能够控制伴随改变印刷速度的图像对准不良、切割对准不良和印刷密度波动的印刷机的制作方法

文档序号:2476840阅读:197来源:国知局
专利名称:能够控制伴随改变印刷速度的图像对准不良、切割对准不良和印刷密度波动的印刷机的制作方法
技术领域
本发明涉及与在印刷机中的印刷速度的改变相关的控制技术,更具体地说,涉及一种控制具有多个印刷单元的多色旋转印刷机以在改变印刷速度的同时抑制在通过单个印刷单元所印刷的各图像之间的对准不良(misregistration)的技术,一种控制具有用于以与印刷速度同步的速度以规则的间隔将具有印刷的图像的卷筒纸切割(cut)成单个的指定面积的切割设备的旋转印刷机以在改变印刷速度的同时抑制切割(cut)设备的切割对准不良的技术,以及一种控制其中通过多个墨辊将墨从墨供应设备提供到印版滚筒(plate cylinder)的印刷机以在改变印刷速度的同时抑制印刷密度的波动的技术。
背景技术


图16、附图18和附图20每个都是批量生产应用的普通胶版(offset)旋转印刷机的基本部分的示意性方块图。此外,附图16还示出了控制图像对准不良的控制系统,附图18还示出了控制切割对准不良的控制系统,以及附图20还示出了控制印刷密度的控制系统。如这些附图中每个附图所示,一般批量生产应用的胶版旋转印刷机具有作为它的基本部件的馈进部分3、印刷部分4、干燥部分7、冷却滚筒部分8、折叠机9。
馈进部分3用于将卷筒纸(web)2从通过没有示出的卷筒纸架(reel stand)支撑的纸辊1中连续地抽出卷筒纸2,并且它配备有没有示出的用于在其中夹住卷筒纸2以旋转地传递它的馈进牵引器(in-free drag)、用于适当地控制卷筒纸2的张力的松紧调节辊(dancer roller)等。馈进牵引器连接到通过主马达13驱动的主轴13a以通过主轴13a从主马达13接收旋转驱动力。
印刷部分4具有四个印刷单元4A、4B、4C和4D,它们分别被分配黑色、青色、品红色和黄色,并且沿卷筒纸2的行进路径上设置。每个印刷单元4A、4B、4C和4D具有包括墨源辊20的多个辊墨通过在墨源辊20和墨开关(inkkey)19之间的间隙释放,然后在提供给印版滚筒5的同时通过一系列的未示出的墨辊适当地捏合(knead),最后通过胶印滚筒6从印版滚筒5传递给卷筒纸2。在每个印刷单元4A、4B、4C和4D的印版滚筒5之间的相位(phase)关系以这样一种方式确定,即,使每个印刷单元4A、4B、4C和4D的彩色图像在卷筒纸2上的相同区域内重叠到另一个上,因此每种彩色图像在相同的区域上叠加在另一图像上,由此形成了所需的多色图像。
在印刷部分4已经完成了印刷之后,卷筒纸2进行随后的处理通过在干燥部分7内的热量干燥;以及在冷却滚筒部分8内冷却。干燥部分7用于干燥在正经过印刷部分4印刷的卷筒纸2上墨,以及冷却滚筒部分8用于使由于在干燥部分7中的干燥造成累积了过量的热量的卷筒纸2冷却到适当的温度。
在冷却滚筒部分8的下游提供有补偿辊15,补偿辊15的位置通过补偿器驱动马达16沿着由在附图中的双头箭头所指示的方向可以调节。卷筒纸2缠绕在补偿辊15的周围以使卷筒纸2从印刷部分4到折叠机9的行进长度根据补偿辊15的位置可以调节。
在进行干燥和冷却之后,卷筒纸2传递给折叠机9。在折叠机9中,卷筒纸2被按长度方式沿未示出的三角板二对折,然后沿引入辊传送到折叠机牵引器,并以锯切(sawing)滚筒和折叠滚筒切割成每个对应于在印刷部分4中印刷的单个图像的预定面积的纸页(sheet)。然后根据它们的用途通过折叠辊、切折(chopper foding)机等将卷筒纸2的纸页折叠(fold up)并作为最终产品的印刷的纸页输送到外面。
测量由此生产的印刷的纸页的质量的一种标准是它们的印刷的图像是否不对准。出现这种图像对准不良是因为,在来自印刷单元4A、4B、4C和4D的单种彩色图像印刷在卷筒纸2上时,在卷筒纸2上的单种彩色图像的印刷位置沿图像的垂直方向(沿卷筒纸2的行进路径的方向)稍稍分散(disperse)。在如上文所述的常规的旋转印刷机中,印刷单元4A、4B、4C和4D每个都连接到主轴13a以便通过从主马达13输送的驱动力彼此同步地旋转,以及在印刷单元4A、4B、4C和4D的印版滚筒5之间的相位关系由此保持恒定,而与它们的旋转速度无关。然而,在印刷的过程中,由于张力波动引起卷筒纸2的伸长以及粘性移动(tack)量(通过墨的附着力将卷筒纸2拖到胶印(blanket)滚筒6的量)的波动以及其它的因素都会造成卷筒纸2在印刷单元4A、4B、4C和4D的行进长度的轻微变化,这种在行进长度上的变化造成了沿垂直方向上的单个彩色图像的对准位置的分散。
针对这种问题,常规的旋转印刷机被设计成以如附图16所示的方式使每个印刷单元4A、4B、4C和4D分别根据它们的目标图像在卷筒纸2的相同位置上印刷用于对准的标记(对准标记)。单种彩色的对准标记通过设置在折叠机9的引入部的上游的对准标记检测传感器10检测。对准标记检测传感器10的检测数据传送给自动图像对准设备11。自动图像对准设备11测量在单种彩色的所检测的对准标记之间的发散,更具体地说,是沿垂直方向在参考颜色(品红色)的对准标记和其余的颜色(黑色、青色、黄色)的对准标记之间的距离。提供未示出的相位控制马达给每个印刷单元的印版滚筒5,通过参考印刷单元4C,自动图像对准设备11根据在所检测的对准标记之间的所测量的发散控制其余的印刷单元4A、4B和4D每个的相位控制马达,由此改进了在印刷单元4C的印版滚筒5和其余的印刷单元4A、4B和4D的印版滚筒5之间的相位关系。
测量印刷的印刷纸页的质量的另一标准是它们的切割位置(折叠机9切割卷筒纸2的位置)是否不对准(切割对准)。在如上文所述的常规的旋转印刷机中,折叠机9通过主马达13驱动以与卷筒纸2的行进速度(印刷速度)同步的速度切割卷筒纸2。以这样一种方式,确定通过折叠机9切割的定时(timing)(相位),即使得在印刷的卷筒纸2被切割成印刷的纸页时通过印刷部分4印刷的每个多色图像定位在每个印刷的纸页的指定位置上。然而,在印刷的过程中,由于张力波动引起卷筒纸2的伸长以及粘性移动量(通过墨的附着力将卷筒纸2拖到胶印滚筒6的量)的波动以及其它的因素都会造成卷筒纸2的行进长度从印刷部分4朝折叠机9的轻微变化,这种行进长度的变化造成切割位置从它们相应的参考位置的离散(divergence),结果,图像的印刷位置相对于单个印刷的纸页分散(dispersion)。
常规的旋转印刷机被设计成以如附图18所示的方式使每个印刷单元4A、4B、4C和4D分别根据它们的目标图像在卷筒纸2的相同位置上印刷用于对准的标记(对准标记)。单种彩色的对准标记通过设置在折叠机9的引入部的上游的对准标记检测传感器10进行检测。在常规的旋转印刷机中,对准标记仅用于检测在单种彩色图像之间的垂直图像对准不良,但也用作切割对准不良的检测的对准标记。对准标记检测传感器10以与切割定时同步的检测定时检测切割对准标记,并将检测数据传送给自动切割对准设备12。由于切割对准不要求与垂直图像对准所要求的精度那样高的精度,因此切割对准标记的位置仅作为四种颜色的重叠的对准标记的总体位置大致地识别。自动切割对准设备12根据参考位置(如果没有发生对准不良,在以检测定时实施检测时切割对准标记所置于的假想(hypothetical)位置)测量所检测的切割对准标记的发散。自动切割对准设备12根据切割对准标记相对参考位置的所检测的发散控制补偿器驱动马达16以修正补偿辊15的位置,由此修正卷筒纸2从印刷部分4朝折叠机9的行进长度。
测量印刷的纸页的质量的另一标准是印刷的纸页的印刷密度。印刷密度取决于墨供应量和墨消耗量之间的关系,印刷密度越低,墨供应相对于墨消耗越小;印刷密度越高,墨供应相对于墨消耗越大。因此,为了实现所需的印刷密度的印刷的纸页,需要总是维持在墨消耗和墨供应之间的平衡。
针对这种背景,常规的旋转印刷机配备有如附图20所示的墨供应控制设备14,由此根据印刷速度控制墨源辊20的旋转速度。具体地说,墨供应控制设备14在其中预先地存储映射图(map)17(速度函数映射图)以便使用速度函数映射图17控制驱动墨源辊20的墨源马达21,该映射图17指示相对于在附图22中所示的相对于印刷速度的印刷速度墨源辊20的旋转速度。关于印刷速度的信息可以从控制主马达13的印刷速度控制设备25中获得。由于在墨供应根据墨源辊20的旋转速度变化的同时墨消耗根据印刷速度变化,因此通过利用速度函数映射图17控制墨源马达21总是可以使墨消耗墨供应与平衡而不变化,而与印刷速度无关。
顺便指出,上述的使用速度函数映射图的墨供应控制并不限于轴驱动型的旋转印刷机,而是普遍用于为每个印刷单元配备有驱动马达的无轴型的旋转印刷机以及其它类型的旋转印刷机比如馈纸(sheet-fed)型印刷机。
同时,在旋转印刷机的操作开始时,一般要实施调节比如印刷版的更换,在这个调节过程中印刷机以低于批量生产操作速度的调节速度工作。一旦完成调节,从调节速度线性地加速印刷速度到批量生产(commercial)操作速度,如附图17、附图19和附图21的每个曲线(a)所示。作为补充,在如附图16所示的所谓的轴驱动型的旋转印刷机中,通过印刷速度控制设备25控制主马达13的旋转速度可改变印刷速度。
由于如上文所描述的张力波动和在粘性移动量中的波动都在印刷速度的加速的过程中变大,因此在参考颜色(品红)的对准标记和其余的颜色(黑色、青色、黄色)的对准标记之间的对准不良量与如在附图17的曲线(b)中所示的加速度成比例地线性地增加,该曲线表示其中印刷单元4A的印刷颜色是黑色、印刷单元4B的印刷颜色是青色、印刷单元4C的印刷颜色是品红色和印刷单元4D的印刷颜色是黄色的情况。在这种情况下,自动图像对准设备11在补偿对准标记的对准不良的方向上控制每个印刷单元4A、4B、4C和4D的相位控制马达,由此试图修正在各印版滚筒5之间的相位关系。
然而,在加速的过程中,虽然常规的旋转印刷机配备有自动图像对准设备11,但有时仍然产生超过可允许的范围的垂直图像对准不良的印刷的纸页。即使在相位控制马达本身具有足够的响应性能时仍然产生这种相当大的对准不良,因为为防止摆动(hunting)的需要自动图像对准设备11根据相对较大的值构成的控制时间常数进行反馈控制。更具体地说,在加速的过程中在发生垂直图像对准不良时,由于它的控制时间常数的缘故在自动图像对准设备11几乎不能通过反馈控制跟上分散的高速下图像彼此垂直地分散。结果,如附图17的曲线(b)所示,在自动图像对准设备11实施的自动对准控制产生效果之前垂直图像对准不良远超过允许的范围。
因此,常规的旋转印刷机在印刷速度的加速的过程中难以有效地抑制这种垂直图像对准不良。结果,如附图22所示,在加速的过程中通过常规的旋转印刷机所产生的印刷的纸页几乎难以实现可以作为商品出售的“可接受的纸页”所要求的质量,因此必须将它作为废纸(brock)对待并处理(dispose)它。此外,因为在加速的过程中产生的图像对准不良趋于显著地增加,因此即使在印刷速度已经达到了批量生产操作速度之后直到图像对准不良落回(settle back)到允许的范围内需要相当长的时间周期,因此在这种时间周期中生产的印刷的纸页不得不被作为“废纸”处理。
此外,如果自动切割对准设备12在加速的过程中不工作,则切割对准不良与加速度成线性比例地增加,如附图19的曲线(b)所示。相反,在工作时,自动切割对准设备12在补偿切割对准不良的方向上控制补偿器驱动马达16,由此试图调节补偿辊15的位置。
然而,在加速的过程中,虽然常规的旋转印刷机配备了自动切割对准设备12,但它有时产生了超过可允许的范围的切割对准不良的印刷的纸页。即使在补偿器驱动马达16本身具有足够的响应性能时仍然产生这种相当大的切割对准不良,因为为防止摆动的需要自动切割对准设备12根据相对较大的值构成的控制时间常数进行反馈控制。更具体地说,在加速的过程中在切割对准不良发生时,由于它的控制时间常数的缘故在自动切割对准设备12几乎不能通过反馈控制跟上分散的高速下切割位置发散。结果,如附图19的曲线(b)所示,在切割对准不良量超过允许的范围。
因此,常规的旋转印刷机在印刷速度的加速的过程中难以有效地抑制这种切割对准不良。结果,如附图22所示,在加速的过程中通过常规的旋转印刷机所产生的印刷的纸页几乎难以实现可以作为商品出售的“可接受的纸页”所要求的质量,因此必须将它作为废纸对待并处理它。此外,因为在加速的过程中产生的切割对准不良往往会显著地增加,因此即使在印刷速度已经达到了批量生产操作速度之后直到切割对准不良量返回到允许的范围内需要相当长的时间周期,因此在这种时间周期中生产的印刷的纸页不得不被作为“废纸”处理。
此外,在加速的过程中为了根据印刷速度调节墨源辊20的旋转速度到适当的值,墨供应控制设备14响应来自印刷速度控制设备25的印刷速度并使用速度函数映射图17控制墨源马达21以增加墨源辊20的旋转速度。
然而,在加速的过程中,虽然常规的旋转印刷机由此根据速度函数映射图17控制墨源马达21,但有时它产生了印刷密度如在附图21的曲线(b)所示的允许极限之下的下降的印刷的纸页。这种下降相当大,因为在墨源辊20和印版滚筒5之间加入大量的墨辊,使得在墨源辊20的旋转速度的变化反映在传递给卷筒纸2的墨的密度中之前存在相当大的延迟时间。此外,在加速的过程中印刷密度的下降状态也根据图像面积比率变化如附图21的曲线(b)所示,图像面积比率越小,印刷密度下降和恢复的速度越慢,因此停留在可允许的范围之外的时间周期越长。主要原因如下从胶印滚筒6传递给卷筒纸2的墨的密度与墨消耗成比例地变化更大,同时墨消耗与图像面积比率成比例。因此,随着图像面积比率变得更小,墨消耗变得更低,并且墨密度变化更慢。
因此,在印刷速度的加速的过程中常规的旋转印刷机难以有效地抑制这种印刷密度的下降。结果,如附图22所示,在加速的过程中通过常规的旋转印刷机所产生的印刷的纸页难以达到可作为商品出售的“可接受的纸页”所要求的质量,因此必须作为“废纸”对待并处理它。此外,因为在加速的过程中产生的印刷密度往往会显著地增加,因此即使在印刷机已经达到了批量生产操作速度之后直到印刷密度恢复到变化的允许的限值之上需要相当长的时间周期,因此在这种时间周期中生产的印刷的纸页不得不被作为“废纸”处理。
考虑到前述的问题,本发明的第一个目的是提供一种在改变印刷速度的同时抑制垂直图像对准的波动由此防止由于印刷速度的改变引起的废纸的产生的印刷机的图像对准控制技术。
本发明的第二个目的是提供一种在改变印刷速度的同时抑制切割对准的波动由此防止由于印刷速度的改变引起的废纸的产生的印刷机的切割对准控制技术。
本发明的第三个目的是提供一种在改变印刷速度的同时抑制印刷密度的波动由此防止由于印刷速度的改变引起的废纸的产生的印刷机的印刷密度控制技术。
本发明的概述在具有多个印刷单元的旋转印刷机中,在根据预定的速度改变特性将印刷速度从第一速度改变到不同于第一速度的第二速度的同时在通过各个的印刷单元印刷的各图像之间可能发生任何垂直图像对准不良时,本发明通过如下的控制方法抑制这种垂直图像对准不良。
根据本发明的旋转印刷机的图像对准控制方法(第一对准控制方法)首先预测在印刷速度根据预定的速度改变特性改变的情况下通过单个印刷单元印刷的各图像之间的对准的波动特性,并基于预测的对准波动特性预先设定单个印刷单元的各印版滚筒之间的相位的控制特性以补偿通过单个印刷单元印刷的各图像之间的垂直图像对准不良。然后,在印刷速度正在改变时,该方法根据由此预先设定的相位控制特性连续地修正在印刷单元的各印版滚筒之间的相位关系。通过这种设置,由于在印刷单元的各印版滚筒之间的相位关系根据基于速度改变的对准波动特性预先设定的相位控制特性修正,因此可以事先抑制在垂直图像对准不良,由此防止由于印刷速度的变化引起废纸的发生。
根据本发明的旋转印刷机的另一图像对准控制方法(第二图像对准控制方法)首先预测在印刷速度根据分别影响对准波动特性的多种特定的印刷条件中的每种印刷条件的预定的速度改变特性改变的情况下通过单个印刷单元印刷的各图像之间的对准的波动特性,并基于由此预测的多个对准波动特性中的每个预先设定单个印刷单元的各印版滚筒之间的相位的控制特性,以补偿通过单个印刷单元印刷的各图像之间的垂直图像对准不良。然后,在印刷速度正在改变时,该方法从由此预先(preliminarily)设定的多个相位控制特性中选择对应于与当前的印刷相关的印刷条件的相位控制特性,并根据所选择的相位控制特性连续地修正在印刷单元的各印版滚筒之间的相位关系。通过这种设置,由于分别为影响对准波动特性的多个特定的印刷条件设定相位控制特性并且同时根据相位控制特性中的适当的一种修正在印刷单元的各印版滚筒之间的相位关系,因此可以更加可靠地抑制在垂直图像对准不良,由此防止由于印刷速度的变化引起废纸的发生。
在第二对准控制方法中,影响对准波动特性的特定的印刷条件例如包括纸张的类型和图像面积比率。原因如下对准波动主要是由于在速度改变的过程中张力波动引起的卷筒纸的伸长和粘性移动量的波动两者;卷筒纸相对于张力波动的伸长量根据卷筒纸的类型的变化,因为卷筒纸的特性也由此变化;以及粘性移动量根据卷筒纸的图像面积比率变化,因为在卷筒纸的表面上的墨量也因此变化。顺便指出,图像面积比率也可以例如通过所有的印刷单元的总的图像面积的速率简要地表示。
在预先设定的多个相位控制特性中在没有对应于与当前印刷相关的印刷条件的相位控制特性时,本控制方法可以通过如下的过程估计适当的相位控制特性从分别对应于预设的相位控制特性的预先设定的印刷条件中选择接近于与当前的印刷相关的印刷条件的至少两个预设的印刷条件;以及基于对应于所选择的预设的印刷条件的相位控制特性,估计对应于与当前的印刷相关的印刷条件的相位控制特性。例如,在与当前的印刷相关的主题(subject)印刷条件涉及一种新类型的纸张时,根据它们与当前的印刷相关的印刷条件的相似性程度对预先设定的已知的纸类型进行分类,该相似性程度基于涂层的存在或不存在确定。从作为新的纸被分在相同的类别下的纸类型(涂敷纸组或无涂敷纸组),选择至少两种其它纸类型,并基于对应于所选择的纸类型的相位控制特性内插(interpolate)对应于与新的纸类型相关的未设定的印刷条件的相位控制特性。
在第一和第二对准控制方法,在印刷速度改变时根据相位控制特性修正印刷单元的各印版滚筒之间的相位关系的同时,优选检测通过单个印刷单元印刷的各图像之间的对准不良,并自动地修正在各印版滚筒之间的相位关系以补偿所检测的对准不良。应用这种配置,由于在印刷单元的各印版滚筒之间的相位关系根据基于对准波动特性已经设定的相位控制特性改变,因此在任何对准不良发生时,仍然可以自动地修正在各印版滚筒之间的相位关系以补偿对准不良,因此可以更加有效地抑制垂直图像对准不良。
不管印刷速度从第一速度改变到第二速度是加速还是减速都可适用本发明,而且不管该改变是线性速度变化还是复杂模式的速度变化也都可以适用本发明。特别在以与时间成比例的恒定速率的线性速度变化的情况下,由于预计图像对准也将以与时间成比例的恒定速率变化,因此可以估计每个印刷单元的随时间对准变化速率作为对准波动特性。在这种情况下,在印刷单元的各印版滚筒之间的相位控制特性优选被设定在相位以与时间成比例的恒定速率变化的值上。具体地,在这种情况下的相位控制特性可以如下地获得在改变印刷速度的同时根据在通过单个印刷单元印刷的各图像之间的对准不良自动地修正印版滚筒的相位关系;以及在速度变化完成时通过自动修正已经将对准不良落入在允许的范围内时,基于在速度变化开始之前的印刷单元的印版滚筒的相位和在速度变化结束之后的印刷单元的印版滚筒的相位两者,计算对应于与当前的印刷相关的印刷条件的相位控制特性。
本发明还提供一种能够实施上述的对准控制方法的旋转印刷机。
具体地,根据本发明的旋转印刷机具有每个用于在卷筒纸的相同区域上实施印刷的多个印刷单元;和控制印刷速度的印刷速度控制装置;以及其特征在于它进一步具有存储装置和预测对准修正装置。在根据本发明的这种旋转印刷机中,印刷速度控制装置起用于根据预定的速度改变特性将印刷速度从第一速度改变到不同于第一速度的第二速度的作用。此外,在印刷速度根据预定的速度改变特性改变的情况下预测在印刷单元的印刷图像之间的对准的波动特性。基于所预测的对准波动特性,预先设定为补偿在印刷单元的印刷图像之间的对准不良在印刷单元的各印版滚筒之间的相位控制特性并将其存储在存储装置中。特别是在印刷速度控制装置以与时间成比例的恒定的速率将印刷速度从第一速度改变到第二速度时,最好还估计每个印刷单元的随时间对准变化速率作为对准波动特性,并存储对应于对准变化速率的随时间印版滚筒的相位变化速率。此外,预测对准修正装置起在通过印刷速度控制装置正改变印刷速度的同时根据在存储装置中存储的相位控制特性连续地修正在印刷单元的各印版滚筒之间的相位关系的作用。应用由此设置的旋转印刷机,可以实施第一图像对准控制方法。
此外,根据本发明的另一旋转印刷机具有每个用于在卷筒纸的相同区域上实施印刷的多个印刷单元;和控制印刷速度的印刷速度控制装置;以及其特征在于它进一步具有数据库、输入装置和预测对准修正装置。在根据本发明的这种旋转印刷机中,印刷速度控制装置起用于根据预定的速度改变特性将印刷速度从第一速度改变到不同于第一速度的第二速度的作用。此外,对于影响对准波动特性的多个特定的印刷条件中的每种印刷条件,在印刷速度根据预定的速度改变特性改变的情况下预测在印刷单元的印刷图像之间的对准的波动特性。基于由此所预测的多个对准波动特性中的每种对准波动特性,预先设定为补偿在印刷单元的印刷图像之间的对准不良在印刷单元的各印版滚筒之间的相位控制特性并将其存储在数据库中。特别是在印刷速度控制装置以与时间成比例的恒定的速率(rate)将印刷速度从第一速度改变到第二速度时,最好还估计每个印刷单元的随时间对准变化速率作为对准波动特性,并存储对应于对准变化速率的随时间印版滚筒的相位变化速率。此外,该预测对准修正装置起如下的作用在通过印刷速度控制装置正改变印刷速度的同时从存储在数据库中的多个相位控制特性中选择对应于通过输入装置输入的印刷条件的相位控制特性,并根据所选择的相位控制特性连续地修正在印刷单元的各印版滚筒之间的相位关系。应用由此设置的旋转印刷机,可以实施第二图像对准控制方法。
此外最好,每个上述的印刷机进一步具有如下作用的自动对准修正装置检测通过单个印刷单元印刷的各图像之间的对准不良并自动地修正印版滚筒的相位关系以补偿所检测的对准不良。
此外,在具有如下设备的旋转印刷机中以规则的间隔在连续行进的卷筒纸上印刷图像的印刷设备;和以与印刷速度同步的速度将卷筒纸切割成分别包括单个图像的预定面积的切割设备;在根据预定的速度改变特性将印刷速度从第一速度改变到不同于第一速度的第二速度的过程中可能发生切割设备的任何切割对准不良时,本发明通过如下的控制方法抑制这种切割对准不良。
根据本发明的旋转印刷机的切割对准控制方法(第一切割对准控制方法)首先预测在印刷速度根据预定的速度改变特性改变的情况下切割设备的切割位置的切割对准的波动特性,并基于预测的切割对准波动特性预先设定卷筒纸从印刷设备朝切割设备的行进长度的控制特性以通过切割设备补偿切割对准不良。然后,在印刷速度正在改变时,该方法根据由此预先设定的相位控制特性连续地修正在印刷单元的各印版滚筒之间的相位关系。通过这种设置,由于根据基于在速度变化中的切割对准波动特性预先设定的行进长度控制特性修正卷筒纸从印刷设备朝切割设备的行进长度,因此可以事先抑制切割对准不良,由此防止由于印刷速度的变化引起废纸的发生。
根据本发明的旋转印刷机的另一切割对准控制方法(第二切割对准控制方法),对于影响对准波动特性的多种特定的印刷条件中的每种印刷条件,首先预测在印刷速度根据的预定的速度改变特性改变的情况下切割设备相对于参考位置的切割位置的切割对准的波动特性,并基于由此预测的多个切割对准波动特性中的每个预先设定卷筒纸从印刷设备朝切割设备的行进长度的控制特性以通过切割设备补偿切割对准不良。然后,在印刷速度正在改变时,该方法从由此预先设定的多个行进长度控制特性中选择对应于与当前的印刷相关的印刷条件的行进长度控制特性,并根据所选择的行进长度控制特性连续地修正行进长度。通过这种设置,由于在卷筒纸从印刷设备朝切割设备行进长度根据行进长度控制特性中的适当的一种特性进行修正的同时为影响切割对准波动特性的多个特定的印刷条件分别设定行进长度控制特性,因此可以更加可靠地抑制切割对准不良,由此防止由于印刷速度的变化引起废纸的发生。
在第二切割对准控制方法中,影响切割对准波动特性的特定的印刷条件例如包括纸张的类型和卷筒纸从印刷设备到切割设备的张力。考虑到在切割对准中的波动主要由卷筒纸的行进长度的波动引起,该波动主要是由于在速度改变的过程中张力波动造成的。从这个主要原因中,可以预计在纸类型的差别和预设的张力的变化都具有一定的效果。
在预先设定的多个行进长度控制特性中在没有对应于与当前印刷相关的印刷条件的行进长度控制特性时,本控制方法可以通过如下的过程估计适当的行进长度控制特性从分别对应于预先设定的行进长度控制特性的预设的印刷条件中选择接近于与当前的印刷相关的印刷条件的至少两个预设的印刷条件;以及基于对应于所选择的预设的印刷条件的行进长度控制特性,估计对应于与当前的印刷相关的印刷条件的行进长度控制特性。例如,在与当前的印刷相关的主题印刷条件涉及一种新类型的纸张时,根据它们与当前的印刷相关的印刷条件的相似性程度对预先设定的已知的纸类型进行分类,该相似性程度基于涂层的存在或不存在确定。从作为新的纸被分在相同的类别下的纸类型(涂敷纸组或无涂敷纸组),选择至少两种其它纸类型,并基于对应于所选择的纸类型的行进长度控制特性以内插方式设定对应于未设定的印刷条件的行进长度控制特性。
在第一和第二切割对准控制方法,在印刷速度改变时根据行进长度控制特性修正行进长度的同时,优选检测通过切割设备相对于参考位置的切割位置的切割对准不良,并自动地修正行进长度以补偿所检测的对准不良。应用这种配置,由于卷筒纸从印刷设备朝切割设备的行进长度根据基于在速度改变的过程中切割对准波动特性已经设定的行进长度控制特性改变,因此在发生任何切割对准不良时,仍然可以自动地修正行进长度以补偿对准不良,因此可以更加有效地抑制切割对准不良。
不管印刷速度从第一速度改变到第二速度是加速还是减速都可适用本发明,而且不管该改变是线性速度变化还是复杂模式的速度变化也都可以适用本发明。特别在以与时间成比例的恒定速率的线性速度变化的情况下,由于预计切割对准也将以与时间成比例的恒定速率变化,因此可以估计随时间切割对准变化速率作为切割对准波动特性。在这种情况下,行进长度控制特性优选被设定在行进长度以与时间成比例的恒定速率变化的值上。具体地,在这种情况下的行进长度控制特性可以如下地获得在改变印刷速度的同时根据切割设备相对于参考位置的切割位置的切割对准不良自动地修正行进长度;以及在速度变化完成时由于自动修正切割对准不良已经在允许的范围内时,基于在速度变化开始之前的行进长度(或对应于行进长度的控制参数)和在速度变化结束之后的行进长度(或对应于行进长度的控制参数)两者计算对应于与当前的印刷相关的印刷条件的行进长度控制特性。
本发明还提供一种能够实施上述的切割对准控制方法的旋转印刷机。
具体地,根据本发明的旋转印刷机具有以规则的间隔在连续行进的卷筒纸上印刷图像的印刷设备;和以与印刷速度同步的速度将卷筒纸切割成分别包括单个图像的预定面积的切割设备;和控制印刷速度的印刷速度控制装置;以及其特征在于它进一步具有行进长度修正装置、存储装置和预测切割对准修正装置。在根据本发明的这种旋转印刷机中,印刷速度控制装置起用于根据预定的速度改变特性将印刷速度从第一速度改变到不同于第一速度的第二速度的作用。此外,在根据速度改变特性改变印刷速度的情况下预测通过切割设备相对于参考位置的切割位置的切割对准的波动特性。基于所预测的切割对准波动特性,预先设定为补偿切割设备的切割对准不良的行进长度控制特性并将其存储在存储装置中。特别是在印刷速度控制装置以与时间成比例的恒定的速率将印刷速度从第一速度改变到第二速度时,最好还估计随时间切割对准的变化速率作为切割对准波动特性,并存储对应于随时间切割对准变化速率的随时间行进长度变化速率。此外,预测切割对准修正装置起在通过印刷速度控制装置正改变印刷速度的同时根据在存储装置中存储的行进长度控制特性通过控制行进长度修正装置连续地修正卷筒纸从印刷设备朝切割设备的行进长度的作用。应用由此设置的旋转印刷机,可以实施第一切割对准控制方法。
此外,根据本发明的另一旋转印刷机具有以规则的间隔在连续行进的卷筒纸上印刷图像的印刷设备;和以与印刷速度同步的速度将卷筒纸切割成分别包括单个图像的预定面积的切割设备;和控制印刷速度的印刷速度控制装置;以及其特征在于它进一步具有行进长度修正装置、数据库、输入装置和预测切割对准修正装置。在根据本发明的这种旋转印刷机中,印刷速度控制装置起用于根据预定的速度改变特性将印刷速度从第一速度改变到不同于第一速度的第二速度的作用。此外,对于影响对准波动特性的多个特定的印刷条件中的每种印刷条件,在印刷速度根据预定的速度改变特性改变的情况下预测切割设备相对于参考位置的切割位置的切割对准的波动特性。基于由此所预测的多个对准波动特性中的每种对准波动特性,预先设定为补偿切割设备的切割对准不良的行进长度控制特性并将其存储在数据库中。特别是在印刷速度控制装置以与时间成比例的恒定的速率将印刷速度从第一速度改变到第二速度时,最好还估计随时间切割对准的变化速率作为切割对准波动特性,并存储对应于随时间切割对准变化速率的随时间行进长度的变化速率。此外,预测切割对准修正装置起如下的作用在通过印刷速度控制装置正改变印刷速度的同时,从存储在数据库中的多个行进长度控制特性中选择对应于通过输入装置输入的印刷条件的行进长度控制特性,并根据所选择的行进长度控制特性通过控制行进长度修正装置连续地修正卷筒纸从印刷设备朝切割设备的行进长度。应用由此设置的旋转印刷机,可以实施第二对准控制方法。
此外最好,每个上述的印刷机进一步具有如下作用的自动切割对准修正装置检测通过切割设备相对于参考位置的切割位置的切割对准不良并通过控制行进长度修正装置自动地修正行进长度以补偿所检测的对准不良。
此外,在如下的旋转印刷机中通过多个墨辊从墨供应设备将墨输送到印版滚筒,在根据预定的速度改变特性将印刷速度从第一速度改变到不同于第一速度的第二速度的同时印刷密度发生了波动,本发明通过如下的控制方法抑制这种印刷密度波动。
根据本发明的旋转印刷机的印刷密度控制方法首先预测在印刷速度根据预定的速度改变特性改变的情况下印刷密度的波动特性,并基于预测的印刷密度的波动特性预先设定为补偿印刷密度的波动的墨供应设备的墨供应控制特性。然后,该方法根据在恒定速度操作的过程中的印刷速度控制从墨供应设备供应的墨量,同时在从所述的印刷速度控制装置开始改变印刷速度之前的一时间点朝在印刷速度改变结束之后的另一时间点的预定周期中根据预先设定的墨供应控制特性连续地修正从墨供应设备供应的墨量。通过这种设置,由于根据基于在速度改变中印刷密度波动特性预先设定的墨供应控制特性修正从墨供应设备中供应的墨量,因此可以有效地抑制印刷密度的波动,由此防止由于印刷速度的变化引起废纸的发生。
在上述的印刷密度控制方法中,在墨供应设备具有如下部件时并入在墨瓶中用于根据旋转速度控制从墨瓶中供应的墨量的墨源辊;和与墨源辊一起并入在墨瓶中并在墨源辊轴向地设置的多个墨开关(ink key),该墨开关用于根据相对于墨源辊的间隙的开度控制从墨瓶供应的墨量;最好还通过如下的方法控制印刷密度。
即,本方法在预定的周期中预先设定随时间墨源辊的旋转速度的控制特性作为墨源控制特性,根据由此设定的旋转速度控制特性连续地修正墨源辊的旋转速度。通过如此地修正墨源辊的旋转速度,可以抑制沿宽度印刷密度的不均匀波动。
此外,最好,对于图像面积比率的不同的值预测印刷密度的波动特性,以及基于所预测的印刷密度波动特性设定对于每个图像面积比率值随时间墨源辊的旋转速度的控制特性。在这种情况下,在预定的周期中,该方法从预先已经设定的多个旋转速度控制特性中选择对应于在当前的印刷中产生的印刷的纸页的平均图像面积比率的旋转速度控制特性,并根据所选择的旋转速度控制特性修正墨源辊的旋转速度。由于在速度改变的过程中印刷密度的波动根据图像面积比率不同,通过根据依据平均图像面积比率预先设定的旋转速度控制特性由此修正墨源辊的旋转速度,可以更加可靠地抑制印刷密度的波动。
此外,最好,预测对于图像面积比率的每个不同的值的印刷密度的波动的特性,以及基于预测的印刷密度波动特性,设定在图像面积比率值是预定的参考图像面积比率值的情况下随时间墨源辊的旋转速度的控制特性,以及相对于图像面积比率值与参考图像面积比率值的偏差也设定墨开关的开度的控制特性。在这种情况下,在预定的周期中,沿在当前印刷中产生的印刷纸页的宽度根据与图像面积比率值的分布成比例的开度控制特性校正每个墨开关的开度,同时根据旋转速度控制特性修正墨源辊的旋转速度。由于对于墨开关的每个宽度图像面积比率都变化,因此在沿印刷的纸页的宽度校正与图像面积比率值的分布成比例的每个墨开关的开度的同时通过根据旋转速度控制特性由此修正墨源辊的旋转速度,可以更加可靠地抑制印刷密度的波动。
此外,在上述的印刷密度控制方法中,此外最好,对于影响印刷密度波动特性的每个特定的印刷条件,在根据速度改变来改变印刷速度的情况下预测印刷密度的波动特性,以及预先设定每个印刷条件的墨供应控制特性。在这种情况下,在预定的周期中,该方法从由此预先设定的多个墨供应控制特性中选择对应于与当前的印刷相关的印刷条件的墨供应控制特性,以及根据所选择的墨供应控制特性修正从墨供应设备中供应的墨量。应用这种配置,由于根据已经为在速度改变过程中影响印刷密度波动特性的每个特定的印刷条件设定的墨供应控制特性修正了墨供应量,因此可以更加可靠地抑制印刷密度的波动。
在上述情况下,影响印刷密度波动特性的特定的印刷条件例如包括纸张的类型、墨的种类和图像面积比率等。即使墨量恒定,印刷密度也会根据纸张的类型和墨的种类变化,并且印刷密度的波动速度也随着图像面积比率的变化而不同。在预先设定的多个印刷密度波动特性中没有对应于与当前的印刷相关的印刷条件的印刷密度波动特性时,本控制方法能够以如下过程估计适当的印刷密度波动特性从分别对应于预先设定的印刷密度波动特性的预设印刷条件中选择接近与当前的印刷相关的印刷条件的至少两个预设印刷条件;和基于对应于所选择的预设的印刷条件的印刷密度波动特性,估计对应于与当前的印刷相关的印刷条件的印刷密度波动特性。例如,在与当前的印刷相关的主题印刷条件相关于一种新的类型的纸张时,根据它们与当前的印刷相关的印刷条件的相似性程度对预先设定的已知的纸类型进行分类,该相似性程度基于涂层的存在或不存在确定。从作为新的纸被分在相同的类别下的纸类型(涂敷纸组或无涂敷纸组),选择至少两种其它纸类型,并基于对应于所选择的纸类型的印刷密度波动特性内插对应于与新的纸类型相关的未设定的印刷条件的印刷密度波动特性。
本发明还提供一种能够实施上述的印刷密度控制方法的印刷机。
具体地说,根据本发明的旋转印刷机具有供应墨的墨供应设备;从墨供应设备顺序地将墨传递给印版滚筒的多个墨辊;和控制印刷速度的印刷速度控制装置;以及其特征在于它进一步具有在其中存储墨供应设备的墨供应控制特性的存储装置。在这种旋转印刷机中,印刷速度控制装置起用于根据预定的速度改变特性将印刷速度从第一速度改变到不同于第一速度的第二速度的作用。此外,在印刷速度根据预定的速度改变特性改变的情况下基于印刷密度波动特性,预测为补偿印刷密度的波动的随时间墨供应的控制特性并将其用作存储在存储装置中的墨供应控制特性。此外,墨供应控制设备起如下的作用在恒定速度操作的过程中根据印刷速度控制从墨供应设备供应的墨量,同时在从印刷速度控制装置开始改变印刷速度之前的一时刻和在印刷速度改变结束之后的另一时刻之间的预定周期中根据在存储装置中存储的墨供应控制特性修正从墨供应设备供应的墨量。
此外,根据本发明的另一印刷机具有盛墨的墨瓶;并入在墨瓶中用于根据旋转速度控制从墨瓶中供应的墨量的墨源辊;与墨源辊一起并入在墨瓶中并在墨源辊轴向地设置的多个墨开关,该墨开关用于根据相对于墨源辊的间隙的开度控制从墨瓶供应的墨量;控制印刷速度的印刷速度控制装置;和控制墨源辊的旋转速度的旋转速度控制设备;以及其特征在于它具有在其中存储墨源辊的旋转速度的控制特性的存储装置。在本印刷机中,印刷速度控制装置起用于根据预定的速度改变特性将印刷速度从第一速度改变到不同于第一速度的第二速度的作用。此外,在印刷速度根据预定的速度改变特性改变的情况下基于印刷密度波动特性,预测为补偿在印刷速度正改变时印刷密度的波动随时间墨源辊的旋转速度的控制特性并将其用作存储在存储装置中的旋转速度控制特性。此外,旋转速度控制设备起如下的作用在恒定速度操作的过程中根据印刷速度控制墨源辊的旋转速度,同时在从所述的印刷速度控制装置开始改变印刷速度之前的一时刻和在通过印刷速度控制装置改变印刷速度结束之后的另一时刻之间的预定周期中根据在存储装置中存储的旋转速度控制特性修正墨源辊的旋转速度。
此外最好,存储装置是其中存储了旋转速度控制特性数据库,并且对于图像面积比率的每个不同的值预测印刷密度波动特性,同时基于所预测的印刷密度波动特性设定旋转速度控制特性。在这种情况下,旋转速度控制设备起如下的作用在该预定的周期中,从存储在数据库中的多种旋转速度控制特性中选择对应于在当前的印刷中产生的印刷的纸页的平均图像面积比率值的旋转速度控制特性,以及根据所选择的旋转速度控制特性修正墨源辊的旋转速度。
此外最好,该印刷机进一步具有控制墨开关的开度的开度控制设备,以及存储装置在其中存储在图像面积比率值是参考图像面积比率值的情况下随时间墨源辊的旋转速度的控制特性,并还存储相对于图像面积比率值与参考图像面积比率值的偏差的墨开关的开度的控制特性。基于对于每个不同的图像面积比率值预测的印刷密度波动特性预先设定旋转速度控制特性和开度控制特性两者。在这种情况下,旋转速度控制设备起根据在预定的周期中旋转速度控制特性修正墨源辊的旋转速度的作用,以及开度控制设备起在预定的周期中沿在当前印刷中产生的印刷纸页的宽度根据与图像面积比率值的分布成比例的开度控制特性校正每个墨开关的开度的作用。
附图的简要说明附图1所示为根据本发明的第一实施例的旋转印刷机的配置的示意图;附图2所示为通过附图1的旋转印刷机进行图像对准控制的细节的示意图,包括显示在通过前馈控制要修正的图像对准量(FF修正量)和加速时间之间的关系的曲线(a)、显示在通过反馈控制要修正的图像对准量(FB修正量)和加速时间之间的关系的曲线(b)以及显示在要修正的图像对准总量和加速时间之间的关系的曲线(c);附图3所示为通过附图1的旋转印刷机并结合附图2进行图像对准控制的细节的示意图,包括显示在修正图像对准的速度正改变时在通过前馈控制要修正的图像对准量(FF修正量)和加速时间之间的关系的曲线(a)和显示在修正图像对准的速度分别恒定在曲线(a)中指定的L1和L2上时在通过前馈控制要修正的图像对准量(FF修正量)和加速时间之间的关系的曲线(b)和(c);附图4所示为在图像面积比率和图像对准的波动量之间的关系的示意图;附图5通过附图1、附图6或附图10的旋转印刷机进行印刷速度控制的定时图以及在其中生产可接受的纸页的时间区的示意图;附图6所示为根据本发明的第二实施例的旋转印刷机的配置的示意图;附图7通过附图6的旋转印刷机进行切割对准控制的细节的示意图,包括显示在通过前馈控制要修正的切割对准量(FF修正量)和加速时间之间的关系的曲线(a)、显示在通过反馈控制要修正的切割对准量(FB修正量)和加速时间之间的关系的曲线(b)以及显示在要修正的切割对准总量和加速时间之间的关系的曲线(c);附图8所示为通过附图6的旋转印刷机并结合附图7进行切割对准控制的细节的示意图,包括显示在修正补偿辊的位置的速度改变时在通过前馈控制要修正的切割对准量(FF修正量)和加速时间之间的关系的曲线(a)和显示在修正补偿辊的位置的速度分别恒定在曲线(a)中指定的L1和L2上时在通过前馈控制要修正的切割对准量(FF修正量)和加速时间之间的关系的曲线(b)和(c);附图9所示为不同类型的纸张的卷筒纸的张力和切割对准波动量之间的关系的示意图;附图10所示为根据本发明的第三实施例的印刷机的配置的示意图;附图11所示为通过附图10的印刷机进行印刷密度控制的细节的示意图,包括显示从调节速度到批量生产操作速度的印刷速度的变化的曲线(a)、显示墨源辊的旋转速度变化的曲线(b)以及显示印刷密度波动的曲线(c);附图12所示为根据本发明的第四实施例的印刷机的配置的示意图;附图13所示为通过附图12的印刷机要解决的问题的示意图,包括显示从调节速度到批量生产操作速度的印刷速度的变化的曲线(a)、显示墨源辊的旋转速度变化的曲线(b)以及显示印刷密度波动的曲线(c);
附图14所示为通过附图12的印刷机进行印刷密度控制的细节的示意图,包括显示从调节速度到批量生产操作速度的印刷速度的变化的曲线(a)、显示墨源辊的旋转速度变化的曲线(b)以及显示印刷密度波动的曲线(c);附图15所示为根据本发明的第五实施例的印刷机的配置的示意图;附图16所示为常规的旋转印刷机的配置以及连同控制图像对准的控制系统的示意图;附图17所示为说明常规的旋转印刷机所具有的问题的示意图,包括说明从调节速度到批量生产操作速度的印刷速度的变化的曲线(a)和显示在曲线(a)的条件下相对于参考颜色(品红)其余的颜色(黑色、青色、黄色)的对准波动的曲线(b);附图18所示为常规的旋转印刷机的配置以及连同控制切割对准的控制系统的示意图;附图19所示为说明常规的旋转印刷机所具有的问题的示意图,包括说明从调节速度到批量生产操作速度的印刷速度的变化的曲线(a)和显示在曲线(a)的条件下切割对准波动的曲线(b);附图20所示为常规的旋转印刷机的配置以及连同控制印刷密度的控制系统的示意图;附图21所示为说明常规的旋转印刷机所具有的问题的示意图,包括说明从调节速度到批量生产操作速度的印刷速度的变化的曲线(a)和显示在曲线(a)的条件下印刷密度波动的曲线(b);附图22所示为常规的旋转印刷机进行印刷速度控制的定时图以及连同在其内生产可接受的纸页的时间区的示意图。
优选实施例的详细描述下文参考这些附图描述本发明的实施例。
(A)第一实施例附图1所示为根据本发明的第一实施例的旋转印刷机的配置的示意图。如附图1所示,根据本实施例的旋转印刷机与在附图16中所示的常规的旋转印刷机不同之处仅在于控制设备的配置,在印刷机的主体配置上都相同。然而,注意,附图1是严格用于简化对本发明的非关键部件的解释的目的,并不表示根据本发明的对准控制方法限于应用具有这种配置的旋转印刷机。
根据本实施例的旋转印刷机除了常规的自动图像对准设备(自动对准修正装置)11之外还具有预测对准修正设备31,因此自动图像对准设备11和预测对准修正设备(预测对准修正装置)31一起构成了对准控制设备30。与通过反馈控制修正对准的自动图像对准设备11相反,预测对准修正设备31具有通过前馈控制修正对准的作用。
预测对准修正设备31具体以如下的方式实施前馈控制。预测对准修正设备31进行的前馈控制响应印刷速度控制设备25的同步信号实施。印刷速度控制设备25通过主马达13的旋转速度的控制来控制印刷速度,如附图5中所示地操作,在印刷开始时,使印刷速度朝调节速度线性地临时地加速;在调节完成时,再次从调节速度朝批量生产操作速度线性地加速,即以与时间成比例的恒定速率地加速;以及在印刷完成时,从批量生产操作速度朝停止状态使印刷速度线性地减速。在本实施例中,在从调节速度朝批量生产操作速度加速开始时开始前馈控制的同步信号从印刷速度控制设备25输入到预测对准修正设备31,而在加速结束时将停止前馈控制的同步信号从印刷速度控制设备25输入到预测对准修正设备31。
通过预测对准修正设备31进行的前馈控制以如下的方式补偿如附图7的曲线(b)所示非参考颜色(黑色、青色、黄色)的图像相对于参考颜色(品红色)的图像的垂直图像对准的波动通过修正分别对应于黑色、青色和黄色的印刷单元4A、4B和4D的印版滚筒5的相位。在如上文所述地线性加速印刷速度时,垂直图像对准也以如附图7的曲线(b)所示的对准的变化的恒定速率线性地变化。因此预测对准修正设备31操作以线性地(即以与时间成比例的恒定速率)改变印刷单元4A、4B和4D(参考品红色的印刷单元4C的印版滚筒5)的印版滚筒5的相位。印版滚筒5的相位变化的方向和速率在印刷单元4A、4B和4D之间如下地变化分别对应于黑色和青色的印刷单元4A和4B的印版滚筒5在相位角超前的方向上进行相位变化,而黑色(印刷单元4A)的相位变化的速率设定得比青色(印刷单元4B)的相位变化的速率更高;在另一方面,对应于黄色的印刷单元4D的印版滚筒5在相位角滞后的方向上进行相位变化。注意,虽然在本实施例中选择第三颜色的印刷单元4C的印版滚筒5作为参考,但是也可以使用任何其它的印刷单元4A、4B和4D的印版滚筒5作为参考。
同时,通过本发明的原理性处理,本发明人已经发现即使印刷速度以相同的加速速率改变时,在某些特定的印刷条件中的每个印刷条件都不相同时垂直图像对准的波动特性也不相同。这种特定的印刷条件的实例是纸张的类型和图像面积比率。考虑到纸类型中随着它们的特性的变化的差异相对于在加速的过程中的张力波动而引起卷筒纸的伸长量的变化,因此垂直图像对准的波动量不相同。还考虑到随着在该表面上的墨量的变化的图像面积比率的差异造成了粘性移动量的变化,该粘性移动量是卷筒纸2拖到胶印滚筒6的量,因此垂直图像对准的波动量不相同。附图4所示为使用第一颜色(黑色)作为参考的实验结果的示意图,它同时显示在垂直图像对准的波动量(在加速完成时的最终变化量)和其余颜色(青色、品红色和黄色)中的每种颜色的图像面积比率之间的关系。通常沿宽度为每个墨开关区计算图像面积比率以便与墨供应量对应使用每种颜色的全部这些数据作为参数,可以获得如在附图4中所示的垂直图像对准的波动量的大致线性关系。
由于垂直图像对准的波动特性随着纸类型或者图像面积比率变化而变化,为了通过前馈控制事先抑制对准波动,需要根据纸类型或图像面积比率调节印版滚筒5的相位的控制特性。由于这个原因,在本实施例中,对准控制设备30配备有数据库32,在数据库32中存储了用于每种预设的纸类型和每种预设的图像面积比率值的相位控制系数(相位控制特性)相位控制系数是指在相位与时间成比例地改变的情况下单个印刷单元4A、4B和4D的印版滚筒5的相位变化梯度(相位变化随时间的速率)。更具体地说,在所有的颜色的图像面积比率值的总和和对准变化量之间的关系可以表示为如附图4中所示的映射图(或数学公式),因此所有的颜色的图像面积比率值的总和和相位控制系数也可以表示为映射图(或数学公式)。在数据库32中,为每种纸类型存储表示所有的颜色的图像面积比率值的总和(下文称为总图像面积比率)和相位控制系数之间的关系的映射图(或数学公式)。
在通过输入部分34输入关于与当前的印刷相关的印刷条件(纸类型、总图像面积比率)的数据时,预测对准修正设备31操作使用关于印刷条件的输入数据作为搜索关键字搜索数据库32,由此从在数据库32中存储的多个相位控制系数中选择对应于与当前的印刷相关的印刷条件的相位控制系数。具体地说,预测对准修正设备31选择对应于所输入的纸类型的映射图(或数学公式),并参考所输入的总图像面积比率的所选择的映射图(或数学公式),由此获得对应于当前的印刷条件的相位控制系数。然后,根据所选择的相位控制系数,预测对准修正设备31操作以朝控制每个印刷单元4A、4B和4D的印版滚筒5的相位的未示出的相位控制马达输出如在附图2的曲线(a)中所示的对准修正信号(对应于FF修正量)。顺便指出,印刷条件(纸类型、总图像面积比率)可以通过操作员手动输入或者从在上游的制版过程中在线地自动输入。
在另一方面,在非参考颜色(黑色、青色、黄色)的图像相对于参考颜色(品红色)的图像的垂直图像对准中发生了任何对准不良时,自动图像对准设备11输出如附图2的曲线(b)所示的脉冲对准修正信号(对应于FB修正量)以通过反馈控制补偿对准波动。如附图2的曲线(c)所示,在从自动图像对准设备11输出的对准修正信号(FB修正量)和从预测对准修正设备31输出的对准修正信号(FF修正量)通过加法器33相加之后,将所得的信号作为控制每个印刷单元4A、4B和4D的印版滚筒5的相位的控制信号输入到未示出的相位控制马达中。
附图2所示为相位控制马达的修正速度(对准修正速度)是可变的情况,而附图3所示为在相位控制马达的对准修正速度是恒定时从预测对准修正设备31输出的对准修正信号。在附图3中,曲线(a)示出了在对准修正速度是可变时在通过前馈控制的对准修正信号(对应于FF修正量)和加速时间之间的关系,其中L1和L2每个指示分别对应于不同的相位控制系数的不同的对准修正信号。相反,附图3的曲线(b)和曲线(c)每个显示了在修正速度分别处于L1和L2恒定时在通过前馈控制的对准修正信号(对应于FF修正量)和加速时间之间的关系,这里L1和L2在附图3的曲线(a)中指示。在对准修正速度如附图3的曲线(b)和曲线(c)所示地恒定时,间歇地实施预测修正,在相位控制系数越大时以越短的间隔输出脉冲信号。顺便指出,在上述的情况下,在来自自动图像对准设备11的对准修正信号与来自预测对准修正设备31的对准修正信号冲突时,通过实施与附图2中所示的类似方式的计算并适当地调节修正时间可以解决冲突问题。
因此,在从调节速度朝批量生产操作速度加速的过程中,根据本实施例的旋转印刷机操作,在补偿垂直图像对准的波动的方向上根据印刷条件(纸类型、总图像面积比率)以恒定的速率相对于参考印刷单元4C改变每个印刷单元4A、4B和4D的印版滚筒5的相位。此外,在印版滚筒5的相位改变不足以跟上由印刷条件等的变化引起的对准波动时,或者相反在印版滚筒5的相位改变如此大以致对准在反方向上偏离时,自动图像对准设备11通过反馈控制在补偿垂直图像对准不良的方向上修正印版滚筒5的相位。
应用根据本实施例由此设置的旋转印刷机,在从调节速度朝批量生产操作速度加速的过程中可以抑制垂直图像对准不良,由此确保了可接受的纸页所要求的质量,如附图5所示,即使对于在从调节速度朝批量生产操作速度加速的周期中生产的印刷的纸页也是如此。结果,通过根据本实施例的旋转印刷机,可以抑制由加速引起的废纸的产生,由此降低了生产成本。
同时,在与当前的印刷相关的印刷条件是一种新类型的条件并且因此在数据库32中不存在任何适当的数据(相位控制系数)时,实施如下的过程。
例如,在使用未知的纸类型的卷筒纸时,本过程首先选择在它们的基重(basis weight)和其它的特性方面最接近未知的纸类型的已知纸类型。然后,使用在所选择的已知的纸类型的总图像面积比率和相位控制系数之间的关系,该过程设定对应于与当前的印刷相关的总图像面积比率的相位控制系数。可替换的是,由于卷筒纸的特性根据它是否具有任何涂层而差别极大,因此最好还根据是否存在涂层将已知的纸类型分为两种类别(涂敷纸或无涂敷纸),并从主题未知的纸类型所落入的类别中选择至少两种已知的纸类型。然后,使用在由此所选择的至少两种或多种已知纸类型中的每种类型的总图像面积比率和相位控制系数之间的关系,该过程以内插方式计算对应于与当前的印刷相关的总图像面积比率的相位控制系数。
随后,正好在加速之前的时间点上,本过程(procedure)存储每个相位控制马达的电位计的值(平均值),并且还存储在那时的印刷速度(印版滚筒的旋转速度)或者印刷速度的平均值。然后,在从调节速度朝批量生产操作速度加速的过程中,该过程根据插值计算的相位控制系数朝单个相位控制马达输出对准修正信号,由此在补偿垂直图像对准的波动的方向上以恒定的速率改变每个印版滚筒5的相位。在完成加速之后,在通过自动图像对准设备11的反馈控制对准波动已经达到了稳定的区域(在允许范围内)的时间点上,该过程再次存储单个相位控制马达的电位计的值(平均值),并且还存储在那时的印刷速度(印版滚筒的旋转速度)或印刷速度的平均值。最后,使用在加速之前和之后的这些时间点上的电位计值、印刷速度和加速速率值,该过程计算随时间速度改变时的电位计值的改变量,并在数据库32中存储所计算的值作为对应于当前的未知的印刷条件的相位控制系数。从下一时间轮回开始,由此重新存储的数据可以被用作对应于类似的印刷条件的相位控制系数。
基于被印刷的纸的表面上的对准标记的对准不良,不使用电位计的值计算相位控制系数也是可能的。具体地,自动图像对准设备11和预测对准修正设备31两者都不启动(除了在检测对准标记的对准不良量中涉及的自动图像对准设备11的剩下的部分启动之外)。然后,对准标记检测传感器10检测在加速开始之前的点上和在加速完成之后的点上的单种颜色的对准标记位置。基于非参考颜色对准标记(黑色、青色、黄色)相对于参考颜色对准标记(品红色)的垂直位置的对准不良量,计算每个印刷单元4A、4B和4D的相位控制系数(此外最好,获得在加速完成并且印刷速度已经达到了稳定的区域之后从对准标记检测传感器10输出的修正信号的平均值)。在这种情况下,由于在加速的过程中不实施对准控制,因此在加速的过程中生产的印刷的纸页被作为废纸对待。
至此已经描述了本发明的第一实施例,注意根据本发明的旋转印刷机的对准控制并不限于上文所描述的本实施例,在不脱离本发明的精神的前提下它还可以以其它的各种形式实施。例如,此外最好,在加速的过程中通过自动图像对准设备11暂停反馈控制并单独通过预测对准修正设备31实施前馈控制。
此外,本发明的应用并不限于如上文所述在加速的过程中的对准控制。在附图5所示的情况下,本发明的对准控制也可应用于在从印刷速度到停止的减速的过程中的周期。此外,本发明不仅可用于印刷速度以如附图5所示的恒定速率改变的情况,而且还可用于以更复杂的速度改变模式改变印刷速度的情况(速度改变特性)。即,只要以相同的速度改变模式改变印刷速度,即使该模式复杂,对准仍然以相同的模式(对准波动特性)波动。因此,通过基于对准波动模式为每个印刷单元的印版滚筒设定相位控制特性,可以补偿通过单个印刷单元印刷的各图像之间的垂直图像对准不良。
更好的是,本发明可适用的旋转印刷机并不限于具有上述的实施例的配置的实施方式。例如,本发明也可以适用于具有多个印刷单元的旋转印刷机和所谓无轴型(单个驱动型)的旋转印刷机,这种印刷机没有主轴但具有用于每个印刷单元的驱动马达。
(B)第二实施例附图6所示为根据本发明的第二实施例的旋转印刷机的配置的示意图。如附图6所示,根据本实施例的旋转印刷机与在附图18中所示的常规的旋转印刷机不同之处仅在于控制设备的配置,在印刷机的主体配置上都相同。然而,注意,附图6是严格用于简化对本发明的非关键部件的解释的目的,并不表示根据本发明的对准控制方法限于应用具有这种配置的旋转印刷机。
根据本实施例的旋转印刷机除了常规的自动切割对准设备(自动对准修正装置)12之外还具有预测对准修正设备(预测切割对准修正装置)41,因此自动切割对准设备12和预测对准修正设备41一起构成了切割对准控制设备40。与通过反馈控制修正对准的自动切割对准设备12相反,预测对准修正设备41具有通过前馈控制修正对准的功能。
预测对准修正设备41具体以如下的方式实施前馈控制。预测对准修正设备41进行的前馈控制响应来自印刷速度控制设备25的同步信号实施。印刷速度控制设备25通过主马达13的旋转速度的控制来控制印刷速度,如附图5中所示地操作,在印刷开始时,使印刷速度朝调节速度线性地临时地加速;在调节完成时,再次从调节速度朝批量生产操作速度线性地(即与时间成比例的恒定速率)加速;以及在印刷完成时,从批量生产操作速度朝停止状态使印刷速度线性地减速。在本实施例中,在从调节速度朝批量生产操作速度加速开始时开始用于前馈控制的同步信号从印刷速度控制设备25输入到预测对准修正设备41,而在加速结束时将用于停止前馈控制的同步信号从印刷速度控制设备25输入到预测对准修正设备41。
通过预测对准修正设备41进行的前馈控制以如下的方式作用以补偿切割位置相对参考位置的波动(即补偿切割对准的波动)通过修正卷筒纸2从印刷部分(印刷部分)4朝折叠机(切割设备)9的行进长度。由于卷筒纸2的行进长度根据补偿辊15的位置可调节,因此预测对准修正设备41控制补偿器驱动马达16以调节补偿辊15的位置,由此修正卷筒纸2从印刷部分4朝折叠机9的行进长度。在本实施例中,补偿辊15和补偿器驱动马达16一起构成了行进长度修正装置。
在如上文所述地线性地加速印刷速度时,切割对准也以如在附图19的曲线(b)(所示为自动切割对准设备12没有启动的情况)中所示的恒定的变化速率线性地改变。在本实施例中,因此预测对准修正设备41操作以线性地(即与时间成比例的恒定速率)改变卷筒纸2的行进长度。
同时,通过本发明的原理性处理,本发明人已经发现即使印刷速度以相同的加速速率改变时,在某些特定的印刷条件中的每个印刷条件都不相同时切割对准的波动特性也不相同。这种特定的印刷条件的实例是卷筒纸2的纸张的类型和作用在卷筒纸2上的张力(在操作过程中设定的张力)。考虑到在切割对准中的波动是由于在速度改变的过程中的纸张的行进长度的波动引起,在行进长度中的这种波动主要由张力波动引起。从这个主要原因中,可以预计在纸类型的差别和预设的张力的变化都具有一定的作用。附图9所示为研究在作用卷筒纸2的张力和在冷却滚筒部分8相对于多种类型的纸张(涂敷纸A、涂敷纸B、轻重量涂敷纸C)的切割对准的波动量之间的关系的结果。顺便指出,通过给构成冷却滚筒部分8的一个导向辊提供传感器(张力检测传感器)18并通过传感器18检测从卷筒纸2施加给导向辊的力可以检测作用于卷筒纸2的张力。
由于切割对准的波动特性随着纸类型或者张力不同而不同,为了通过前馈控制事先抑制切割对准波动,需要根据纸类型或张力调节卷筒纸2的行进长度的控制特性。由于这个原因,在本实施例中,切割对准控制设备40配备有数据库42,在数据库42中存储了用于每种预设的纸类型和每种预设的张力值的行进长度控制系数(行进长度控制特性)行进长度控制系数是指在行进长度与时间成比例地改变的情况下卷筒纸2从印刷部分4朝折叠机9的行进长度变化梯度(行进长度随时间的变化速率)。更具体地说,在张力值和切割对准波动之间的关系可以表示为如附图9中所示的映射图(或数学公式),因此在张力和行进长度控制系数之间的关系也可以表示为映射图(或数学公式)。在数据库42中,对于每种纸类型,存储表示张力值和行进长度控制系数之间的关系的映射图(或数学公式)。
在通过输入部分44输入关于与当前的印刷相关的印刷条件的数据时,或者在冷却滚筒部分8上的卷筒纸2的张力通过张力传感器18检测时,预测对准修正设备41操作使用输入数据作为搜索关键字搜索数据库42,由此从在数据库42中存储的多个行进长度控制系数中选择对应于与当前的印刷相关的印刷条件的行进长度控制系数。然后,根据所选择的行进长度控制系数,预测对准修正设备41操作以朝补偿器驱动马达16输出如在附图7的曲线(a)中所示的切割对准修正信号(对应于FF修正量)。顺便指出,关于纸类型的数据可以通过操作员手动输入或者从在上游的制版过程中在线地自动输入。此外,在卷筒纸2的张力的设定值是已知时,优选操作员连同纸类型一起地手动地输入该值。
在另一方面,在切割对准中发生了任何对准不良时,自动切割对准设备12输出如附图7的曲线(b)所示的脉冲切割对准修正信号(对应于FB修正量)以通过反馈控制补偿切割对准波动。如附图7的曲线(c)所示,在从自动切割对准设备12输出的切割对准修正信号(FB修正量)和从预测对准修正设备41输出的切割对准修正信号(FF修正量)通过加法器33相加之后,将所得的信号作为改变补偿辊15的位置的控制信号输入到补偿器驱动马达16中。
附图7所示为补偿辊15的位置的修正速度(路径长度改变速度)是可变的情况,而附图8所示为在补偿辊15的位置的修正速度是恒定时从预测对准修正设备41输出的切割对准修正信号。在附图8中,曲线(a)示出了在修正速度是可变的时在通过前馈控制的切割对准修正信号(对应于FF修正量)和加速时间之间的关系,其中L1和L2每个指示分别对应于不同的行进长度控制系数的不同的切割对准修正信号。相反,附图8的曲线(b)和曲线(c)每个显示了在修正速度分别处于L1和L2恒定时在通过前馈控制的切割对准修正信号(对应于FF修正量)和加速时间之间的关系,这里L1和L2在附图8的曲线(a)中指示。在修正速度如附图8的曲线(b)和曲线(c)所示地恒定时,间歇地实施预测修正,在行进长度控制系数越大时以越短的间隔输出脉冲信号。顺便指出,在上述的情况下,在来自自动切割对准设备12的切割对准修正信号与来自预测对准修正设备41的切割对准修正信号冲突时,通过实施与附图7中所示的类似方式的计算并适当地调节修正时间可以解决这个冲突问题。
因此,在从调节速度朝批量生产操作速度加速的过程中,根据本实施例的旋转印刷机操作在补偿切割对准的波动的方向上根据印刷条件(纸类型、张力)以恒定的速率从印刷部分4朝折叠机9改变卷筒纸2的行进长度。此外,在卷筒纸2的行进长度改变不足以跟上由印刷条件等的变化引起的切割对准波动时,或者相反在卷筒纸2的行进长度改变如此大以致切割对准在反方向上偏离时,自动切割对准设备12通过反馈控制在补偿切割对准不良的方向上修正补偿辊15的位置,由此修正卷筒纸2的行进长度。
应用根据本实施例由此设置的旋转印刷机,在从调节速度朝批量生产操作速度加速的过程中可以抑制切割对准不良,由此确保了可接受的纸页所要求的质量,如附图5所示,即使对于在从调节速度朝批量生产操作速度加速的周期中生产的印刷的纸页也是如此。结果,通过根据本实施例的旋转印刷机,可以抑制由加速引起的废纸的产生,由此降低了生产成本。
同时,在与当前的印刷相关的印刷条件是一种新类型的条件并且因此在数据库42中不存在任何适当的数据(行进长度控制系数)时,实施如下的过程。
例如,在使用未知的纸类型的卷筒纸时,本过程首先选择在它们的基重和其它的特性方面最接近未知的纸类型的已知纸类型。然后,使用在所选择的已知的纸类型的张力和行进长度控制系数之间的关系,该过程设定对应于与当前的印刷相关的张力的行进长度控制系数。可替换的是,由于卷筒纸的特性根据它是否具有任何涂层而差别极大,因此,此外最好,根据是否存在涂层将已知的纸类型分为两种类别(涂敷纸或无涂敷纸),并从主题未知的纸类型所落入的类别中选择至少两种已知的纸类型。然后,使用在由此所选择的至少两种或多种已知纸类型中的每种类型的张力和行进长度控制系数之间的关系,该过程以内插方式计算对应于与当前的印刷相关的张力的行进长度控制系数。
随后,正好在加速之前的时间点上,本过程存储补偿器驱动马达16的电位计的值(平均值),并且还存储在那时的印刷速度(印版滚筒的旋转速度)或者印刷速度的平均值。然后,在从调节速度朝批量生产操作速度加速的过程中,该过程根据插值计算的行进长度控制系数朝补偿器驱动马达输出切割对准修正信号,由此在补偿在加速的过程中出现的切割对准的波动的方向上以恒定的速率改变行进长度。在完成加速之后,在通过自动切割对准设备12进行反馈控制切割对准波动已经达到了稳定的区域(在允许范围内)的时间点上,该过程再次存储补偿器驱动马达16的电位计的值(平均值),并且还存储在那时的印刷速度(印版滚筒的旋转速度)或印刷速度的平均值。最后,使用在加速之前和之后的这些时间点上的电位计值、印刷速度和加速速率值,该过程计算随时间速度改变时的电位计值的改变量,并在数据库42中存储所计算的值作为对应于当前的未知的印刷条件的行进长度控制系数。从下一时间轮回开始,由此重新存储的数据可以被用作对应于类似的印刷条件的行进长度控制系数。
基于切割对准标记的对准不良不使用电位计的值计算行进长度控制系数也是可能的。具体地,自动切割对准设备12和预测对准修正设备41两者都不启动(除了在检测对准标记的对准不良量中涉及的自动切割对准设备12的剩下的部分启动之外)。然后,对准标记检测传感器10检测在加速开始之前的点上和在加速完成之后的点上切割对准标记位置。基于在加速开始之前的点上和在加速完成之后的点两者上的切割对准标记的垂直位置的对准不良量,计算行进长度控制系数(此外最好,获得在加速完成并且印刷速度已经达到了稳定的区域之后从对准标记检测传感器10输出的修正信号的平均值)。在这种情况下,由于在加速的过程中不实施切割对准控制,因此在加速的过程中生产的印刷的纸页被作为废纸对待。
至此已经描述了本发明的第二实施例,注意根据本发明的旋转印刷机的对准控制并不限于上文所描述的本实施例,在不脱离本发明的精神的前提下它还可以以其它的各种形式实施。例如,此外最好,在加速的过程中通过自动切割对准设备12暂停反馈控制并单独通过预测对准修正设备41实施前馈控制。
此外,本发明的应用并不限于如上文所述在加速的过程中的切割对准控制。在附图5所示的情况下,本发明的切割对准控制也可应用于在从印刷速度到停止的减速的过程中的周期。此外,本发明不仅可用于印刷速度以如附图5所示的恒定速率改变,而且还可用于以更复杂的速度改变模式改变印刷速度的情况(速度改变特性)。即,只要以相同的速度改变模式改变印刷速度,即使该模式复杂,切割对准仍然以相同的模式(切割对准波动特性)波动。因此,通过基于切割对准波动模式设定卷筒纸的行进长度控制特性,可以补偿伴随速度改变出现的切割对准不良。
更好的是,本发明可适用的旋转印刷机并不限于具有上述的实施例的配置的实施方式。例如,本发明也可以适用于具有多个印刷单元的旋转印刷机和所谓无轴型(单个驱动型)的旋转印刷机,这种印刷机没有主轴,但具有分别用于印刷部分和折叠机的驱动马达。
此外,在上述的实施例中行进长度修正装置由补偿器驱动马达和补偿辊构成,还要注意,行进长度修正装置的结构并不限于上述的配置,只要能够调节卷筒纸从印刷部分(印刷设备)朝折叠机(切割设备)的行进长度即可。
(C)第三实施例附图10所示为根据本发明的第三实施例的旋转印刷机的配置的示意图。如附图10所示,根据本实施例的旋转印刷机与在附图20中所示的常规的旋转印刷机不同之处仅在于控制设备的配置,在印刷机的主体配置上都相同。然而,注意,附图10是严格用于简化对本发明的非关键部件的解释的目的,并不表示根据本发明的对准控制方法限于应用具有这种结构的旋转印刷机。在附图10中通过相同的参考标号表示与在常规的旋转印刷机中类似的部件。
根据本实施例的旋转印刷机的墨供应控制设备50除了具有常规速度函数映射图(恒定速度的速度函数映射图)17之外还具有新速度函数映射图51。与其中设定在印刷速度和墨源辊20的旋转速度(源辊的旋转速度)之间的关系的常规速度函数映射图17相反,新速度函数映射图51的特征在于其中随时间设定墨源辊20的旋转速度的变化。墨供应控制设备50根据通过印刷速度控制设备25进行速度控制的细节有选择性地使用这两个映射图17、51。具体地说,在印刷速度是调节速度或批量生产操作速度下的恒定速度时,墨供应控制设备50根据常规速度函数映射图17控制墨源马达21,由此根据印刷速度以恒定的速度控制墨源辊20的旋转速度。在另一方面,在从调节速度到批量生产操作速度的加速的过程中,墨供应控制设备50根据新速度函数映射图51控制墨源马达21,由此根据时间调节墨源辊20的旋转速度。在下文中,常规速度函数映射图17也被称为恒定速度目的的速度函数映射图,而新速度函数映射图51 17也被称为加速目的的速度函数映射图。
下文参考附图11详细地解释通过墨供应控制设备50进行墨源辊20的旋转速度的控制。响应来自印刷速度控制设备25的加速信号,墨供应控制设备50将控制使用映射图从恒定速度目的的速度函数映射图17切换到加速目的的速度函数映射图51。印刷速度控制设备25通过主马达13的旋转速度的控制来控制印刷速度,如附图11的曲线(a)所示地操作在印刷开始时,朝调节速度临时地使印刷速度线性地加速;在调节完成时,再次从调节速度朝批量生产操作速度线性地加速,即以与时间成比例的恒定速率;以及在印刷完成时,从批量生产操作速度朝停止状态使印刷速度线性地减速。在本实施例中,在加速开始之前的预定时间点(在附图11中所示的预测控制的开始点)上来自印刷速度控制设备25的加速信号输入到墨供应控制设备50。
印刷速度控制设备25响应加速信号根据加速目的的速度函数映射图51调节墨源辊20的旋转速度。根据加速目的的速度函数映射图51由此实施的旋转速度控制起预测控制的作用,预测在附图11的曲线(c)中的虚线所指示的印刷密度的波动并调节墨供应量以补偿印刷密度波动。印刷速度控制设备25因此在印刷速度加速之前开始加速墨源辊20的旋转速度,如附图11的曲线(b)所示。考虑从来自墨源辊20的墨供应量开始变化直到印刷密度开始改变的延迟时间,设定预测控制的开始先于印刷速度的加速的开始的在先时间周期。在预测控制开始之后,与使用恒定速度目的的速度函数映射图17控制墨源辊20的旋转速度的常规的印刷机的情况相比(在附图11的曲线(b)中的虚线所示的旋转速度的改变),将墨源辊20的旋转速度被设定在更高的值上。墨源辊20的旋转速度保持加速直到在印刷速度的加速完成之后经该时间达到了比对应于批量生产操作速度的旋转速度更高的速度。在印刷速度的加速完成之后,墨源辊20的旋转速度逐渐减速,并在加速完成之后的预定时间点上调节到对应于批量生产操作速度的旋转速度。因此,即使在印刷速度的加速完成之后,通过将印刷速度保持在比批量生产操作速度更高的旋转速度上一会,可以降低在印刷速度的加速后会发生的印刷密度的下降。在墨源辊20的旋转速度逐渐降低并达到在批量生产操作速度上的旋转速度后,预测控制完成并将控制使用映射图从加速目的的速度函数映射图51切换到恒定速度目的的速度函数映射图17。
如上文所述,由于预测在加速的过程中印刷密度的波动并因此调节墨源辊20的旋转速度,因此可以在加速的过程中和之后将印刷密度波动设定在落在如附图17的曲线(c)中实线所示的允许范围内。因此,通过根据本实施例的印刷机,即使对于如附图5所示从调节速度到批量生产操作速度的加速周期过程中生产的印刷的纸页,仍然可以确保可接受的纸页所要求的质量。结果,通过根据本实施例的旋转印刷机,可以降低由于加速引起的废纸的产生,由此降低了生产成本。
(D)第四实施例接着,参考附图12至附图14描述对根据本发明的第四实施例的解释。在附图12中,通过相同的参考标号表示与在第一实施例中的部件类似的部件。
根据本实施例的印刷机与第三实施例不同之处在于墨供应控制设备的功能上。具体地说,如附图12所示,根据本实施例的墨供应控制设备501具有数据库52。在数据库52中,存储了多个加速目的的速度函数映射图51,这些映射图中的每个映射图具有彼此不同的控制特性。
对于每个不同的图像面积比率值都设定在数据库52中存储的加速目的的速度函数映射图51。这种设定是考虑到如下的事实确定如附图21所示,伴随加速出现的印刷密度波动的特性根据要印刷的图像的图像面积比率值而不同。具体地说,例如假设在图像面积比率设定在附图9所示的中间值的情况下,根据在印刷密度的波动特性对于附图13的曲线(b)中所示的控制特性产生加速目的的速度函数映射图51。在这种情况下,在与当前的印刷相关的图像的图像面积比率值等于假设的图像面积比率值时,可以将伴随加速出现的印刷密度波动可靠地落在允许的范围内,如在附图13的曲线(c)的实线所示。然而,在与当前的印刷相关的图像的图像面积比率值大于或小于假设的图像面积比率值时,出现这种可能伴随加速出现的印刷密度波动落在允许的范围之外,如附图13的曲线(c)中的双点划线和虚线所示,因为印刷密度波动的不适当的特性所致。由于这个原因,在本实施例中,为了更加可靠地抑制伴随加速出现的印刷密度波动,对于不同的图像面积比率值准备了多个加速目的的速度函数映射图51,因此可以根据与当前的印刷相关的图像的图像面积比率值选择适当的加速目的的速度函数映射图51。
同时,虽然图像面积比率值通常在整个印刷表面上是不均匀的而是随其中的位置改变,然而仍然有很少数的图像的图像面积比率值在不同位置上从100%到10%的较宽的范围,在大多数情况下图像面积比率值通常保持在一定量度的变化范围内。由于这个原因,在本实施例中,整个印刷表面的平均图像面积比率实际用作图像面积比率的有代表性的值,并根据与当前的印刷相关的图像的平均图像面积比率值从数据库52中选择适当的加速目的的速度函数映射图51。关于计算平均图像面积比率值所要求的图像面积比率的数据可以从制版过程中通过在线或者通过记录媒体的方式获得。在数据在线输入时,通过其输入图像面积比率数据的输入部分53实施在发送和接收接口上,而在通过记录媒体输入数据时,输入部分53实施在记录媒体读设备中。此外最好操作员手动地输入平均图像面积比率。
对于每个加速目的的速度函数映射图51根据图像面积比率值可以如附图14的曲线(b)所示地设定墨源辊20的旋转速度的控制特性。附图14的曲线(b)所示分别为用于高、中和低的三种不同的值区段的墨源辊20的旋转速度的控制特性,与根据恒定速度目的的速度函数映射图17的控制特性相比(不进行预测控制),将图像面积比率值分为这三种区段中的一种区段。如这个曲线所示,在图像面积比率值较低时,墨源辊20的旋转速度被设定较高的值,以及预测控制开始的时间点相对于印刷速度的加速开始的时间点提前更长的提前时间,同时预测控制结束的时间点相对于印刷速度的加速结束的时间点延迟更长的延迟时间。这些设定是由下述事实引起的图像面积比率值越低,印刷密度波动相对于墨供应变化量延迟越长的延迟时间,以及印刷密度的变化量相对于墨供应的变化量相对更小。
附图14的曲线(c)所示为在与当前的印刷的图像的平均图像面积比率值相对较小时,使用如下的不同控制特性改变墨源辊20的旋转速度的三种不同的情况的印刷密度变化的比较在图像面积比率值落在由附图14的曲线(b)中的实线所指示的较低的区段内时的控制特性;在图像面积比率值落在由双点划线所指示的中间区段内的控制特性;和根据由虚线所指示的恒定速度目的的速度函数映射图17的控制特性。因此根据与当前的印刷相关的图像的平均图像面积比率通过使用适当的控制特性改变墨源辊20的旋转速度,可以更加可靠地使伴随加速出现的印刷密度波动在允许的范围内。
(E)第五实施例最后,参考附图15描述对根据本发明的第五实施例的解释。在附图15中,通过相同的参考标号表示与在第三和第四实施例中的部件类似的部件。
根据本实施例的印刷机在墨供应控制设备的功能上也与第一和第二实施例不同。如上文所述,伴随加速特性出现的印刷密度波动根据要印刷的图像的图像面积比率值不同。为此,为了使伴随加速出现的印刷密度波动落在允许的范围内,需要根据图像面积比率值设定墨供应量的控制特性。第二实施例准备了用于图像面积比率的多个不同值区段的多个加速目的的速度函数映射图51,并为每个相应的图像面积比率值设定墨源辊20的旋转速度的控制特性,由此使得可以根据图像面积比率值使用适当的墨供应控制特性来供应墨。在另一方面,本实施例保持墨源辊20的旋转速度的控制特性恒定而与图像面积比率值无关,同时根据图像面积比率值调节单个墨开关19的开度,由此使得可以根据图像面积比率值使用适当的墨供应控制特性来供应墨。
具体地,如附图15所示,除了存储加速目的的速度函数映射图51之外,根据本实施例的墨供应控制设备502还存储用于校正墨开关19的映射图(键开度校正映射图)54,并且具有控制键开度调节设备22的功能以根据键开度校正映射图54调节墨开关19的开度。加速目的的速度函数映射图51根据预定的参考图像面积比率值设定。作为参考图像面积比率值,选择相对较大的值(例如80-100%)。
在键开度校正映射图54上,相对于当前的印刷相关的图像的图像面积比率值距参考图像面积比率值的偏差设定墨开关开度的校正量(校正键开度)。一旦开始预测控制,墨供应控制设备502以墨开关19的宽度为单位将当前的图像面积比率值与参考图像面积比率值进行比较,并根据该偏差控制键开度调节设备22以校正单个墨开关19的开度。换句话说,墨供应控制设备502与图像面积比率的分布成比例地校正单个墨开关19的开度。单个墨开关19的开度的校正在正实施预测控制的周期中继续,并在预测控制结束时停止。顺便指出,在键开度校正映射图54中,当前图像面积比率值越小,将墨开关的开度的校正量设定在越大的值,这反映了如下的事实图像面积比率值越低,印刷密度波动相对于墨供应量的变化延迟更长的时间,并且印刷密度的变化量相对于墨供应的变化量变得相对更小。
因此,通过在每个墨开关宽度中根据图像面积比率值校正单个墨开关19的开度,可以根据图像面积比率沿宽度的分布使用适当的墨供应控制特性供应墨,而不需要根据图像面积比率值调节墨源辊20的旋转速度的控制特性。结果应用根据本实施例的印刷机,可以使伴随加速出现的印刷密度波动落在允许的范围内,而不受图像面积比率值的影响。注意,虽然在附图15所示的键开度校正映射图54中校正键开度独立于时间恒定,但是它仍然根据自预测控制开始后经过的时间是可变化的。
至此已经描述了根据本发明的第三至第五实施例的解释,注意根据本发明控制的旋转印刷机的印刷密度控制并不限于上述的实施例,在不脱离本发明的精神的前提下它也可以以其它各种形式实施。例如,在加速的过程中印刷密度的适当的波动特性不仅随图像面积比率值不同,而且还随纸类型或者墨的种类而不同,因为即使在墨量恒定时印刷密度也会根据纸张的类型或墨种类变化。由于这个原因,此外最好,对于不同的纸类型或者不同的墨种类设定不同的加速目的的速度函数映射图(墨供应控制特性)并将它们存储在数据库中。在加速的过程中,根据与当前的印刷相关的纸类型或墨种类从该数据库中选择适当的加速目的的速度函数映射图。关于纸类型或墨种类的数据可以通过操作员手动地或者从上游的制版处理中在线地自动地输入到墨供应控制设备。
在与当前的印刷相关的印刷条件(纸类型、墨类别)是一种新类型的条件并且在数据库中不存在任何适当的加速目的的速度函数映射图的特定情况下,实施如下的过程。例如,在使用未知的纸类型的卷筒纸时,本过程首先从已知的纸类型中选择在它们的基重和其它的特性方面最接近未知的纸类型的一种类型。接着,使用已知纸类型的加速目的的速度函数映射图控制墨源辊的旋转速度。可替换的是,由于卷筒纸的特性根据它是否具有任何涂层而差别极大,因此最好还根据是否存在涂层将已知的纸类型分为两种类别(涂敷纸或无涂敷纸),并从未知的纸类型所落入的类别中选择至少两种已知的纸类型。然后,使用在由此所选择的至少两种或多种已知纸类型的加速目的的速度函数映射图,该过程根据与当前的印刷相关的纸类型以内插方式计算加速目的的速度函数映射图。
还要注意,本发明的应用并不限于如上文所述实施例的加速过程中的印刷密度控制。在附图5所示的情况下,本发明的印刷密度控制在从印刷速度到停止的减速过程中也是可以应用的。此外,不仅还可以应用于印刷速度以如附图5所示的恒定速率改变的情况,而且还可用于印刷速度以更复杂的速度改变模式(速度改变特性)改变的情况。即,只要以相同的速度改变模式实施速度改变,即使该模式复杂,印刷密度仍然以相同的模式(印刷密度波动特性)改变。因此,通过基于印刷密度波动模式设定墨供应控制特性,可以减小伴随印刷速度改变出现的印刷密度波动。
更好的是,本发明可适用的旋转印刷机并不限于具有上述的实施例的配置的实施方式。具体地,本发明不仅可以适用于如在这些实施例中所示的轴驱动型旋转印刷机,而且还可以适用于所谓的无轴型(单个驱动型)的旋转印刷机,这种印刷机没有主轴但具有用于每个印刷单元的驱动马达。同样地,本发明的印刷密度控制方法在适用于纸页馈送型印刷机时也有效。由于多个辊也插入在纸页馈送印刷机中从墨源辊朝印版的表面的路径中,因此存在如下的可能在印刷速度改变的过程中发生印刷密度波动,因为输送给印版表面的墨量的延迟变化的缘故。由于这个原因,通过实施本发明的印刷密度控制方法,可以减小伴随印刷速度的改变出现的印刷密度波动,由此使得可以减少废纸。
同样对于墨供应设备的配置,本发明可适用的旋转印刷机并不限于具有如上述实施例中那样的墨源辊和墨开关的印刷机。即,墨供应设备的配置没有特别限制,只要在墨供应设备和印版滚筒之间插入多个墨辊即可,并且本发明也可以例如适用于具有墨轨作为墨供应设备的印刷机。
权利要求
1.一种旋转印刷机,包括每个用于在卷筒纸的相同区域上实施印刷的多个印刷单元;印刷速度控制装置,用于根据预定的速度改变特性将印刷速度从第一速度改变到不同于第一速度的第二速度;在其中存储相位控制特性的存储装置,所述的相位控制特性是为基于对准波动特性补偿在印刷单元的印刷图像之间的对准不良而预先设定的在所述的印刷单元的各印版滚筒之间的相位控制特性,该对准波动特性是在印刷速度根据该速度改变特性改变的情况下在印刷单元的印刷的各图像之间的对准波动的预测特性;和预测对准修正装置,用于在通过所述的印刷速度控制装置正改变印刷速度的同时根据在所述的存储装置中存储的相位控制特性修正在所述的印刷单元的各印版滚筒之间的相位关系。
2.一种旋转印刷机,包括每个用于在卷筒纸的相同区域上实施印刷的多个印刷单元;印刷速度控制装置,用于根据预定的速度改变特性将印刷速度从第一速度改变到不同于第一速度的第二速度;在其中存储相位控制特性的数据库,所述的相位控制特性是为基于对准波动特性补偿在所述的印刷单元的印刷图像之间的对准不良而预先设定的在所述的印刷单元的各印版滚筒之间的相位控制的特性,该对准波动特性是在印刷速度根据该速度改变特性改变的情况下对于影响对准波动特性的每种特定的印刷条件在所述的印刷单元的印刷的各图像之间的对准波动的预测特性;输入装置,通过该输入装置输入与当前的印刷相关的印刷条件;和预测对准修正装置,用于根据通过所述的输入装置输入的印刷条件从存储在所述的数据库中的多个相位控制特性中选择适当的相位控制特性,并在通过所述的印刷速度控制装置正改变印刷速度的同时根据所选择的相位控制特性修正在所述的印刷单元之间的各印版滚筒之间的相位关系。
3.根据权利要求1或2所述的旋转印刷机,进一步包括用于检测在通过所述的印刷单元印刷的各图像之间的对准不良并自动地修正该相位关系以补偿所检测的对准不良的自动对准修正装置。
4.一种旋转印刷机,包括以规则的间隔在连续行进的卷筒纸上印刷图像的印刷设备;以与印刷速度同步的速度将卷筒纸切割成分别包括单个图像的预定面积的切割设备;印刷速度控制装置,用于根据预定的速度改变特性将印刷速度从第一速度改变到不同于第一速度的第二速度;行进长度修正装置,用于修正卷筒纸从所述的印刷部分到所述的切割设备的行进长度;在其中存储行进长度控制特性的存储装置,所述的行进长度控制特性是为基于切割对准波动特性补偿所述的切割设备的切割对准不良而预先设定的行进长度的控制特性,该切割对准波动特性是在根据速度改变特性改变印刷速度的情况下通过所述的切割设备相对于参考位置的切割位置的切割对准的预测波动特性;和预测切割对准修正装置,用于在通过所述的印刷速度控制装置正改变印刷速度的同时根据在所述的存储装置中存储的行进长度控制特性通过控制所述的行进长度修正装置修正该行进长度。
5.一种旋转印刷机,包括以规则的间隔在连续行进的卷筒纸上印刷图像的印刷设备;以与印刷速度同步的速度将卷筒纸切割成分别包括单个图像的预定面积的切割设备;印刷速度控制装置,用于根据预定的速度改变特性将印刷速度从第一速度改变到不同于第一速度的第二速度;行进长度修正装置,用于修正卷筒纸从所述的印刷部分到所述的切割设备的行进长度;在其中存储行进长度控制特性的数据库,所述的行进长度控制特性是为基于切割对准波动特性补偿所述的切割设备的切割对准不良而预先设定的行进长度的控制特性,该切割对准波动特性是在根据速度改变特性改变印刷速度的情况下对于影响对准波动特性的每种特定的印刷条件通过所述的切割设备相对于参考位置的切割位置的切割对准的预测波动特性;输入装置,通过该输入装置输入与当前的印刷相关的印刷条件;和预测切割对准修正装置,用于基于通过所述的输入装置所输入的印刷条件从在所述的数据库中存储的多种行进长度控制特性中选择一种行进长度控制特性,并在通过所述的印刷速度控制装置正改变印刷速度的同时根据所选择的行进长度控制特性通过控制所述的行进长度修正装置修正该行进长度。
6.根据权利要求4或5所述的旋转印刷机,进一步包括自动切割对准修正装置,用于检测通过所述的切割设备相对于参考位置的切割位置的切割对准不良并通过控制所述的行进长度修正装置自动地修正行进长度以补偿所检测的对准不良。
7.一种印刷机,包括供应墨的墨供应设备;从所述的墨供应设备顺序地将墨传递给印版滚筒的多个墨辊;印刷速度控制装置,用于根据预定的速度改变特性将印刷速度从第一速度改变到不同于第一速度的第二速度;在其中存储墨供应控制特性的存储装置,所述的墨供应控制特性是为基于印刷密度变化特性补偿印刷密度变化而为所述的墨供应设备的墨供应的控制而预先设定的特性,印刷密度变化特性是在根据速度改变特性改变印刷速度的情况下印刷密度变化的预测特性;和控制从所述的墨供应设备供应的墨量的墨供应控制装置;所述的墨供应控制装置如下地操作在恒定速度操作的过程中根据印刷速度控制从所述的墨供应设备供应的墨量,以及在从所述的印刷速度控制装置开始改变印刷速度之前的一时刻和在印刷速度改变结束之后的另一时刻之间的预定周期中根据在所述的存储装置中存储的墨供应控制特性调节从所述的墨供应设备供应的墨量。
8.一种印刷机,包括盛墨的墨瓶;并入在所述的墨瓶中用于根据旋转速度控制从所述的墨瓶中供应的墨量的墨源辊;与所述的墨源辊一起并入在所述的墨瓶中并在所述的墨源辊轴向地设置的多个墨开关,该墨开关用于根据相对于所述的墨源辊的间隙的开度控制从所述的墨瓶供应的墨量;顺序地从所述的墨源辊到印版滚筒传递墨的多个墨辊;印刷速度控制装置,用于根据预定的速度改变特性将印刷速度从第一速度改变到不同于第一速度的第二速度;在其中存储旋转速度控制特性的存储装置,所述的旋转速度控制特性是为基于印刷密度变化特性补偿印刷密度变化而为所述的墨源辊相对于时间的旋转速度的控制而预先设定的特性,印刷密度变化特性是在根据速度改变特性改变印刷速度的情况下印刷密度变化的预测特性;和控制所述的墨源辊的旋转速度的旋转速度控制装置;所述的旋转速度控制装置如下地操作在恒定速度操作的过程中根据印刷速度控制所述的墨源辊的旋转速度,以及在从所述的印刷速度控制装置开始改变印刷速度之前的一时刻和在印刷速度改变结束之后的另一时刻之间的预定周期中根据在所述的存储装置中存储的旋转速度控制特性调节所述的墨源辊的旋转速度。
9.根据权利要求8所述的印刷机,其中所述的存储装置是其中存储了用于每种图像面积比率的旋转速度控制特性的数据库,基于对于图像面积比率的预测的印刷密度波动特性预先设定所述的旋转速度控制特性;所述的旋转速度控制设备如下地操作在该预定的周期中,从存储在所述的数据库中的多种旋转速度控制特性中根据当前印刷的印刷的产品的平均图像面积比率值选择一种旋转速度控制特性,以及根据所选择的旋转速度控制特性调节所述的墨源辊的旋转速度。
10.根据权利要求8所述的印刷机,进一步包括控制所述的墨开关的开度的开度控制装置;所述的存储装置存储旋转速度控制特性和开度控制特性,该旋转速度控制特性是在图像面积比率等于预定的参考图像面积比率的情况下所述的墨源辊的旋转速度相对于时间的设定控制特性,开度控制特性是相对于图像面积比率值距参考图像面积比率值的偏差为墨开关的开度设定的控制特性,所述的旋转速度控制特性和所述的开度控制特性都是基于为每种图像面积比率预测的印刷密度变化特性设定;所述的旋转速度控制装置操作用于在预定的周期中根据在所述的存储装置中存储的旋转速度控制特性调节所述的墨源辊的旋转速度;所述的开度控制设备操作用于在预定的周期中沿在当前印刷中的印刷产品的宽度根据与图像面积比率值的分布成比例的在所述的存储装置中存储的开度控制特性修正每个所述的墨开关的开度。
全文摘要
对于影响对准波动特性的每种特定的印刷条件预测在改变印刷速度的同时通过单个印刷单元(4A、4B、4C和4D)印刷的各图像之间的对准的波动特性。基于预测的对准波动特性,预先设定为补偿在通过单个印刷单元(4A、4B、4C和4D)印刷的各图像之间的垂直图像对准不良在单个的印刷单元(4A、4B、4C和4D)的印版滚筒(5,5,5,5)之间的相位的控制特性并将其存储在数据库(32)中。然后,在印刷速度被改变时,从预先存储在数据库(32)中的多个相位控制特性中选择对应于与当前的印刷相关的印刷条件的相位控制特性,并根据所选择的相位控制特性修正在单个印刷单元(4A、4B、4C和4D)的印版滚筒(5,5,5,5)之间的相位关系。由此可以抑制垂直图像对准不良并可以防止由印刷速度改变引起的废纸的发生。
文档编号B41F13/08GK1652938SQ038110
公开日2005年8月10日 申请日期2003年3月24日 优先权日2002年3月25日
发明者信川聪, 牧野重雄, 妹尾慎一郎, 滨本芳孝 申请人:三菱重工业株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1