机操作手册以32升/分钟的流量率用0.1微米(μm)粒度NaCl微粒测定,作为3个样品读数的平均值报告。该试验手册可得自TSI Inc.,Particle InstrumentDivision,500 Cardigan Rd,Shoreview,Minn.55126,也可以访问www.tsi.com。这个试验,使用相同的粒度和空气流量率,也可以得到织物两侧的压差。
进行体液摄入和返流评估(FIFE)以确定该复合材料的摄入潜力。FIFE需要将一定量的0.9%食盐水溶液倾入垂直置于该结构顶上的圆筒形柱中来玷污该结构,并记录它被该结构摄入所需要的时间。把要试验的样品置于一个平整表面上,并将FIFE试验装置放在该样品顶上。该FIFE试验装置由一个长方形35.3×20.3cm有机玻璃片组成,其中心有一个内径30mm的圆筒。该平整玻璃片有一个与该圆筒对应的38mm孔,使得流体可以通过它从该圆筒流到该样品。该圆筒的中心距离尿布裆吸收剂垫的顶或前沿2″。FIFE试验装置重517g。
摄入时间典型地以秒记录。样品切成2.5×7英寸条状物,并插入一种STEP 4 HUGGIES ULTRATRIM(TM)市售尿布中作为该尿布的涌浪层。然后,样品以每次100ml玷污3次,并在该流体被完全吸收的时间与下一次玷污之间等待15分钟。
第三次玷污后,将该材料置于一个在0.5psi压力下的真空盒上,并在上面放一张吸墨纸。该吸墨纸是Fort James公司制造的110磅Verigood纸,而且是3.5×12英寸(8.9×30.5cm)。该吸墨纸在该试验前后称重,所得到的差报告为返流值,表示解吸的克数。
相信按照本发明的高膨松低密度纤维网提供优异的体液处置特征,例如,对于过滤介质和吸收剂产品的体液分配层或吸收层可能是理想的,而且可以适用于各种各样玷污型织物。有业内普通技能的人员将会认识到,该纤维网的很多特征可以控制得能产生各种各样的高膨松低密度形态,包括但不限于纤维旦值、沉积速率、加热和冷却速率、和为妨碍卷曲过程而施加的水的大小,如本文中所提到的。
虽然在上述说明书中就其某些较好实施方案描述了本发明,而且为了说明目的而列举了很多细节,但对于业内技术人员来说显而易见的是,本发明可以容许另外的实施方案,而且本文中所述的某些细节可以颇多地改变,只要不背离本发明的原则。
权利要求
1.一种高膨松低密度非织造纤维网的生产方法,该非织造纤维网有x维、y维和z维,且x维是机器方向、y维是横跨机器方向、z维是膨松方向,所述方法包含a)在一种无加热FDU中形成一组可卷曲、实质上连续、纺粘、A/B并列形态的双组分纤维,并将该组纤维沉积到一个成形金属丝网上;b)以足以诱发该纤维一侧分子取向松弛的时间和温度,首先加热该纤维c)在所述首先加热之后,将该组纤维冷却到该纤维会互相粘合的温度以下,从而诱发该纤维卷曲;和d)在执行步骤b)和c)时控制或最大限度减少倾向于妨碍该纤维卷曲的力,从而使该纤维能在z方向上卷曲。
2.按照权利要求1的高膨松低密度非织造纤维网的生产方法,进一步包含重新加热该组纤维,使该纤维互相粘合,从而形成一种稳定的高膨松低密度非织造纤维网。
3.按照权利要求1的高膨松低密度非织造纤维网的生产方法,进一步包含在足以保持该组纤维在步骤b)和c)之后的原始膨松高度的加热或空气流动条件下或在两者兼而有之的条件下重新加热该组纤维。
4.按照权利要求3的高膨松低密度非织造纤维网的生产方法,其中,重新加热的温度低于或等于约450°F。
5.按照权利要求3的高膨松低密度非织造纤维网的生产方法,其中,在重新加热期间没有诱发的空气流动。
6.按照权利要求1的高膨松低密度非织造纤维网的生产方法,其中,以大于或等于25fpm的速度载带该组纤维通过重新加热区。
7.按照权利要求1的高膨松低密度非织造纤维网的生产方法,进一步包含在足以减少该组纤维在步骤b)和c)之后的原始膨松高度的加热或空气流动条件下或在两者兼而有之的条件下重新加热该组纤维。
8.按照权利要求1的高膨松低密度非织造纤维网的生产方法,进一步包含在首先加热之前使该组纤维非功能性粘合。
9.按照权利要求1的高膨松低密度非织造纤维网的生产方法,进一步包含在该纤维沉积于成形金属丝网上的地方在该金属丝网下施加真空。
10.按照权利要求9的高膨松低密度非织造纤维网的生产方法,进一步包含在首先加热之后撤除或减少该成形金属丝网下的真空。
11.按照权利要求1的高膨松低密度非织造纤维网的生产方法,进一步包含在步骤b)和c)期间撤除或减少吹风。
12.按照权利要求1的高膨松低密度非织造纤维网的生产方法,进一步包含以高度机器方向取向将该纤维施用到该成形金属丝网上。
13.一种隔音材料,包含按照权利要求1的工艺制作的高膨松低密度非织造纤维网。
14.一种隔热材料,包含按照权利要求1的工艺制作的高膨松低密度非织造纤维网。
15.按照权利要求13的隔音材料,进一步包含该纤维网内含有的颗粒物。
16.按照权利要求14的隔热材料,进一步包含该纤维网内含有的颗粒物。
17.一种高膨松低密度非织造纤维网,是按照权利要求1的工艺制造的。
18.按照权利要求17的高膨松低密度非织造纤维网,其中,该纤维网的单位面积重量在约0.3osy与约25osy之间。
19.按照权利要求17的高膨松低密度非织造纤维网,其中,该纤维网的密度在约0.002g/cc与约0.05g/cc之间。
20.按照权利要求17的高膨松低密度非织造纤维网,其中,该膨松度在约0.02英寸与约1.50英寸之间。
21.按照权利要求17的高膨松低密度非织造纤维网,其中,单位面积重量是约0.5osy、膨松度是约0.03~约0.3英寸、密度是约0.022g/cc~约0.002g/cc。
22.按照权利要求17的高膨松低密度非织造纤维网,其中,单位面积重量是约3.0osy、膨松度是约0.1~约1.5英寸、密度是约0.04g/cc~约0.003g/cc。
23.按照权利要求17的高膨松低密度非织造纤维网,其中,该纤维在该纤维网的第一主表面上显示出实质上规则的波浪形。
24.按照权利要求17的高膨松低密度非织造纤维网,其中,该纤维以实质上恒定频率显示出z-方向绉折。
25.按照权利要求17的高膨松低密度非织造纤维网,其中,该纤维包含聚丙烯和聚乙烯聚合物。
26.按照权利要求17的高膨松低密度非织造纤维网,其中,该纤维包含选自包括下列的一组的聚合物PET,共聚PP+3%PE,PLA,PTT,尼龙,和PBT。
27.按照权利要求17的高膨松低密度非织造纤维网,其中,该纤维包含选自包括下列的一组的横截面形状五叶形、三T形、中空、带状、X形、Y形、H形、和不对称形。
28.按照权利要求17的高膨松低密度非织造纤维网,其中,该纤维是在该纤维网中彼此整体粘合的。
29.按照权利要求17的高膨松低密度非织造纤维网,其中,该纤维是无规卷曲的,以产生一种有非均相纤维取向的膨松材料,包括实质上非均相的z-方向取向和有绉折z取向区的挤压层,以产生该纤维网的膨松。
30.按照权利要求17的高膨松低密度非织造纤维网,其中,该纤维是无规卷曲的,产生一种有非均相纤维取向的膨松材料,包括非均相z-方向取向以产生该纤维网的膨松,和卷曲纤维之间的无规则间隔开孔。
31.一种高膨松低密度非织造纤维网,其是按照权利要求2的方法制造的。
32.一种高膨松低密度非织造纤维网,其是按照权利要求3的方法制造的。
33.一种高膨松低密度非织造纤维网,其是按照权利要求4的方法制造的。
34.一种高膨松低密度非织造纤维网,其是按照权利要求5的方法制造的。
35.一种高膨松低密度非织造纤维网,其是按照权利要求6的方法制造的。
36.一种高膨松低密度非织造纤维网,其是按照权利要求7的方法制造的。
37.一种高膨松低密度非织造纤维网,其是按照权利要求8的方法制造的。
38.一种高膨松低密度非织造纤维网,其是按照权利要求9的方法制造的。
39.一种高膨松低密度非织造纤维网,其是按照权利要求10的方法制造的。
40.一种高膨松低密度非织造纤维网,其是按照权利要求11的方法制造的。
41.一种高膨松低密度非织造纤维网,其是按照权利要求12的方法制造的。
全文摘要
高膨松、低密度非织造纤维网是通过形成实质上连续的、纺粘的、卷曲的、在无加热纤维牵引单元中呈A/B并列形态的双组分纤维生产的。然后,这些纤维在阻力不存在下加热和冷却以达到z-方向上的最大卷曲并产生一种膨松材料纤维网。所得到的材料特别适合用来作为绝缘体。如果愿意,可以向该纤维网中添加颗粒物。
文档编号D04H3/16GK1599818SQ02823965
公开日2005年3月23日 申请日期2002年12月10日 优先权日2001年12月21日
发明者B·A·波兰科, C·D·芬维克, D·F·克拉克, B·D·海内斯, K·L·布朗, C·M·弗里兹 申请人:金伯利-克拉克环球有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1