一种非化学计量比碳化钛与氮化铝、氮化钛复合材料的制作方法

文档序号:1884837阅读:384来源:国知局
一种非化学计量比碳化钛与氮化铝、氮化钛复合材料的制作方法
【专利摘要】一种非化学计量比碳化钛与氮化铝、氮化钛复合材料,它的化学成分质量百分比为:非化学计量比碳化钛为60-85%,余量为纯度99.0%氮化铝或纯度为99.0%的氮化钛或氮化铝、氮化钛二种化合物的混合物。上述复合材料的制备方法主要是将上述原料装入球磨罐进行球磨,然后将混合好的复合粉体取出;根据混合料的理论密度计算,称取粉体装入石墨模具中置于热压烧结机加热仓,抽真空进行烧结,温度为1300-1600℃,保温30-60min,压头压力50MPa,然后泄压、停止抽真空;自然冷却至60℃以下,解除真空,取出烧结体。本发明制备的复合材料具有低温可烧结性,在不明显降低碳化钛硬度的基础上,使复合材料的断裂韧性及强度大幅度提高。
【专利说明】一种非化学计量比碳化钛与氮化铝、氮化钛复合材料
[0001]【技术领域】本发明涉及硬质陶瓷复合材料及其制备方法。
[0002]【背景技术】最常用的硬质合金主要成分是WC-Co,由于W、Co资源的匮乏,使得人们去寻求替代品。TiC具有与W相近的高硬度、耐磨性及耐热性等优异性能,在使用条件下与被加工材料的亲和力小,化学稳定性好,摩擦系数低,不易发生粘接磨损等特点,使得TiC类硬质合金材料在近年得到长足发展。但是,wc、TiC等化合物的高分解温度,使它们难以烧结,因此,一般情况下需加入一定比例的单质金属元素促进烧结,并增加必要的韧性。而促进烧结的单质元素一般为Co、Ni等,不仅没有减少稀缺资源的使用,并且降低了 TiC的高硬度、高温稳定性及耐热性等性能。人们在应用TiC作为新型硬质合金主要成分时不得不考虑使用硬质陶瓷材料做同样的工作。陶瓷材料所固有的脆性又使其应用受到极大的限制。因此,如何在保持其优异性能的基础上,降低烧结温度,提高韧性,达到可靠应用的基本要求,就成为该领域研究人员所面临的共同课题。对于提高陶瓷材料韧性的研究方面,采取的主要措施包括采用纳米尺寸颗粒材料[1.黄传真等,一种微米-纳米多尺度复合陶瓷刀具材料及其制备工艺,山东大学,CN103011779A,2012.12.9],通过工艺控制获得细晶粒度[2.史洪林等,高密度亚微细晶粒金属陶瓷,牡丹江工具有限责任公司,CN102505092A,2012.6.20],通过添加形成应力诱发相变增韧材料的方法[3.刘维民等,一种氧化铝-碳化钛-氧化锆纳米复合陶瓷材料的制备方法,山东大学,CN101857438A,2010.10.3],以及通过反应烧结提高韧性的方法[4.黄传真等,热压烧结TiB2-TiC-WC超硬材料及制备方法,山东大学,CN101941843A,2011.1.12]。这些方法在一定程度上改善了这类材料的韧性,降低了烧结温度,但还与要求存在一定的距离。在组分中都存在添加单质材料的问题,如W、N1、Mo等,这在一定程度上影响了这类材料的广泛使用。中国专利201110352108.3 “一种非化学计量比氮化钛与氮化铝复合材料的制备方法”,在制备方面提供了重要方法,并且制备的纳米复合材料硬度、强度和断裂韧性分别达到16.5~20.4GPa、309.8~681.0MPa和
9.33~12.57MPam1/2,在一定程度上降低了烧结温度(1400-1700°C),但是由于只能限制在SPS烧结机进行烧结,而且烧`结温度还较高,影响了烧结体的强度和断裂韧性的提高,另外烧结体中主要是生成了大量的TiCN,对烧结体性能及烧结温度产生影响。
[0003]
【发明内容】
本发明的目的在于提供一种不含有单质元素、烧结温度低、具有高硬度、高耐磨性、抗氧化性和韧性好的非化学计量比碳化钛与氮化铝、氮化钛复合材料。本发明主要是以非化学计量比的碳化钛(TiCx)为基本原料,与氮化铝、氮化钛粉末混合,通过热压烧结制备非化学计量比碳化钛(TiCx)-氮化铝(A1N)、氮化钛(TiN)复合材料烧结体。
[0004]本发明的非化学计量比碳化钛与氮化铝、氮化钛复合材料的化学成分质量百分比为:非化学计量比碳化钛(TiCx, 0.3≤X≤0.6)为60-85%,余量为纯度99.0%氮化铝(A1N),或纯度为99.0%的氮化钛(TiN),或氮化铝、氮化钛二种化合物的混合物,这二种化合物的混合物中的氮化铝和氮化钛的质量比为1-5:3-5。
[0005]上述非化学计量比碳化钛与氮化铝、氮化钛复合材料的制备方法如下:
[0006]1、复合粉体的制备
[0007]将上述原料在真空手套箱惰性气体环境下装入球磨罐中,球料比为5:1 ;将球磨罐密封取出后,安装在高能球磨机上进行球磨,球磨机的转速为400-450r/min,球磨时间为4-5h,待球磨罐冷却后,将其取下放入真空手套箱中,在真空手套箱惰性气体环境下,将混合好的复合粉体取出;根据混合料的理论密度计算,称取粉体并装入石墨模具中,加上下两个压头密封并取出。
[0008]2、烧结
[0009]将上述装填好复合粉体的石墨模具置于热压烧结机(可以是等离子放电烧结机、真空热压烧结机)加热仓的施压轴压头之间,放好后关闭加热仓,抽真空至6X10-3Pa-9Xl(T3Pa,进行烧结,烧结温度:1300-1600°C,保温时间:30_60min,升温速度:300C /min ;压头压力:50MPa ;保温完成后,自然冷却至1000°C以下泄压,自然冷却至300°C以下停止抽真空;自然冷却至60°C以下,解除真空,打开加热仓,取出烧结体。
[0010]本发明与现有技术相比具有如下优点:
[0011]1、降低了烧结温度,可大幅度提高烧结体的强度和断裂韧性,获得的非化学计量比碳化钛(TiCx)-氮化铝、氮化钛复合材料烧结体的硬度、弯曲强度及断裂韧性分别达到15.5 ~24.3GPa、398.7 ~718.5MPa 和 9.33 ~15.1lMPam1720
[0012]2、全部范围内的非化学计量比碳化钛(TiCx)-氮化铝、氮化钛的复合材料烧结体都保持较好的导电性,可以用电火花切割加工。
[0013]3、由于烧成后获得的组织为化合物,且生成大量的碳氮化钛(TiCN),无单质元素,所以其耐热性达到1000°c而不软化。
[0014]4、烧结可以在多种类型烧结机上进行,可以是等离子放电烧结机、真空热压烧结机等。
【具体实施方式】
`[0015]实施例1
[0016]取非化学计量比碳化钛(TiCa3)粉30g、纯度99.0%氮化铝20g,在真空手套箱惰性气体环境下装入球磨罐中,加入250g硬质合金磨球;将球磨罐密封取出后,安装在高能球磨机上进行球磨,球磨机的转速为400r/min,球磨时间为4h ;待球磨罐冷却后,将其取下放入真空手套箱中,在真空手套箱惰性气体环境下,将混合好的复合粉体取出,根据混合料的理论密度计算,称取复合粉体25g装入石墨模具中,加上下两个压头密封并取出。将上述装填好复合粉体的石墨模具置于真空热压烧结机加热仓的施压轴压头之间,放好后关闭加热仓,抽真空至9X10_3Pa,进行烧结,烧结温度为1550°C,保温60min,升温速度为30°C /min ;压头压力为50MPa ;保温完成后,自然冷却至1000°C泄压,自然冷却至290°C停止抽真空;自然冷却至59°C,解除真空,打开加热仓,取出烧结体。
[0017]将上述烧结体经喷砂、打磨后,用电火花切割烧结体为40X5X5mm样品用于三点
弯曲强度测量试样;制备φ30χ5ιτπτι样品用于硬度测量及韧性测量样品;采用压痕法测量
断裂韧性。烧结体外观光滑,组织致密,其三点弯曲强度为390MPa、硬度为15.5GPa、断裂韧性 12.57MPam1/2。
[0018]实施例2
[0019]取非化学计量比碳化钛(TiCa3)粉42.5g、纯度99.0%氮化铝7.5g,在真空手套箱惰性气体环境下装入球磨罐中,加入250g硬质合金磨球;将球磨罐密封取出后,安装在高能球磨机上进行球磨,球磨机的转速为410r/min,球磨时间为4.5h ;待球磨罐冷却后,将其取下放入真空手套箱中,在真空手套箱惰性气体环境下,将混合好的复合粉体取出,根据混合料的理论密度计算,称取复合粉体28g装入石墨模具中,加上下两个压头密封并取出。将上述装填好复合粉体的石墨模具置于等离子放电烧结机加热仓的施压轴压头之间,放好后关闭加热仓,抽真空至6 X 10?,进行烧结,烧结温度为1300°C,保温30min,升温速度为300C /min ;压头压力为50MPa ;保温完成后,自然冷却至990°C泄压,自然冷却至295°C停止抽真空;自然冷却至58°C,解除真空,打开加热仓,取出烧结体。
[0020]将上述烧结体经喷砂、打磨后,用电火花切割烧结体为40X5X5mm样品用于三点
弯曲强度测量试样;制备q>30x5mm样品用于硬度测量及韧性测量样品;采用压痕法测量
断裂韧性。烧结体外观光滑,组织致密,其三点弯曲强度为512MPa、硬度为19.4GPa、断裂韧性 11.65MPam1/2。
[0021]实施例3
[0022]取非化学计量比碳化钛(TiCa4)粉40g、纯度99.0%氮化铝10g,在真空手套箱惰性气体环境下装入球磨罐中,加入250g硬质合金磨球;将球磨罐密封取出后,安装在高能球磨机上进行球磨,球磨机的转速为430r/min,球磨时间为5h ;待球磨罐冷却后,将其取下放入真空手套箱中,在真空手套箱惰性气体环境下,将混合好的复合粉体取出,根据混合料的理论密度计算,称取复合粉体28g装入石墨模具中,加上下两个压头密封并取出。将上述装填好复合粉体的石墨模具置于真空热压烧结机加热仓的施压轴压头之间,放好后关闭加热仓,抽真空至6 X10_3Pa,进行烧结,烧结温度为1520°C,保温50min,升温速度为30°C /min ;压头压力为50MPa ;保温完成后,自然冷却至995°C泄压,自然冷却至295°C停止抽真空;自然冷却至58°C,解除真空,打开加热仓,取出烧结体。
[0023]将上述烧结体经喷砂、打磨后,用电火花切割烧结体为40X5X5mm样品用于三点`弯曲强度测量试样;制备q)30x5mm祥品用于硬度测量及韧性测量样品;采用压痕法测量
断裂韧性。烧结体外观光滑,组织致密,其三点弯曲强度为556MPa、硬度为22.5GPa、断裂韧性 8.67MPam1/2。
[0024]实施例4
[0025]取非化学计量比碳化钛(TiCa4)粉35g、纯度为99.0%的氮化钛7.5g、纯度99.0%氮化铝7.5g,在真空手套箱惰性气体环境下装入球磨罐中,加入250g硬质合金磨球;将球磨罐密封取出后,安装在高能球磨机上进行球磨,球磨机的转速为440r/min,球磨时间为4h;待球磨罐冷却后,将其取下放入真空手套箱中,在真空手套箱惰性气体环境下,将混合好的复合粉体取出,根据混合料的理论密度计算,称取复合粉体30g装入石墨模具中,加上下两个压头密封并取出。将上述装填好复合粉体的石墨模具置于真空热压烧结机加热仓的施压轴压头之间,放好后关闭加热仓,抽真空至7X10_3Pa,进行烧结,烧结温度为1500°C,保温40min,升温速度为30°C /min ;压头压力为50MPa ;保温完成后,自然冷却至990°C泄压,自然冷却至297°C停止抽真空;自然冷却至59°C,解除真空,打开加热仓,取出烧结体。
[0026]将上述烧结体经喷砂、打磨后,用电火花切割烧结体为40X5X5mm样品用于三点
弯曲强度测量试样;制备q)30x5mm样品用于硬度测量及韧性测量样品;采用压痕法测量断裂韧性。烧结体外观光滑,组织致密,其三点弯曲强度为669MPa、硬度为23.3GPa、断裂韧性 8.89MPam1/2。
[0027]实施例5
[0028]取非化学计量比碳化钛(TiCa4)粉37.5g、纯度为99.0%的氮化钛10g、纯度99.0%氮化铝2.5g,在真空手套箱惰性气体环境下装入球磨罐中,加入250g硬质合金磨球;将球磨罐密封取出后,安装在高能球磨机上进行球磨,球磨机的转速为450r/min,球磨时间为4h ;待球磨罐冷却后,将其取下放入真空手套箱中,在真空手套箱惰性气体环境下,将混合好的复合粉体取出,根据混合料的理论密度计算,称取复合粉体30g装入石墨模具中,加上下两个压头密封并取出。将上述装填好复合粉体的石墨模具置于真空热压烧结机加热仓的施压轴压头之间,放好后关闭加热仓,抽真空至9X 10_3Pa,进行烧结,烧结温度为1500°C,保温60min,升温速度为30°C /min ;压头压力为50MPa ;保温完成后,自然冷却至999°C泄压,自然冷却至295°C停止抽真空;自然冷却至59°C,解除真空,打开加热仓,取出烧结体。
[0029]将上述烧结体经喷砂、打磨后,用电火花切割烧结体为40X5X5mm样品用于三点
弯曲强度测量试样;制备q)30x5mm样品用于硬度测量及韧性测量样品;采用压痕法测量
断裂韧性。烧结体外观光滑,组织致密,其三点弯曲强度为520MPa、硬度为22.lGPa、断裂韧性 6.54MPam1/2。
[0030]实施例6
[0031 ] 取非化学计量比碳化钛(TiCa 4)粉32.5g、纯度为99.0%的氮化钛7.5g、纯度99.0%氮化铝10g,在真空 手套箱惰性气体环境下装入球磨罐中,加入250g硬质合金磨球;将球磨罐密封取出后,安装在高能球磨机上进行球磨,球磨机的转速为430r/min,球磨时间为4.5h ;待球磨罐冷却后,将其取下放入真空手套箱中,在真空手套箱惰性气体环境下,将混合好的复合粉体取出,根据混合料的理论密度计算,称取复合粉体28g装入石墨模具中,加上下两个压头密封并取出。将上述装填好复合粉体的石墨模具置于真空热压烧结机加热仓的施压轴压头之间,放好后关闭加热仓,抽真空至6 X 10_3Pa,进行烧结,烧结温度为1600°C,保温45min,升温速度为30°C /min ;压头压力为50MPa ;保温完成后,自然冷却至990°C泄压,自然冷却至290°C停止抽真空;自然冷却至58°C,解除真空,打开加热仓,取出烧结体。
[0032]将上述烧结体经喷砂、打磨后,用电火花切割烧结体为40X5X5mm样品用于三点弯曲强度测量试样;制备q)30x5mm样品用于硬度测量及韧性测量样品;采用压痕法测量断裂韧性。烧结体外观光滑,组织致密,其三点弯曲强度为681MPa、硬度为24.3GPa、断裂韧性 9.78MPam1/2。
[0033]实施例7
[0034]取非化学计量比碳化钛(TiCa6)粉30g、纯度为99.0%的氮化钛7.5g、纯度99.0%氮化铝12.5g,在真空手套箱惰性气体环境下装入球磨罐中,加入250g硬质合金磨球;将球磨罐密封取出后,安装在高能球磨机上进行球磨,球磨机的转速为450r/min,球磨时间为4h ;待球磨罐冷却后,将其取下放入真空手套箱中,在真空手套箱惰性气体环境下,将混合好的复合粉体取出,根据混合料的理论密度计算,称取复合粉体25g装入石墨模具中,加上下两个压头密封并取出。将上述装填好复合粉体的石墨模具置于等离子放电烧结机加热仓的施压轴压头之间,放好后关闭加热仓,抽真空至9X10_3Pa,进行烧结,烧结温度为1350°C,保温30min,升温速度为30°C /min ;压头压力为50MPa ;保温完成后,自然冷却至990°C泄压,自然冷却至295°C停止抽真空;自然冷却至59°C,解除真空,打开加热仓,取出烧结体。
[0035]将上述烧结体经喷砂、打磨后,用电火花切割烧结体为40X5X5mm样品用于三点
弯曲强度测量试样;制备q)30x5mm样品用于硬度测量及韧性测量样品;采用压痕法测量
断裂韧性。烧结体外观光滑,组织致密,其三点弯曲强度为622MPa、硬度为22.2GPa、断裂韧性 6.63MPam1/2。
[0036]实施例8
[0037]取非化学计量比碳化钛(TiCa4)粉42.5g、纯度为99.0%的氮化钛7.5g,在真空手套箱惰性气体环境下装入球磨罐中,加入250g硬质合金磨球;将球磨罐密封取出后,安装在高能球磨机上进行球磨,球磨机的转速为450r/min,球磨时间为4h ;待球磨罐冷却后,将其取下放入真空手套箱中,在真空手套箱惰性气体环境下,将混合好的复合粉体取出,根据混合料的理论密度计算,称取复合粉体29g装入石墨模具中,加上下两个压头密封并取出。将上述装填好复合粉体的石墨模具置于等离子放电烧结机加热仓的施压轴压头之间,放好后关闭加热仓,抽真空至9 X 10?,进行烧结,烧结温度为1500°C,保温50min,升温速度为30V /min ;压头压力为50MPa ;保温完成后,自然冷却至995°C泄压,自然冷却至296°C停止抽真空;自然冷却至58°C,解除真空,打开加热仓,取出烧结体。
[0038]将上述烧结体经喷砂、打磨后,用电火花切割烧结体为40X5X5mm样品用于三点
弯曲强度测量试样;制备φ30χ5ιππι祥品用于硬度测量及韧性测量样品;采用压痕法测量
断裂韧性。烧结体外观光滑,组织致密,其三点弯曲强度为441MPa、硬度为20.8GPa、断裂韧性 6.33MPam1/2。
[0039]实施例9
[0040]取非化学计量比碳化钛(TiCa5)粉40g、纯度为99.0%的氮化钛7.5g、纯度99.0%氮化铝2.5g,在真空手套箱惰性气体环境下装入球磨罐中,加入250g硬质合金磨球;将球磨罐密封取出后,安装在高能球磨机上进行球磨,球磨机的转速为400r/min,球磨时间为4h ;待球磨罐冷却后,将其取下放入真空手套箱中,在真空手套箱惰性气体环境下,将混合好的复合粉体取出,根据混合料的理论密度计算,称取复合粉体28g装入石墨模具中,加上下两个压头密封并取出。将上述装填好复合粉体的石墨模具置于等离子放电烧结机加热仓的施压轴压头之间,放好后关闭加热仓,抽真空至7 X 10_3Pa,进行烧结,烧结温度为1450°C,保温30min,升温速度为30°C /min ;压头压力为50MPa ;保温完成后,自然冷却至998°C泄压,自然冷却至290°C停止抽真空;自然冷却至55°C,解除真空,打开加热仓,取出烧结体。
[0041]将上述烧结体经喷砂、打磨后,用电火花切割烧结体为40X5X5mm样品用于三点
弯曲强度测量试样;制备(p30x5mm样品用于硬度测量及韧性测量样品;采用压痕法测量
断裂韧性。烧结体外观光滑,组织致密,其三点弯曲强度为535MPa、硬度为23.7GPa、断裂韧性 10.98MPam1/2。
【权利要求】
1.一种非化学计量比碳化钛与氮化铝、氮化钛复合材料,其特征在于:它的化学成分质量百分比为:非化学计量比碳化钛TiCx为60-85%,余量为纯度99.0%氮化铝AlN或纯度为99.0%的氮化钛TiN或氮化铝、氮化钛二种化合物的混合物,这二种化合物的混合物中的氮化铝和氮化钛的质量比为1-5:3-5,上述TiCx中0.3 < X < 0.6。
2.上述权利要求1所述的非化学计量比碳化钛与氮化铝、氮化钛复合材料的制备方法,其特征在于: (1)将上述原料在真空手套箱惰性气体环境下装入球磨罐中,装入球料比为5:1的硬质合金磨球;将球磨罐密封取出后,安装在高能球磨机上进行球磨,球磨机的转速为400-450r/min,球磨时间为4_5h,待球磨罐冷却后,将其取下放入真空手套箱中,在真空手套箱惰性气体环境下,将混合好的复合粉体取出;根据混合料的理论密度计算,称取粉体并装入石墨模具中,加上下两个压头密封并取出; (2)将上述装填好复合粉体的石墨模具置于热压烧结机加热仓的施压轴压头之间,放好后关闭加热仓,抽真空至6X 10_3Pa-9X 10_3Pa,进行烧结,烧结温度:1300-1600°C,保温时间:30-60min,升温速度:30°C /min ;压头压力:50MPa ;保温完成后,自然冷却至1000°C以下泄压,自然冷却至300°C以下停止抽真空;自然冷却至60°C以下,解除真空,打开加热仓,取出烧 结体。
【文档编号】C04B35/56GK103626496SQ201310652364
【公开日】2014年3月12日 申请日期:2013年12月5日 优先权日:2013年12月5日
【发明者】王明智, 乔丽娜, 徐帅, 李翠, 郭晓培, 赵玉成, 皱芹 申请人:燕山大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1