一种SMC复合材料及使用该材料的人行道系统的制作方法

文档序号:15177930发布日期:2018-08-14 18:39阅读:447来源:国知局

本发明涉及桥梁工程建设领域,具体涉及一种smc复合材料及使用该材料的人行道系统。



背景技术:

人行道系统是桥梁建设的主要附属设施,目前,在我国铁路的简支t梁建设中,其人行道步板基本上是采用c30混凝土,支架采用角钢通过相互焊接而成,焊接好的支架通过螺栓锚固的方式固定在简支t梁挡渣墙外面的预埋钢板上,栏杆采用角钢焊接在支架上,中间穿插角钢作为栏杆,这些材料不仅重量大,增加了桥面负重,提高了对梁体及桥墩的结构强度要求;而且运输不便,需要项目现场焊接施工,现场焊接施工在垂直地面方向上的尺寸一致性非常差,安装后完成后角钢横梁的受力非常不均匀,给铁路的运行过程中带来安全隐患,同时施工效率低,并且在桥梁上焊接时属于高空作业,容易造成人身伤亡。



技术实现要素:

本发明所要解决的技术问题是提供一种强度较高、耐腐蚀、抗老化smc复合材料及使用该材料生产的强度高、耐腐蚀、抗老化、综合运行成本较低的smc复合材料人行道系统。

本发明所采用的技术方案是:一种smc复合材料,其包括从而上而下依次设置的上聚乙烯薄膜层、上树脂糊层、短切玻纤层、连续玻纤层、碳纤维织物层、芳纶纤维织物层、下树脂糊层以及下聚乙烯薄膜层;所述树脂糊层由以下按照重量份计的材料组成:乙烯基树脂60-70份、低收缩添加剂30-40份、纳米复合制剂8-11份、1000目水合氢氧化铝粉30-50份、ra-150氧化镁与苯乙烯按40:60配成的氧化镁糊增稠剂2.5-4份、氧乙酸螯合基钛酸酯偶联剂0.8-1.5份以及乙二醇螯合基钛酸酯偶联剂0.8-1.5份。

所述低收缩添加剂采用wackerpolymer公司的由醋酸乙烯酯和巴豆酸构成的固态、无色或微黄的名称为vinnapasc501聚合物加入适量的苯乙烯溶解而成,sc501与苯乙烯的配比为sc501:苯乙烯=67:33,加热至53-55℃,1200r/min搅拌8小时制备而得。

一种smc复合材料的制作方法,其包括如下步骤:

步骤一:按重量份计将乙烯基树脂60-70份、低收缩添加剂30-40份、纳米复合制剂8-11份、水合氢氧化铝粉30-50份、氧乙酸螯合基钛酸酯偶联剂0.8-1.5份、乙二醇螯合基钛酸酯偶联剂0.8-1.5份以及增稠剂2.5-4份,投入到混合釜中,设置混合釜转速1200rpm,搅拌20分钟;

步骤二:将步骤一搅拌得到的混合物转移至储料釜中,通过流量泵a输送到在线混合器内,在氧化镁糊釜和色浆糊釜内加入氧化镁糊和色浆糊,分别通过流量泵b和流量泵c同时输送到在线混合器内,通过在线混合器经过1200r/min的在线搅拌后,涂布到上下两层聚乙稀薄膜上;

步骤三:在步骤二中所述的上下两层承载有树脂糊的聚乙稀薄膜层之间自上而下设置短切玻纤层、连续玻纤层、碳纤维织物层以及芳纶纤维织物层,使树脂糊与增强织物形成夹层结构,将上述夹层结构复合材料增强织物在0.8mpa压力下进行浸渍,经2分钟充分浸渍后,形成片状片材,收箱;

步骤四:将步骤三中的片状片材放入30-32℃的熟化室进行熟化增稠,48小时后,形成适用于模压工序模压的smc片材。

一种人行道系统,包括smc复合材料整体模压成型的人行道横梁和人行道栏杆扶手、电缆槽、盖板、以及人行道栏杆,所述人行道横梁通过连接板设置在挡渣墙的外侧,所述人行道栏杆立杆设置在人行道横梁上,所述电缆槽设置在人行道横梁上方,所述盖板设置在电缆槽上,所述人行道步板设置在盖板上。

所述盖板的底面两端设置有卡沿,所述卡沿与电缆槽顶部翻边相匹配,在盖板的底面还设置有加强筋。

在所述人行道栏杆扶手上设置有安装孔以及设置在安装孔上的栏杆套,人行道栏杆与栏杆套通过螺栓销连接。

在所述盖板上设置有人行道步板,所述人行道板的上表面呈弧形,在人行道步板的上表面设置有防滑凸起。

在所述人行道步板的上表面设置有两个以上横向沟槽以及两个以上纵向沟槽,在横向沟槽与纵向沟槽的交汇处设置有中间排水孔,在横向沟槽内设置有边部排水孔。

在所述横向沟槽内设置有纵向挡板,所述纵向挡板的上端面与人行道步板的上表面相适配,所述纵向挡板的下端面与横向沟槽的槽底存在间隙;

在所述纵向沟槽内设置有横向挡板,所述横向挡板的上端面与人行道步板的上表面相适配,所述横向挡板的下端面与纵向沟槽的槽底存在间隙。

在所述人行道步板内设置有排水槽,所述中间排水孔与排水槽相连通,所述边部排水孔延伸至人行道步板的下底面。

所述纵向沟槽的槽底呈波浪形,所述横向沟槽在纵向沟槽的波峰处与纵向沟槽相交。

本发明的积极效果为:本发明的smc复合材料抗压与抗拉强度高,可以代替钢板和角钢使用。可以有效改善采用本材料的模压制品的表面光泽性,并且具有较好的耐老化性以及耐腐蚀性。

人行道横梁、人行道栏杆扶手采用smc复合材料一体模压成型,整套结构与预埋在桥梁梁体横向外侧壁上的安装构件通过螺栓固定连接,除此之外,人行道横梁、人行道栏杆扶手之间无需任何组装与装配连接,安装精度更高,并且质量轻强度高、电绝缘性好、耐腐蚀、易组装、组装后尺寸精度高,并且免于后期维护,整个寿命周期内使用成本低。人行横梁、人行道栏杆扶手、smc复合材料盖板、smc复合材料电缆槽采用轻质高强的smc复合材料模压制成,质量轻,减少了安装过程中吊装等费用,降低了安装成本。

附图说明

图1为本发明生产方法工艺流程图;

图2为本发明人行道系统结构示意图;

图3为本发明电缆槽结构示意图;

图4为本发明人行道栏杆扶手安装孔及栏杆套示意图;

图5为本发明人行道步板结构示意图;

图6为本发明图5a-a向剖面示意图;

图7为本发明图5b-b向剖面示意图。

具体实施方式

实施例1:

一种smc复合材料,其包括从而上而下依次设置的上聚乙烯薄膜层、上树脂糊层、短切玻纤层、连续玻纤层、碳纤维织物层、芳纶纤维织物层、下树脂糊层以及下聚乙烯薄膜层;所述上树脂糊层由以下按照重量份计的材料组成:乙烯基树脂65份、低收缩添加剂35份、纳米复合制剂9份、水合氢氧化铝粉40份、增稠剂3份、氧乙酸螯合基钛酸酯偶联剂1份以及乙二醇螯合基钛酸酯偶联剂1份。下树脂糊层与上树脂糊层的组分配比以及制作方法相同。所述短切玻纤层、连续玻纤层、碳纤维织物层、芳纶纤维织物层的纤维方向沿片材的纵向设置。

所述低收缩添加剂采用wackerpolymer公司的由醋酸乙烯酯和巴豆酸构成的固态、无色或微黄的名称为vinnapasc501聚合物加入适量的苯乙烯溶解而成,sc501与苯乙烯的配比为sc501:苯乙烯=67:33,加热至53-55℃,1200r/min搅拌8小时制备而得。

所述水合氢氧化铝粉是表面经浸润剂预包覆了的,能够显著降低基体的吸油值,降低树脂糊的粘度,增加树脂糊对体系中各种织物的浸润性。

所述纳米复合制剂是一种经钛酸酯偶联剂处理过的纳米级硬脂酸锌和过氧化苯甲酸叔丁酯物和碳酸钙的复合制剂,这种经过处理的纳米级碳酸钙粒子与乙烯基树脂间形成一种特殊的化学键,对基体树脂有着明显的增强增韧作用。硬脂酸锌在普通smc配方中的作用是提高制品表面的微观平整性,提高光泽度,达到smc复合材料制品在模压过程中与金属模具的有效分离,未经处理的硬质酸锌的熔点在108℃左右,而模压温度在145-155℃左右,当smc片材放入热的模具内部时,硬脂酸锌小分子容易从片材内部分离,影响片材微观结构的一致性。经过处理的纳米级硬脂酸锌,由于增强了与乙烯基树脂的相容性,降低了与基体树脂的相分离,同时由于纳米级粒子更小,更迁移到模压制品表面时,其表面的密实度和光泽度更高,所以能够明显提高产品表面的光泽性和平整度。具有增加smc复合材料的密实性,增强水合氢氧化铝粉、树脂糊以及增强织物微观结构的紧密度,增强模压制品强度,改善模压制品表面光泽性的作用。

氧乙酸螯合基钛酸酯偶联剂能够明显增强碳纤维与乙烯基树脂、水合氢氧化铝粉的亲和性,提高附着力与强度。

乙二醇螯合基钛酸酯偶联剂能够明显增强芳纶纤维与乙烯基树脂、水合氢氧化铝粉的亲和性和附着力,提高复合材料的强度。

所述芳纶纤维织物层、碳纤维织物层使用的芳纶纤维、碳纤维是经过单烷氧基偶联剂预处理过的,能够优化芳纶纤维被乙烯基树脂基体的浸润,大幅提高复合材料的机械性能,稳定地达到整体模压成型的人行道横梁和人行道栏杆扶手、电缆槽、盖板及人行道步板的承载要求。

由于芳纶纤维是一种新型高科技合成纤维(由苯二甲酰苯二胺合成),具有超高强度、高模量和耐高温、耐酸耐碱、重量轻、绝缘、抗老化、生命周期长的优良性能,铺设在最外层的芳纶纤维能够起到提高基体材料的耐断裂性、耐腐蚀性、绝缘性、延长产品的生命周期的作用。

实施例2:

在实施例1的基础上,仅改变树脂糊层的组分配比,乙烯基树脂70份、低收缩添加剂30份、纳米复合制剂11份、水合氢氧化铝粉30份、增稠剂4份、氧乙酸螯合基钛酸酯偶联剂1.5份以及乙二醇螯合基钛酸酯偶联剂0.8份。

实施例3:

在实施例1的基础上,仅改变树脂糊层的组分配比,乙烯基树脂60份、低收缩添加剂40份、纳米复合制剂8份、水合氢氧化铝粉50份、增稠剂2.5份、氧乙酸螯合基钛酸酯偶联剂0.8份以及乙二醇螯合基钛酸酯偶联剂1.5份。

一种smc复合材料的制作方法,其包括如下步骤:

步骤一:按重量份计将乙烯基树脂60-70份、低收缩添加剂30-40份、纳米复合制剂8-11份、水合氢氧化铝粉30-50份、氧乙酸螯合基钛酸酯偶联剂0.8-1.5份、乙二醇螯合基钛酸酯偶联剂0.8-1.5份以及增稠剂2.5-4份,投入到混合釜中,设置混合釜转速1200rpm,搅拌20分钟;

步骤二:将步骤一搅拌得到的混合物转移至储料釜中,通过流量泵a输送到在线混合器内,在氧化镁糊釜和色浆糊釜内加入氧化镁糊和色浆糊,分别通过流量泵b和流量泵c同时输送到在线混合器内,通过在线混合器经过1200r/min的在线搅拌后,涂布到上下两层聚乙稀薄膜上;

步骤三:在步骤二中所述的上下两层承载有树脂糊的聚乙稀薄膜层之间自上而下设置短切玻纤层、连续玻纤层、碳纤维织物层以及芳纶纤维织物层,使树脂糊与增强织物形成夹层结构,将上述夹层结构复合材料增强织物在0.8mpa压力下进行浸渍,经2分钟充分浸渍后,形成片状片材,收箱;

步骤四:将步骤三中的片状片材放入30-32℃的熟化室进行熟化增稠,48小时后,形成适用于模压工序模压的smc片材。

图1为本发明的工艺流程图,将通过上述步骤获得的smc与普通方法获得的smc制成人行道横梁及横梁上内外侧电缆槽位置进行载荷试验数据对比如下:

表1为采用本发明的方法制得的smc材料制成的smc复合材料盖板的载荷数据。

表1

表2为普通smc材料制成的smc复合材料盖板的载荷数据

表2

通过载荷试验可以看出通过该发明方法获得的smc复合材料盖板能够达到且远远大于载荷要求,而用普通方法获得的smc制成的盖板的未能达到载荷要求。

耐久性试验:

由于我国尚未制定片状模塑料制品寿命检测的国家标准和行业标准,国际上也没有相应标准,一般户外使用是材料都是依照模拟紫外光(氙灯)加速老化试验和湿热老化检测结果进行判定。

1)通过该发明方法获得的smc与普通方法获得的smc试样的氙灯老化检测,用氙灯光照老化模拟太阳暴晒,对比检测结果如表3

表3

2)通过该发明方法获得的smc与普通方法获得的smc试样湿热老化检测结果见表4:

表4

结合表1、2可以看出,本发明的smc复合材料所能承受的静载荷更好,由表3、4的检测结果可得出结论,采用本发明的技术方案所生产的smc复合材料加工而成的横梁及盖板经过照射度在1120w/m2持续照射1200小时的氙灯老化和2160小时的湿热老化后强度保留率均在85%以上,所以此材料的户外寿命在30年以上,并且该方法获得的smc试样强度为普通方法获得的smc试样强度的4倍左右,经耐老化后的强度是普通方法获得的smc试样强度的6倍左右。

如附图2~7所示,本发明的人行道系统包括采用smc复合材料整体模压成型的人行道横梁4和人行道栏杆扶手7、电缆槽3、盖板5、人行道步板6以及拉剂成型的人行道栏杆8,所述人行道横梁4通过连接板2设置在挡渣墙1的外侧,所述人行道栏杆扶手7设置在人行道横梁4上,所述电缆槽3设置在人行道横梁4上方,所述盖板5设置在电缆槽3上。电缆槽3与人行道横梁4通过定位螺栓连接;盖板5与电缆槽3通过锁紧螺栓连接。本发明的人行道横梁4和人行道栏杆扶手7采用整体模压成型,成型精度高,可以有效避免后期组装时产生的安装误差。

所述盖板5的底面两端设置有卡沿502和翻边503,所述卡沿502与电缆槽3顶部翻边相匹配,在盖板5的底面还设置有加强筋。

在所述人行道栏杆扶手7上设置有安装孔以及设置在安装孔上的栏杆套701,人行道栏杆8与栏杆套701通过螺栓销连接。

在所述盖板5上设置有人行道步板6,所述人行道步板6的上表面呈弧形,在人行道步板6的上表面设置有防滑凸起610。

在所述人行道步板6的上表面设置有两个以上横向沟槽601以及两个以上纵向沟槽602,在横向沟槽601与纵向沟槽602的交汇处设置有中间排水孔609,在横向沟槽601内设置有边部排水孔607。在人行道步板6上设置有用于排水的沟槽,当下雨或其他情况导致人行道步板6上有水时,水分可以进入沟槽排出,排水速度非常快,可以快速有效将表面水分排出。

在所述横向沟槽601内设置有纵向挡板605,所述纵向挡板605的上端面与人行道步板6的上表面相适配,所述纵向挡板605的下端面与横向沟槽601的槽底存在间隙;在所述纵向沟槽602内设置有横向挡板606,所述横向挡板606的上端面与人行道步板6的上表面相适配,所述横向挡板606的下端面与纵向沟槽602的槽底存在间隙。在所述人行道步板6内设置有排水槽608,所述中间排水孔609与排水槽608相连通,所述边部排水孔607延伸至人行道步板6的下底面。横向挡板606与纵向挡板605分别设置在纵向沟槽602与横向沟槽601内,可以吸取人行道板6表面的水分,克服表面张力,保证人行道步板6表面的干燥性。

所述纵向沟槽602的槽底呈波浪形,所述横向沟槽601在纵向沟槽602的波峰处与纵向沟槽602相交。纵向沟槽602内的水分通过波浪形结构流入横向沟槽601,减少人行道步板6上中间排水孔609的数量,提高使用强度,延长使用寿命。

本发明的人行道横梁4、人行道栏杆扶手7、电缆槽3、电缆槽盖板5采用smc复合材料整体模压成型,整体质量更轻,强度更高,同时安装精度非常高。而人行道步板6自带排水功能,在安装时不必考虑人行道步板6之间的排水问题,安装后人行道步板6更加美观,同时排水效果大大提高。

所述电缆槽可采用内径宽度为210mm、高度为210mm的普通电缆槽和隔离电缆槽,也可采用内径宽度为310mm、高度为210mm的普通电缆槽和隔离电缆槽,也可采用内径宽度为410mm、高度为210mm的普通电缆槽和隔离电缆槽。可以根据电缆铺放的实际需求对电缆槽的型号任意组合,大大提高了电缆槽的实用性。

本发明中smc复合材料盖板5设计厚度为8cm,盖板上面设有防滑花纹,高度设计为3mm,下面设计有加强筋和用来卡紧电缆槽翻边的卡沿,可以确保smc盖板在安装过程中与下面槽体翻边的准确连接,防止在盖板上方打孔时无法准确打在电缆槽边上导致无法安装锁紧的情况发生,卡沿设计高度为10mm,经测算该设计方案中盖板的强度与4mm钢板的强度相当,smc复合材料电缆槽3的设计厚度为8mm,人行道横梁设计厚度为20mm,人行道横梁上设计有加强筋,经过测算本设计方案的强度与10mm厚钢板的强度相当,人行道栏杆扶手的设计厚度为10mm,经测算与6mm厚角钢的强度相当,材料的具体指标见表5。

本发明的人行道横梁4、人行道栏杆扶手7采用smc复合材料整体模压成型,整体质量更轻,总重量相当于现在使用的钢板焊接横梁和水泥电缆槽总重量的十分之一;强度更高,smc复合材料电缆槽3及盖板5的整体强度为水泥电缆槽及盖板强度的3倍以上。相对于现在使用的钢板焊接而成的横梁,产品承载性能的一致性较高,同时安装精度非常高,安装便捷,节省安装过程中人工费用和吊装费用,安装后电缆槽及盖板的密闭性较好,防水防火等级更高。与钢板焊接横梁相比,耐腐蚀性更好,免于后期防腐等方面的维护。

表5smc人行道横梁及smc栏杆扶手、smc电缆槽及盖板材料的性能指标

表5

以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明实施例技术方案的精神和范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1