反光聚合体的制作方法

文档序号:2424652阅读:589来源:国知局
专利名称:反光聚合体的制作方法
技术领域
本发明涉及可反光的多层聚合体,可使其具有银白色或彩色金属(即,铜、金等)外观或非常规彩色(即,蓝、绿等)外观;本发明还涉及由其制成的可用作镜面、反光器、透镜和偏光镜的制品。
制造反光表面的常规方法包括用高度抛光的金属形成所述表面。由于成本高和使用金属所涉及的加工问题,制造商最近开始采用其上有金属薄层的塑料面。因此,在许多工业领域都有作为装饰和实用物的金属涂层塑料制品。这种制品通常作为上光件用于各种消费品上,如冰箱、洗碗机、洗衣机、烘干器和收音机等。这种类型的制品在汽车工业上也被用作车前灯反光器、镶边、收音机按键和内部装饰物等。
典型地,这类金属涂层的塑料制品是通过在制品表面电镀或真空沉积、气相沉积或化学沉积薄金属层形成的。此外,涂层还要进行平修和刨光以及耗时的金属磨蚀。如果在金属涂层上需另加保护层,还要涉及附加人力和物力消耗。不仅如此,一些金属沉积过程还可能带来其排放物对环境的影响问题。
多层聚合物制品是已知的,其制造方法和所用设备也是已知的。例如,可以使用美国专利3,773,882和3,884,606(Schrenk)所述的多层共挤压装置制备这类多层制品。该装置能以基本均匀的层厚同时挤压不同的热塑聚合材料。使用美国专利3,759,647(Schrenk)等人所述的装置可以增加层的数量。
美国专利4,540,623(Im)提出了一种多层层压制品,以聚碳酸酯作为其中一个交替层。然而,Im的制品旨在使其透明而不是反光,使其具有可与纯聚碳酸酯聚合物相比的光学性能。
美国专利3,711,176(Acfrey,Jr.等人)提出了一种用薄膜技术制造的多层高度反光的热塑体。Alfrey,Jr.的反光薄膜层根据光的相长干扰产生反射的可见光、电磁谱紫外线或红外线部分。由于其虹彩反射质量,这种反光薄膜已被用在装饰物上。
然而,Alfrey,Jr.的反光膜对厚度变化极其敏感,其特征是出现不均匀色的条纹和斑点。此外,这种膜反射的颜色取决于照射到膜上的光的入射角。因此,这种膜不适于需要均匀反射性的应用。而且,由于热塑成型中各层的局部变薄会导致膜的反光性能改变,这种膜也不适于热塑成型为制品。
因此,在本技术领域存在着对能在一定范围的加工条件和部件几何形状下将其制成各种部件而不改变材料的均匀反光性能的聚合反光片或反光体的需求。此外,还存在着对能进行二次成型但不改变材料的均匀反光性能的聚合反光片或反光体的需求。还存在着对不使用金属的银色或金属色外观制品的需求。
本发明提供了多层聚合物反光体,它可被二次成型,且能被制成膜、片和各种部件,同时保持均匀的高反光性能,由此满足了上述需求。反光体包括折射率不同、光学厚的或光学极薄的不同聚合材料的交替层。交替层的折射率必须不同,但光学厚层和极薄层可以任何排列安排。即反光体可全部由光学厚层构成,或光学厚层和极薄层交替,或光学厚层和极薄层的任何其它组合。光学厚层太厚以致不能产生可见的虹光效果(视觉上的五光十色),而光学薄层太薄也不能产生上述效果。所得的多层聚合物反应体主要反射白光,并且呈银白色或金属色。
本文所用的“反光的”、“反射性”、“反射”和“反射能力”指镜面的总反光率(即反射的光波能量与入射的光波能量之比)是以使聚合物体具有金属外观。使用这些术语旨在包括半镜面或漫射如刷镀金属和铅锡合金的反射。通常,反射率的测量是指入射到顶角15度的锥体,汇集到反射角周围光线的反射率。
本文所用的特定反射强度是在某一波长出现的其中有可忽略的吸收发生的反射强度。例如,银白色外观的制品反射几乎所有可见光波长,但加上染料使其具有其它金属色彩,必然会降低其在吸收波长处的反射性。未受染料影响的波长的被反射强度将会与未染色样品的反射强度基本相同,反射强度就是指对这些未受影响的波长的反射强度。
根据本发明的一个方面,提供了一种至少有第一和第二种不同聚合物的聚合物反光体,它由足够数量的第一和第二种聚合物交替层构成,使得至少30%入射到该反光体上的光被反射。本文所述的“光”不仅包括可见光,也包括光谱红外和紫外区域内的电磁幅射。“至少30%入射到该反光体上的光”指在出现可忽略的吸收的波长处的反射光。
反光体的绝大多数单一层厚具有不高于0.09微米的光学厚度或不低于0.45微米的光学厚度。可取的是,至少75%的单一层至少具有0.45微米的光学厚度或更高,或0.09微米或更低。另外,各单一层的光学厚度应使得由该物体上不能反射出视觉上的虹光。第一和第二种聚合物的折射率不同,其差至少为约0.03。
许多基本透明的聚合物用于本发明。在一较好的实施方案中,第一种聚合物是聚碳酸酯或刚性或柔性聚氨酯,第二种聚合物是聚甲基丙烯酸甲酯或聚醚酰胺。聚合物体还可包括三个或多个交替层,分别由不同的聚合物构成。在一个使用重复单元ABCBA三层形式的实施方案中,第一种聚合物(A)是聚苯乙烯,第二种聚合物(B)是苯乙烯-丙烯酸羟乙酯共聚物,第三种聚合物(C)是聚甲基丙烯酸甲酯。另外,第一和第三种聚合物可以是相同的,第二种聚合物呆以是苯乙烯和甲基丙烯酸甲酯的共聚物。
对于某些三层组合,B层可不仅提供反应性能,还可作为粘合层在多层结构中粘结A层和C层。B层与其它两层的折射率之差没有必要至少为0.03。例如,构成B层的聚合物的折射率可在A层和B层的折射率之间。
还可以有其它类型的三层重复构型,例如,可以采用ABCABC重复形式,构成第三层的聚合物可在多层构体中作为防护层或增强层。当第三层聚合物为防护层时,它可以单层形式使用在构件外表面的一面或两面上,或作为中间层。适宜的防护层材料如水解乙烯乙酸乙烯酯,聚偏二氯乙烯、腈聚合物和锦纶的共聚物可用在多层体中或其表面。可以使用适宜的粘合材料如马来酐接枝聚烯烃使该防护层与多层体结合。
此外,第三聚合物层还可作为ABABAB重复结构体两个主要外表面的表层之一或两者,或作为中间层。表层可是牺牲性的、或可以是持久性的,作为耐擦伤或耐风化保护层。这类表层可在共挤压之后加在结构体上。例如,可以喷雾涂层施加表层,借以使结构体表面平整以改善其光学性能,并使其具有耐擦伤,耐化学品和/或耐风化等性能。表层也可层压在多层结构体上。对于那些不易于共挤压的聚合物,层压是必要的。
在本发明的一个实施方案中,聚合物结构体是共挤压的,ABABAB两层重复结构中每隔一层为-0.45微米或更厚的光学厚层,而另一层是0.09微米或更薄的光学极薄层。在具有ABCBA重复层的聚合物结构体中,三层中任一或全部可为光学厚层,剩余的为光学极薄层。
在本发明的某些实施方案中,需要使形成的聚合物反光体含有至少500层或更多层。已经发现,增加聚合物反光体的层数可提高其反光性(即由物体反射的入射光的百分率)。因此,通过控制层数,可以控制制品的反光度。
在本发明的一些实施方案中,需要将着色剂如染料或颜料掺入聚合物反应体的一层或多层中。可在聚合物反光体的一个或两个外层或表层上着色,也可将着色剂加到一层或多层内层中。选择着色剂,可使聚合物反光体具有不同于其常规银白色的金属外观。如青铜色、黄铜色、金色等。
还可使用诸如黑、蓝、红、黄和白等不同色料。典型地,最可取的是在内层使用颜料着色剂以提供不透光性和双面镜反光质量,在外层使用染料。着色剂可以组合使用以提供所需的色调和光学性能。例如,可以在内层使用白颜料着色剂,同时在一个或两个表层加入有色染料如蓝、黄、红、或绿以提供优异的颜色反应效果。
此外,尽管反光体的常规表面是平滑的,足以使其具有高反射性银色外观,在某些情形下,还有必要使反光体的表面具有粗糙或刷涂的外观以模拟刷镀金属。还可以使用溶剂浸蚀多层体的表面使其具有毛玻璃或白镴外表。除此之外,还可以以各种图形对聚合物体进行纹压,使其产生所需的光学效果。
本发明的聚合物反光体可应用在几个方面。在本发明的另一实施方案中,可将反光体制成至少具有第一和第二主要表面的镜状聚合物制品,制品包括足够数量的第一和第二种聚合物交替层,使得至少30%入射到物体上的光被反射。制品的绝大多数各单层的光学厚度不高于0.09微米或不低于0.45微米,同时第一和第二种聚合物的折射率不同,其差至少为约0.03。
为使制品具有镜的质量,两个主要面之一要加入光吸收层,如黑或其它带色颜料层。光吸收层可以共挤压或施以漆胶或漆涂。此外,将各单层数增加到500以上或更多,可以提高由制品反射入射光的反射率,使制品具有镜的质量。
通过将光吸收层共挤压在制品内部,也可将本发明的聚合物反光体制成在所有主要表面上呈镜状。因此,本发明提供一种具有至少第一和第二主要表面的镜状聚合物制品,该制品包括足够数量的第一种和第二种聚合物的交替层,使得至少30%入射到制品上的光被反射,该制品还包括至少一个内部光吸收层。制品的绝大多数单一层的光学厚度不高于0.09微米或不低于0.45微米,第一种和第二种聚合物的折射率不同,其差至少为约0.03。
本发明的聚合物反光体还可作为宽谱带电磁波谱的双折射偏光镜。偏光镜由至少第一种和第二种聚合物构成,包括足够数量的第一和第二种聚合物的交替层,使得至少30%入射到偏光镜上的光被反射在偏光面。偏光镜的单一层绝大多数的光学厚度不高于0.09微米或不低于0.45微米,第一和第二种聚合物的折射率不同,其差在偏光镜的一面至少为约0.03。在一优选方案中,第一和第二种聚合物折射率的差别是通过选择具有不同应力光学系数的聚合物,然后测主轴拉伸使聚合材料取向而导致的。
由于可以使用极薄的光学层作为多层体中的某些层,可以制造出总厚度为0.01吋(0.254mm)的反光膜。此外,使用极薄的光学层导致反射图像比仅使用厚光学层更清晰和逼真。不仅如此,使用极薄的光学层还可使得反光体的制造得以采用高达80%(体积)或更多的一种聚合物(厚层)和少于20%(体积)的第二种聚合物(薄层)。这使得可以得到相似于单一聚合物物理性能的高强度层压结构。
此外,采用光学厚层和极薄层的组合得到的层压制品在受到撞击时不会变白或出现裂纹。例如,在一典型的厚延展性/极薄脆性组合如聚碳酸酯/聚甲基丙烯酸甲酯,在轻微撞击下,所有光学厚层的多层叠合将会变白。本发明的厚极薄层组合在受到撞击时不出现裂纹(即使出现一些裂纹,也是肉眼看不到的)或变白。
本发明的多层聚合物反光体还可被成型为许多装饰和/或结构部件。可先通过共挤压技术形成片材,然后进行二次成型。二次成型工艺可包括热塑成型、真空成型、或加压成型。此外,通过使用成型模,可使多层反光体初步成型为各种有用的形状,如型材,管材、坯材,然后成型为吹塑容器。
因此,本发明的一个目的是提供一种可制成膜、片和各种部件,可后续加工的,并且具有均匀反光性能的聚合物反光体。本发明的这一目的和其它目的可从下述详细说明、附图以及权利要求中明显看出。
为使本发明更易于理解,现参照附图加以说明。附

图1a和1b介绍了根据本发明制成的两组分聚合物体系的光反射百分率,折射率差(△N)和层数的关系。这种关系对于任何两组分体系都是真实可信的。此外,尽管坐标图给出层数达5000,折射率差达0.15,高于5000层和/或折射率差高于0.15的聚合物结构体也在本发明的范围内。
本发明提供由100至数千层折射率不同的聚合物交替层制成的高反射性聚合物反光体。聚合物绝大多数单层的光学厚度不高于0.09微米或不低于0.45微米,其中光学厚度的定义是单层的层厚乘以构成该层的聚合物的折射率所得的乘积。反光体可全部由光学厚层构成。然而,极薄光学层与光学厚层组合使用可以制出较薄的膜片和片材。可取的是,构成多层体的单层基本上是连续的。
因此,与先有技术的多层“薄膜”制品不同,本发明的多层聚合物反光体由多层光学厚层构成,或由光学厚层和光学极薄层组合构成。对于光学性能(即反射率和透射率)上的用途,薄膜可被描述为其膜厚比膜应用时的光一个波长的长度薄的膜。因此,对于应用在可见光谱带的膜,文献中将薄膜记述为其厚度D低于约0.5微米或其光学厚度ND(其中N是材料的折射率)低于约0.7微米的膜(Vasicek,Optics of Thin Films(1960),100和139页)。
先有技术的薄膜层制品描述了干扰膜,其依赖光的相长光学干扰产生强的可见光、电磁谱紫外线或红外线的相干反射光,其根据是方程式λm=(2/m)(N1D1+N2D2),其中λm是以nm计的反射波长,N1和N2是交替聚合物的折射率,D1和D2是以nm计的聚合物各自层的厚度,m是反射级数(m=1,2,3…)。该方程式的任一个解都可确定丁对于周围区域所预料的强反射波长。反射强度是“f-比”的函数,其中f=N1D1/(N1D1+N2D2)。
通过适当选择“f-比”,可在某种程度上控制各种较高级反射的反射强度。例如,使用光学厚度在0.075-0.25微米的层可以得到由蓝(0.38微米波长)到红(0.68微米波长)的一级可见光反射。也可将虹光膜设计为以较高级反射率反射可见光,尽管强度较低。
由此可见,这种薄膜聚合物反光体强烈依靠膜(及各单层)厚度来确定反射的波长。薄膜对厚度变化极其敏感,因此该薄膜的特征是易出现不均匀的光纹和光斑。
本发明的多层反光体不显示鲜艳的虹光。事实上,本发明一个主要目的是避免导致虹彩产生的层厚。通过使用足够厚的层来避免虹光,或与太薄以致不能产生虹光的层组合,导致基本银色和非虹光反射。这一银色外观是由紧密间隔排列的厚层的较高级的反射造成的,人所见的反射基本无虹彩。
本发明避开的光学厚度是λ/4<nd<5λ/4,其中λ=0.38微米,n=聚合物的折射率,d=以微米表示的物理层厚。因此,在本发明的实施中,绝大多数厚层的光学厚度(nd)大于5λ/4,绝大多数极薄层的光学层厚小于λ/4。
本发明的制品呈均匀的银色反光外观,而不是先有技术薄膜多层制品常见的多色彩、虹光外观。本发明的多层的反光特性受下述方程式制约R=(Kr)/(1+(K-1)r)×100其中R是反射光的量(百分率),K是厚层的数量,R=〔(N1-N2)/(N1+N2)〕。见Vasicek,Optics of Thin Films(1960),69-70页。
上述方程式表明,反射光强度仅是两种聚合物组分各自的折射率和界面总层数的函数。这一关系与其反光性对层厚和视角极其敏感的先有技术的薄膜制品有明显不同。
因此,由本发明的多层聚合物体反射的光的波长在很宽的工艺范围内独立于各种单层的层厚和总结构的层厚。结构体的设计使反光均匀性不变。不仅如此,在结构体整个厚度范围内层厚的递减对其外观既无害也无利,只需聚合物的绝大多数单层保持在光学厚度等于或大于0.45微米,或等于或小于0.09微米。这又一次与先有技术薄膜制品形成鲜明对照,后者根据层厚梯度反射宽或窄的光谱带宽。
没有必要使本发明的聚合物反光体的所有层都具有0.45微米或更高或0.09微米或更低的光学厚度。制造本发明聚合物反光体的共挤压方法可能造成结构体整个厚度范围内层厚的变化和各单层平面上的层厚变化。每种聚合物组分的层厚变化可达30%或更高。但是,只要绝大多数层的光学厚度不高于0.09微米或不低于0.45微米,即使在这样宽的厚度变化下也可制出有用的反光体和反光制品。满足上述条件,从本发明的反光体和制品上就不会反射出可见的干扰彩色。
先有技术薄膜的特点是虹光干扰彩色,其消失是人眼睛的主观视觉。然而,我们发现,结构体内75%的层必须具有大于0.45微米的光学厚度或小于0.09微米的光学厚度才能得到几乎所有波长(白光)的均匀反射(宽光带),本发明的特征在此。25%或更少量的层具有0.1-0.45微米的光学厚度,其产生的干扰反射强度足够低,使反射体基本不能反射出视觉上的虹光。
增加层数,可使本发明的聚合物光光体对入射光(即低透射光)有更高的反射能力。可取的是,层的数量应是以使制品反射至少30%其波长仅有可忽略的吸收的入射光。反射率低于30%不足以使人易于觉察。如果需要用本发明的聚合物反应体作为镜面,增加层数可使制品的反射率提高到50%或更高,得到银色镜状外观。
制品的反光性能还取决于所用两种聚合物的折射率之差。即,折射率之差越大,制品的反射能力越强。因此可以看出,聚合物制品反光性能可通过选择具有不同折射率的聚合物和使制品具有附加层来控制。两组分体系的光反射百分率,折射率差(△N)和材料层数的关系示于附图1a和1b。
本发明的多层聚合物反光体可包括范围广泛的通常是透明热塑物的交替层。可用于实施本发明的适宜热塑树脂及其相应的折射率包括但不限于全氟烷氧基树脂(折射率=1.35),聚四氟乙烯(1.35),氟化乙烯-丙烯共聚物(1.34),硅氧烷树脂(1.41),聚偏氟乙烯(1.42),聚氯三氟乙烯(1.42),环氧树脂(1.45),聚丙烯酸丁酯(1.46),聚(4-甲基戊烯-1)(1.46),聚乙酸乙烯酯(1.47),乙基纤维素(1.47),聚甲醛(1.48),聚甲基丙烯酸异丁酯(1.48),聚丙烯酸甲酯(1.48),聚甲基丙烯酸丙酯(1.48),聚甲基丙烯酸乙酯(1.48),聚醚嵌段酰胺(1.49),聚甲基丙烯酸甲酯(1.49),乙酸纤维素(1.49),丙酸纤维素(1.49),乙酸丁酸纤维素(1.49),硝酸纤维素(1.49),聚乙烯醇缩丁醛(1.49),聚丙烯(1.49),聚丁烯(1.50),离子树脂如Surlyn(商标)(1.51),低密度聚乙烯(1.51),聚丙烯晴(1.51),聚异丁烯(1.51),热塑聚酯如Ecdel(商标)(1.52),天然橡胶(1.52),丁苯橡胶(1.52),聚丁二烯(1.52),绵纶(1.53),聚丙烯酸酰亚胺(1.53),聚氯乙酸乙烯酯(1.54),聚氯乙烯(1.54),高密度聚乙烯(1.54),甲基丙烯酸甲酯和苯乙烯的共聚物如Zerlon(商标)(1.54),透明的丙烯腈-丁二烯-苯乙烯三元共聚物(1.54),烯丙基二甘醇树脂(1.55),聚偏氯乙烯和聚氯乙烯的掺合物如Saran树脂(商标)(1.55),聚α-甲基苯乙烯(1.56),苯乙烯-丁二烯胺乳如Dow512-K(商标)(1.56),聚氨酯(1.56),氯丁橡胶(1.56),苯乙烯和丙烯腈的共聚物如Tyril(树脂)(商标)(1.57),苯乙烯和丁二烯的共聚物(1.57),聚碳酸酯(1.59),其它热塑聚酯如聚对苯二甲酸乙二醇酯和聚对苯二甲酸乙酯(1.60),聚苯乙烯(1.60),聚酰亚胺(1.61),聚偏氯乙烯(1.61),聚二氯苯乙烯(1.62),聚砜(1.63),聚醚砜(1.65)和聚醚酰亚胺(1.66)。上述报导的折射率在不同波长可有些变化。例如聚碳酸酯的折射率对光谱蓝色区的光有些偏高,对光谱红色区的光有些偏低。
上述树脂的共聚物也是可用的,例如乙烯和乙烯醇,苯乙烯和丙烯酸羟乙酯,苯乙烯和马来酐,苯乙烯-丁二烯嵌段共聚物,苯乙烯和甲基丙烯酸甲酯,和苯乙烯和丙烯酸,其它可用的聚合物包括聚酮醚、聚丁烯、马来酐接枝聚烯烃如Admer(得自Mitsui Chemicals)和Plexar(得自Quantum Chemicals),和乙烯与乙酸乙烯酯的共聚物如CXA(得自du Pont),后三种聚合物特别可作用粘合层,使其它聚合层粘合在一起形成多层结构。
选择组成反光体交替层的聚合物的条件是所选聚合物的折射率彼此不同,至少相差0.03左右。此外,聚合物在加工温度下应是相容的,以便于共挤压。厚层和极薄层的组合可制成含有高达80%(体积)或更多的第一聚合物(厚层)和20%(体积)或更少的第二聚合物(极薄层)的聚合体。这样得到的多层结构具有与第一聚合物本身相似的性能。此外,这种层压物可形成比只使用交替厚层组合而可能制成的层压物强度高的结构。
本发明的多层反光体最好使用美国专利3,773,882和3,884,606所述的多层共挤压装置制备。这种装置提供了一种制备多层,同时挤压的热塑物料的方法,每一层的厚度基本均匀。使用美国专利3,759,647所述的系列增层装置较好。
共挤压装置的进料台接受来自诸如热塑挤压机等的不同热塑性聚合物流。树脂类物料流经过进料台内的机械操作区。在该区,原始物料流可重排为具有最终反光体所需层数的多层流。根据需要,随后可使该多层流通过系列增层装置以使成品反光体的层数进一步增加。
然后,多层流进入挤压模,该挤压模的构造和布局可维持层流。美国专利3,557,265描述了这种挤压装置。生成的产物经挤压形成多层反光体,其中各层一般是与相邻层的主表面平行的。厚层和极薄层的交替使用减小了各层混杂的倾向。
挤压模的构造可以改变并且可使每一层的厚度和尺寸减小。由机械定向区提供的层厚度减小的精度,模的构造,和挤压后反光体的机械加工量都是影响成品反光体各层厚度的因素。然而,大多数各层聚合物的光学厚度必须不高于0.09微米或不低于0.45微米。
按照本发明制成的聚合物反光体可具有多种多样的潜在用途。例如,反光体可二次成形为凹镜,凸镜,抛物面镜和半银镜等。若使用适宜的柔性或橡胶性聚合物,则可将反光钵弯曲或可复原拉伸成不同的形状。在反光体的一面上共挤压黑色或其它光吸收层可得到镜样外观。另外,可在成品反光体的一面涂上有色漆料或颜料以提供高度反光的镜样反光体。这样的镜子不会象玻璃镜那样易破碎。
在本发明的某些实施方案中,需将着色剂如染料或颜料掺加到聚合体的一层或多层中。着色剂可掺加到聚合体外层或表层之一或两者中,也可掺加到聚合体内层的一层或多层中。所选用的着色剂应能赋予聚合体金属外观而不是其通常的银色外观,例如青铜,铜,或金。
也可使用不同的颜色如黑、蓝、红、黄、和白色。一般来说最好在内层使用颜料着色剂以提供不透明性和镜样反光性,而在外表面使用染料。着色剂可组合使用以提供所需的着色和光学特性。例如,可在内表面使用白色着色剂而在一层或多层表层使用有色染料,如蓝、黄、红或绿色,以提供独特的有色反射效应。
此外,尽管反光体的正常表面是平滑的,可提供高度反光的银色外观,但在某些情况下,需要使反光体的表面呈粗糙或刷过的外观,从而看上去象刷镀金属外观。还可使用溶剂浸浊多层反光体的表面以使反光体呈毛玻璃或白镴的外观。另外,还可以以各种图形对聚合物体进行纹压,使其产生所需的光学效果。
聚合物反光体也可用作双折射偏光镜。通过适当选择组成各层的聚合物,可达到在偏光镜的一个平面折射率不匹配。在一个优选的方法中,可在反光聚合体成形后造成折射率不匹配。选择的聚合物应为第一种聚合物具有正应力光学系数,而第二种聚合物具有负应力光学系数。沿单轴方向拉伸含有这两种聚合物的聚合体使之定向并在定向面造成折射率不匹配即制成偏光镜,其可使经过这种聚合体的宽谱带可见光偏振化。这与已有的薄膜多层偏光镜是截然不同的,后者只能使特别窄的波长范围的光偏振化。
另外,可将高度反光的聚合体制成具有不蚀金属外观的室内外用品。例如,可将聚合体制成汽车零件,例如空气过滤器或制动液盖,挡泥板,驾驶台,百叶窗板,加在金属或塑料上作为罩面的层压板,反光镜,镜托,车轮罩,内部和外部镶边,背面带粘合剂的条带,和灯座,车厢板,装饰物,行李架,按钮,手柄,仪表盘,以及铭牌。
可通过热成形,真空成形,塑制,轧制,或加压成形等方法制成上述部件。也可将聚合体制成具有银色或金属外观的碗,杯子,托盘,碟,毛巾架,卫生纸架,折刀装饰面,结实的镜子(不可破碎的),游乐厅的镜子,装饰衣服用的小圆片,宠物的颈圈,购物袋,圣诞树装饰物,包装纸,条纹带,盒,反射镜,反光衣服,和假指甲。
反光聚合体也可用于家诞和建筑材料,例如反射来自临街院子/草坪地带的噪声而使空间显得更大的栅栏,可选择性透光的窗子,饰瓦,浴缸,淋浴分隔间,淋浴门,天花板贴砖,天花板支持物,扶手,模压窗框,镶边,门框,和天窗框,硬件,如球形捏手,贴脸,和折叶,镶板,单面镜,檐槽,檐槽的反光带(如用于融化冰),挑口饰,橱柜,室内地板板屋顶铺瓦(将热从屋顶反射掉),消防水龙头套筒,邮筒,车库门,壁板,和单面镜。本发明的反光聚合体的其它用途包括高速公路车道标志物,广告牌,或警告牌,作为道路边缘标志物,作为反光标杆(整个标杆可反光并可弯曲),作为道路表面的临时标线以隔开交通车道,或作为路标塔,路障和屏障。反光聚合体还可作用粘贴上去的镶边条带,镶框装饰线条和零件,装饰物,栏杆,窗(反居室光和反射阳光),防护板(船舶减震器),门口镶框,浮标,拖车护栏,天线,镀络硬件的代用品,船壳,轻舟,小型客帆船,赛马场周围的矮墙,帆,冲浪板,轻潜呼吸器用具,闪光灯反射器(用于水下摄影),钓鱼杆,和铭牌及标牌。
除薄板状和薄膜状反光聚合物之外还可共挤压成多种不同的外形。就外形而言,可将多层聚合体1)在成型模中成型为薄板,凹形物,透镜形横截面,圆形或椭圆形管,和半成品,或2)在模外二次成型。例如,装饰模板如墙板和画框,汽车镶板,和家用贴板可通过成型模共挤压而成。使用管状挤压模可生产多层具有金属外观的管。这种管形模也可用来生产半成品,然后可将半成品吹塑成银色瓶和容器。由于可选择用于构造反光体的材料使之具有所需性能,所以反光体可以是挠性的或橡胶性的。可将制成的物品弯曲成不同的程度,用作可变焦距反射器。
本发明的反光聚合体也可被二次成型为各种物品如双面镜,绝缘黑体,和聚焦阳光辐射的阳光增强器。反光体还可成型为桌上用品,餐具,容器和包装用物。通过适当选用聚合物,可将这类物品制成可发微波的物品。
此外,由于极薄层的使用,可将本发明的聚合物成型为总厚度为0.01英寸(0.254mm)或较薄的薄膜。这种反光薄膜可用于不能使用较厚的板的下列场合,如衣服的反光条,反光遮光帘,和工艺品,使用者可用剪刀裁剪该反光薄膜。
交替使用厚的和极薄的光学层还可从聚合体的表面更集中和鲜明地反射光。这是由于从多层反射的光线密庥在一起,从而产生肉眼可见的较分明的图象。
为了便于更好地理解本发明,可参考下列实施例,这些实施例旨在说明本发明,而不限制本发明的范围。
实施例1使用美国专利3,773,882和3,759,647所述的装置,制得反光聚合体薄板。其厚度约为0.05英寸(1.27mm),共有657层聚碳酸酯(Calibre 300-22 The Dow Chemical Comoany的商标)和聚甲基丙烯酸甲酯(Cyro Acrylite H15-003,Cyro Industries的商标)的交替层(ABABAB)。成品薄板的绝大多数层的光学厚度至少为0.45微米。聚碳酸酯((PC)的折射率为1.586,而聚甲基丙烯酸甲酯(PMMA)的折射率为1.49。
将聚碳酸酯和聚甲基丙烯酸甲酯物料在维持于500-520°F(260°-271℃)的挤压机中热塑化并以每小时约20磅(9.1kg/小时)的速率加到进料台中以制作多层核心。用另一台挤压机,以约10磅/小时(4.5kg/小时)的速率给薄板加上聚碳酸酯外表层。将所得构造物铺展在悬挂式模具中(宽=16英寸(406mm),模板间隙=0.05英寸(1.27mm)并在三辊层叠器上以“S-rap”构型冷却。
然后将部分薄板热成型为各种形状,例如反光透镜,餐具,汽车标志牌,和其它复杂的几何形状。某些成型物品可通过在其一面喷涂一层黑色进一步强化。这样当从反面看该物品时,呈强烈银色镜样外观。将另一部分薄板层叠为7层,然后加压加热,得到层数更多的物品(即7×657)。所制成的高度反光物品不需涂上黑色即具有银色镜样外观。
实施例2使用实施例1所述的装置和聚合物,共挤压具有1313层交替核心层的多层反光体。以约32.5磅/小时(14.7kg/小时)的速率将聚碳酸酯加进挤压模中并以约17.5磅/小时(7.9kg/小时)的速率加入聚甲基丙烯酸甲酯。以约12.5磅/小时(5.7kg/小时)的速率加上聚碳酸酯表层,制成反光薄板,其中绝大多数层的光学厚度至少为0.45微米。未观察到彩虹色。
实施例3使用实施例1所述的装置和聚合物,共挤压具有1313层交替核心层的多层反光体。以约42.5磅/小时(19.3kg/小时)的速率将聚碳酸酯加进挤压模中并以约7.5磅/小时(3.4kg/小时)的速率加入聚甲基丙烯酸甲酯。以约12.5磅/小时(5.7kg/小时)的速率加上聚碳酸酯表层,制成反光薄板,其中绝大多数层的光学厚度至少为0.45微米。未观察到彩虹色。
实施例4用Dow Styron 685D聚苯乙烯(比重1.04;折射率1.586)作为“A”层,RichardsonRPC-400苯乙烯甲基丙烯酸甲酯共聚物(比重1.13;折射率1.53)作为“B”层,用Cyro AcryliteH15-003聚甲基丙烯酸甲酯(比重1.20;折射率1.49)作为“C”层制成具有ABCBA重复层型式的三组分反光聚合体。反光体具有平均厚度大致相等的1313层(即A∶B∶C∶B层的每一层组成25%的芯板。进入挤压机的质量流速如下聚苯乙烯(PS)为9.3磅/小时(4.2kg/小时)苯乙烯-甲基丙烯酸甲酯共聚物(SMMA)为21.0磅/小时(9.5kg/小时),聚甲基丙烯酸甲酯(PMMA)为11.7磅/小时(5.3kg/小时)。反光体包括以约为12.0磅/小时(5.4kg/小时)的质量流速挤压的聚苯乙烯(Dow Styron685D)表层。制得的反光薄板的绝大多数层的光学厚度至少为0.45微米。未观察到彩虹色。
实施例5按实施例4的方法制得三组分反光体,所不同的是层厚度比为33∶16.7∶33∶16.7(总核心层的A∶B∶C∶B百分比)。挤压速度如下PS为16.7磅/小时(7.6kg/小时),SMMA为15.0磅/小时(6.8kg/小时),PMMA为16.0磅/小时(7.3kg/小时)。制成的反光薄板绝大多数层的光学厚度至少为0.45微米。未观察到彩虹色。
实施例6按实施例4的方法制得三组分反光体,所不同的是层厚度比为41.0∶8.6∶41.8∶8.6(总核心层的A∶B∶C∶B百分比)。挤压速度如下PS为25.6磅/小时(11.6kg/小时),SMMA为22.0磅/小时(10kg/小时),PMMA为30.0磅/小时(13.6kg/小时)。制成的反光薄板绝大多数层的光学厚度至少为0.45微米。未观察到彩虹色。
实施例7为了确定在哪一点薄层的光学厚度干扰效应变得明显,通过加热上述实施例1-6所制得的每种反光样品并将其拉伸,由彩虹色直到透明为止进行试验,然后目测检查并测量全部样品以确定1)观察到一级蓝光带反射时的总样品厚度,和2)几乎观察不到颜色且样品显示出基本上均匀的银色反射时的总样品厚度。然后根据用显微镜所测的核心层和表层的已知相对组成计算每种组分各层的平均厚度。
然后,用所计算的厚度乘以各组分各自的折射率即得到光学厚度的值。该结果与理论计算的光学厚度比较,列于下表Ⅰ中。
一级蓝光理论值如下计算λ1=2×(光学重复单元组分的光学厚度之和)其中1=可见蓝光=0.38微米,光学厚度之和=N1D1+N2D2(PCPMMA),和=N1C1+N2D2+N3D3+N2D2(PSSMMAPMMASMMA),五级光带理论值如下计算5(λ/4)=微量组分的光学厚度,其中,0.38微米<λ<0.68微米。
从表Ⅰ可以看出一级蓝光反射的理论光学厚度与实测光学厚度相当一致并且在现有技术,薄层虹彩膜专利所述的光学厚度一般的范围内。发现当次要组分的平均光学厚度大于约0.45微米时,实测的光学厚度从很微弱的彩虹色转变为所有波长基本均匀的反射度。微弱彩虹色的消失与五级光带的次要组分的理论光学厚度范围(0.45-0.85微米)密切相关,见表Ⅰ。
实施例8使用美国专利3,773,882和3,759,647所述的装置,制成具有交替厚层和极薄层的反光聚合体薄板。该薄板具有657层由聚碳酸酯(Calibre 300-22,Dow Chemical Company的商标)和聚甲基丙烯酸甲酯(Cyro Acrylite H15-002,Cyro Industries的商标)组成的交替层(ABABAB)和两层聚碳酸酯表层。用聚碳酸酯形成光学厚层,其占薄板的92.3%(重量),而用聚甲基丙烯酸甲酯形成光学极薄层,其只占薄板的7.7%(重量)左右。
成品薄板的绝大多数聚碳酸酯光学厚层的光学厚度至少为0.45微米,绝大多数聚甲基丙烯酸甲酯光学极薄层的光学厚度为0.09微米或更薄。聚碳酸酯(PC)的折射率为1.586而聚甲基丙烯酸甲酯(PMMA)的折射率为1.49。
将聚碳酸酯和聚甲基丙烯酸甲酯物料在维持于500-520°F(260°-271℃)的挤压机中热塑化并由分开的挤压机送到进料台上。聚碳酸酯分别以22.8磅/小时(10.3kg/小时)和27.4磅/小时(12.4kg/小时的速率从两台分开的挤压机中送入进料台,聚甲基丙烯酸甲酯则以4.2磅/小时(1.9kg/小时)的速率从第三台挤压机中送入进料台,制成多层核心。另一台挤压机以11.5磅/小时(5.2kg/小时)的速率给薄板加上聚碳酸酯外表层。所制成的薄膜基本上反射白光并呈银色;未观察到彩虹色。
实施例9使用实施例8提述的装置,共挤压具有657层聚碳酸酯和聚甲基丙烯酸甲酯的交替核心层和丙层聚碳酸酯外表层的多层反光体。聚碳酸酯是Calibre 200-22(The Dow Chemical Company的商标)聚甲基丙烯酸甲酯是Cyro Acrylite H15-002(Cyro Industries的商标),用聚碳酸酯形成光学厚层,其占薄板的95.3%(重量)(包括盖层),而用聚甲基丙烯酸甲酯形成光学极薄层,其占薄板的4.7%(重量)左右。
成品薄板大多数聚碳酸酯光学厚层的光学厚度至少为0.45微米,而约大多数聚甲基丙烯酸甲酯光学极薄层的光学厚度为0.09微米或更薄。聚碳酸酯(PC)的折射率为1.586,而聚甲基丙烯酸甲酯(PMMA)的折射率为1.49。
将聚碳酸酯和聚甲基丙烯酸甲酯物料在维持于500-520°F(260°-271℃)的挤压机中热塑化并由分开的挤压机送到进料台。聚碳酸酯分别以40.0磅/小时(18.1g/小时)的速率从两台分开的挤压机中送入进料台,聚甲基丙烯酸甲酯则以4.4磅/小时(2.0kg/小时)的速率从第三台挤压机中送入进料台,制成多层核心。另一台挤压机以9.0磅/小时(4.1kg/小时)的速率给薄板加上聚碳酸酯外表层。所制成的薄膜基本上反射白光并呈银色;未观察到彩虹色。
虽然为了说明本发明给出了某些代表性的实施方案和细节,但本专业领域的普通技术人员显然可在不脱离本发明范围的情况下对本文所揭示的方法和装置做各种改动,本发明的权利要求书限定了本发明的范围。
权利要求
1.一种至少由第一和第二两种不同的聚合物构成的反光聚合体,其特征在于该聚合体包括足够数目的所述第一和第二聚合物的交替层,以反射所述聚合体上至少30%的入射光,所述聚合体的绝大多数层的光学厚度不大于0.09微米或不小于0.45微米,并且其中所述的第一和第二聚合物的折射率彼此不同,至少相差0.03左右。
2.权利要求1所述的反光聚合体,其中至少一层的光学厚度不大于0.09微米。
3.权利要求1或2所述的反光聚合体,其中所述的第一聚合物为聚碳酸酯,所述的第二聚合物为聚甲基丙烯酸甲酯。
4.权利要求1或2所述的反光聚合物,其中所述的第一聚合物是刚性聚氨酯,所述的第二聚合物是聚甲基丙烯酸甲酯。
5.权利要求1或2所述的反光聚合体,其中所述的第一聚合物是挠性聚氨酯,所述的第二聚合物是聚醚酰胺。
6.权利要求1-5所述的反光聚合体,其中所述聚合体至少包括500层。
7.权利要求1-6所述的反光聚合体,其中所述聚合体是可热成形的。
8.权利要求1-7所述的反光聚合体,其中将着色剂掺加到所述聚合体的至少一层中。
9.权利要求1或2所述的反光聚合体,其中至少一个表层具有刷镀的或粗糙的表面。
10.权利要求1或2所述的反光聚合物,其中所述的第一和第二聚合物是高弹体。
11.权利要求1或2所述的反光聚合体,其中至少75%的所述层的光学厚度至少为0.45微米,并且所述第二聚合物的绝大多数层的光学厚度为0.09微米或更薄。
12.权利要求1或2所述的反光聚合体,其中所述聚合体挤压成某种外形结构。
13.权利要求1或2所述的反光聚合体,其中所述聚合体二次成形为某种外形结构。
14.权利要求1或2所述的反光聚合体,该聚合体包括防护层作为所述聚合体的外层或内层。
15.权利要求1或2所述的反光聚合体,其中所述聚合体包括由第一、第二和第三三种不同的聚合物构成的ABCBA型式的交替层,并且其中所述第一,第二和第三聚合物的绝大多数层的光学厚度至少为0.45微米或0.09微米或更薄。
16.权利要求15所述的反光聚合体,其中所述的第一聚合物是聚苯乙烯,所述的第二聚合物是苯乙烯-羟乙基丙烯酸酯共聚物,所述的第三聚合物是聚甲基丙烯酸甲酯。
17.权利要求1或2所述的反光聚合体,其中所述的聚合体是镜或镜样物品的形式。
18.权利要求1或2所述的反光聚合体,其中所述的聚合体是双折射偏光镜的形式,并且其中所述的第一和第二聚合物在偏光镜的一个平面的折射率彼此不同,至少相差0.03左右。
19.权利要求18所述的双折射偏光镜,其中所述第一和第二聚合物的折射率的不同是由沿主轴方向拉伸所述聚合物以使所述聚合物定向所造成的。
20.一种由至少第一和第二两种不同的聚合物构成的反光聚合体,其特征在于该聚合体包括足够数目的所述第一和第二聚合物的交替层,以基本上不反射肉眼可见的虹彩,所述聚合体的绝大多数层的光学厚度不大于0.09微米或不小于0.45微米,并且其中所述的第一和第二聚合物的折射率彼此不同,至少相差0.03左右。
全文摘要
本发明提供一种多层反光聚合体,其可热成型并能被制成薄膜,薄板,和各种零件并保持均匀反光的外观。该反光聚合体至少包括第一和第二两种不同的聚合物,其形成足够数目的交替层以反射聚合体上至少30%的入射光。该聚合体的绝大多数层的光学厚度不大于0.09微米或不小于0.45微米,第一和第二聚合物的相邻层的折射率彼此不同,至少相差0.03左右。可将反光体制成薄板,镜,具有不蚀金属外观的物品和零件,反射器,和反光透镜。
文档编号B32B27/00GK1048191SQ90103019
公开日1991年1月2日 申请日期1990年6月19日 优先权日1989年6月20日
发明者约翰·A·威特雷, 瓦尔特·J·史仑克 申请人:陶氏化学公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1