镜筒装置的制作方法

文档序号:2785556阅读:136来源:国知局
专利名称:镜筒装置的制作方法
技术领域
本发明涉及可调整框构件的光轴位置和/或光轴倾斜的镜筒装置。
背景技术
关于现有的透镜镜框,作为用于修正透镜光轴中心的偏离的透镜调整装置,在日本国实用新案公开公报昭60-150511号中提出的方案是采用可转动的偏心小螺钉的透镜调整装置,有着在透镜的外周部设置数个切口部,并在该切开口部上结合偏心小螺钉的调整构造。在上述装置中,通过转动上述偏心小螺钉使透镜在与光轴正交的方向上微小移动,可以进行透镜的中心找正。
但是,在上述日本国实用新案公开公报昭60-150511号公报中提出的方案的透镜调整装置,由于需要数个偏心小螺钉,所以在成本上是不利的。另外,为了在与光轴正交的方向上移动透镜,必须同时或者交替地转动数个偏心小螺钉,因此,中心找正调整困难。再有,根据透镜的支承结构,当转动上述偏心小螺钉时,透镜光轴不限于单纯地平行移动,也有可能使光轴倾斜了。
另外,作为对包含原有的透镜镜框的光轴倾斜的中心偏离进行调整的透镜系统的组装方法,在日本国特许公开公报昭59-68710号中提出的方案是,在用间隔形成用环保持相邻透镜的状态下调整包含光轴倾斜的中心偏离,然后,把上述透镜和间隔形成用环粘接固定在镜框的外周部上。
在上述的日本国特许公开公报昭59-68710号公报中提出的组装方法中,在调整透镜光轴的倾斜时,中心位置也有可能同时被移动。因此,不能纯粹地完成仅仅透镜光轴倾斜的调整。另外,当调整光轴倾斜和透镜光轴位置(中心位置)时,由于上述那样地与倾斜同时地中心位置也发生变化,因此,调整作业困难。
另外,作为支承光学元件的支承部(框部)的光轴位置调整构造,在日本国特许公告公报昭61-46895号中揭示的半导体激光光源装置是具有对支承半导体激光器管的框部的光轴位置可进行微小调整的光轴位置调整构造的装置。图40是表示上述光轴位置调整构造的概念的放大图。
在上述光轴位置调整构造中,保持作为光学元件的激光光源部的框部311b由可弹性变形的悬臂梁状的板弹簧311c支承于支承部311a上。为了调整上述光学元件的左右方向的光轴位置,当用推压力F0推压镜框部311b的侧方时,光轴位置Z0到调整后的位置Z1只向左方向移动移动量δx0。
但是,由于沿上下方向也位移移动量δy0,所以,必须再进行上下方向的调整。另外,在光轴中心从Z0位置移动到位置Z1时,光学元件绕光轴旋转,对全体光学系统带来不好的影响,也存在不能完成理想的调整的缺点。

发明内容
为了解决上述问题,本发明的目的在于提供一种对光学构件的位置及姿势调整作业、即光轴的中心找正调整作业或者光轴的倾斜调整作业、或者光轴的中心找正及倾斜调整作业确实容易进行的镜筒装置。
本发明的1个镜筒装置具有导引构件、移动框和调整构件。上述移动框被上述导引构件导引,它包含带光轴的第1框部、第2框部、由上述导引部沿光轴方向进行导引的第3框部、连接上述第1框部和上述第2框部的第1连接部和连接上述第2框部和上述第3框部的第2连接部。上述调整构件分别设置在上述第2框部和第3框部上,使上述第1连接部和第2连接部变形,上述第1框部不产生旋转位移地在与上述光轴正交的平面内进行平行移动调整。
本发明的另一个镜筒装置包含有导引构件、移动框和调整构件,上述移动框被上述导引构件导引,它包括带光轴的第1框部、第2框部、由上述导引构件沿光轴方向进行导引的第3框部、连接上述第1框部和第2框部的第1连接部和连接上述第2框部和上述第3框部的第2连接部,上述调整构件分别设置在上述第2框部和第3框部上,用于调整上述第1框部的上述光轴的倾斜。
本发明的另一个镜筒装置具有导引构件、移动框、第1调整构件和第2调整构件,上述移动框被上述导引构件导引,该移动框包括带光轴的第1框部、第2框部、由上述导引构件沿光轴方向进行导引的第3框部、连接上述第1框部和上述第2框部的第1连接部和连接上述第2框部和第3框部的第2连接部。上述第1调整构件分别设置在上述第2框部和第3框部上,使上述第1连接部和第2连接部变形,从而上述第1框部不产生旋转位移地在与上述光轴正交的平面内进行平行移动调整。上述第2调整构件分别设置在上述第2框部和第3框部上,用于调整第1框部的上述光轴的倾斜。
本发明的另一个镜筒装置具有框构件和调整构件,上述框构件包括带光轴的第1框部、第2框部、第3框部、连接上述第1框部和上述第2框部的第1连接部和连接上述第2框部和上述第3框部的第2连接部,上述调整构件分别设置在上述第2框部和第3框部上,调整上述第1框部的上述光轴的倾斜。
本发明的另一个镜筒装置具有框构件、第1调整构件、第2调整构件,上述框构件包括带光轴的第1框部、第2框部、第3框部、连接上述第1框部和上述第2框部的第1连接部和连接上述第2框部和上述第3框部的第2连接部,上述第1调整构件分别设置在上述第2框部和上述第3框部上,使上述第1连接部和第2连接部变形,从而上述第1框部无旋转地在与上述光轴正交的平面内进行平行移动的调整,上述第2调整构件分别设置在上述第2框部和上述第3框部上,调整第1框部的上述光轴的倾斜。


图1(A)是示意地表示本发明的镜筒装置中的镜框的光轴位置调整构造的一例的放大正视图,表示采用由平行弹簧悬臂支承框部的构造的情况。
图1(B)是示意地表示本发明的镜筒装置中的镜框的光轴位置调整构造的另一例的放大正视图,表示采用由平行弹簧两端支承框部的构造的情况。
图1(C)是示意地表示本发明的镜筒装置中的镜框的光轴位置调整构造的另一例的放大正视图,表示采用由相对置的单一板弹簧两端支承框部的构造的情况。
图2是本发明的第1实施例的镜筒装置的镜框的正视图。
图3是图2的I-O-I剖视图。
图4是把上述第1实施例的镜框插入透镜镜筒的导引框的状态的透视图。
图5是本发明的第2实施例的镜筒装置的镜框的正视图。
图6是图5的II-DO-DII的剖视图。
图7是进给丝杠和导引轴组装到上述第2实施例的镜框上的状态的透视图。
图8是本发明的第3实施例的镜筒装置的镜框的正视图。
图9是图8的III-O-III的剖视图。
图10是上述第3实施例的镜框的分解透视图。
图11是本发明的第4实施例的镜筒装置的镜框的正视图。
图12是图11的IV-O-IV的剖视图。
图13是上述第4实施例的镜框的分解透视图。
图14是本发明的第5实施例的镜筒装置的镜框的正视图。
图15是图14的V-O-V剖视图。
图16是上述第5实施例的镜框的分解透视图。
图17是上述第5实施例的镜框的凸轮环组入状态下的分解透视图。
图18是本发明的第6实施例的镜筒装置的镜框的正视图。
图19是图18的VI-O-VI剖视图。
图20是上述第6实施例的镜框的分解透视图。
图21是上述第6实施例的镜框的凸轮环组入状态下的分解透视图。
图22是本发明的第7实施例的镜筒装置的镜框的正视图。
图23(A)是图22的VII-O-VII剖视图。
图23(B)是图22的VIII-O-VIII剖视图。
图24是上述第7实施例的镜框的透视图。
图25是上述第7实施例的镜框的凸轮环组入状态下的分解透视图。
图26是本发明的第8实施例的镜筒装置的镜框的正视图。
图27是图26的IX-O-IX剖视图。
图28是图26的XI-O-XI剖视图。
图29是上述第8实施例的镜框的光学装置安装状态下的透视图。
图30是本发明的第9实施例的镜筒装置的分解透视图。
图31是应用于上述第9实施例的镜筒装置的第1框的镜框的正视图。
图32是图31的XII-O-XII剖视图。
图33是应用于上述第9实施例的镜筒装置的第2框的镜框的正视图。
图34是图33的XIII-O-XIII剖视图。
图35是本发明的第10实施例的镜筒装置的分解透视图。
图36是应用于上述第10实施例的镜筒装置的具有第1框的镜框的正视图。
图37是图36的XIV-O-XIV剖视图。
图38是应用于上述第10实施例的镜筒装置的具有第2框的镜框的正视图。
图39是图38的XV-O-XV剖视图。
图40是表示原有的框部的光轴位置调整构造的放大图。
具体实施例方式
在详细说明本发明的各实施例之前,对于可适用于本发明的镜筒装置的光轴位置调整构造,即用于调整保持光学元件的镜框(框构件)的光轴位置(与光轴方向垂直方向的位置)的构造进行概念性说明。
上述镜框的光轴位置调整构造是,用可弹性变形的板弹簧部支承直接或间接保持光学元件的框部,通过沿调整方向推压上述框部可以调整光学元件的光轴位置的构造,图1(A)、(B)、(C)分别是表示不同于框部的支承构造的上述调整构造的概略的放大图,图1(A)表示用平行弹簧悬臂支承的构造,图1(B)表示用相对的平行弹簧两端支承框部的构造,图1(C)表示用相对的单一弹簧两端支承框部的构造。
在图1(A)的镜框的光轴位置调整构造中,保持光学元件的框部301b由可弹性变形的悬臂状态的平行弹簧部301c支承于支承部301a上。为了调整上述光学元件的左右方向的光轴位置,当用推压力Fa推压框301b的侧方时,作为框部中心的光轴位置A0向左方向移动到调整后的位置A1,其移动量仅为δxa。
由于平行弹簧部301C边保持略平行的状态边进行变形。所以上下方向的移动量δya变得非常小。因此,保持在框部上的光学元件的旋转成分几乎没有,可进行良好的调整。
在图1(B)的框位置调整构造中,保持光学元件的框部302b由可弹性变形的两端支承状态的平行弹簧部302c,302e支承于支承部302a上。为了调整上述光学元件的左右方向的光轴位置,当用推压力Fb推压框部302b的侧方时,作为框部中心的光轴位置B0向左方向移动到调整后位置B1,其移动量只有δxb。由于平行弹簧部302c,302e在边保持略平行的状态边上下支承框部302b的状态下进行变形,所以几乎没有上下方向的移动量δyb。因此,能进行几乎没有保持在框部上的光学元件的旋转成分的理想的调整。
在图1(C)的框位置调整构造中,保持光学元件的框部303b由可弹性变形的两端支承状态的板弹簧部303c,303e支承于上下支承部303a,303d上。为了调整上述光学元件的左右方向的光轴位置,当用推压力Fc推压镜框部303b的侧方时,作为框部中心的光轴位置C0向左方向移动到调整后的位置C1,其移动量仅为δxc。平行弹簧部303c、303e由于在边保持略平行的状态边上下支承框部303b的状态下进行变形,所以几乎没有上下方向的移动量δyc,因此,可以进行没有保持在框部上的光学元件的旋转位移成分的理想的调整。
在本发明的各实施例中,首先,对第1实施例的镜筒装置的镜框进行说明。
图2是上述第1实施例的镜框的正视图。图3是图2的I-O-I剖面图,图4是把上述镜框插入透镜镜筒的导引框内状态的透视图。
本实施例的镜框9是透镜镜筒或者是组装到光学仪器中的光学系统位置可调整的镜框,主要由镜框本体1、保持在上述镜框本体上的作为光学构件(光学元件)的透镜2和固定在镜框本体1的外周上的凸轮推杆3、4、5构成。该镜框9可以进行上述透镜2的光学系统位置的调整,即相对于镜框本体1进行透镜光轴位置进行微调整(透镜中心找正)。
上述光轴位置的调整基准,可以是镜框本体1的最外径,可根据镜框相对光学仪器的安装状态进行选择。
再有,把与上述透镜2的光轴O正交并通过透镜2的光轴方向的中心点P0互相正交的轴作为X轴(水平),Y轴(垂直)。
上述镜框本体1是用后述的连接部把环状的内框1a、环状的中框1b和环状的外框1c连接成一体构造的构件,上述环状的内框1a是保持透镜2的保持构件,上述环状的中框1b是夹着间隙地配置在内框1a外周的第1支承框,上述环状的外框1c是夹着间隙地配置在中框1b外周的第2支承框。在上述外框1c的外周的3分割的位置上固定着凸轮推杆3、4、5。
上述内框1a和中框1b之间由与上述框一体形成的部分、即平行弹簧部1d和1e连接着,上述平行弹簧部1a和1e是从光轴方向上看在跨越Y轴的状态下分别平行延伸的各2枚的可变形的板状的第1连接部。
再有,上述中框1b和外框1c之间由与上述框一体形成的部分、由平行弹簧部1f和1g连接着,上述平行弹簧部1f和1g是从光轴方向看在横跨X轴的状态下分别向左右方向平行延伸的2枚可变形的板状的第2连接部。
上述平行弹簧部1d,1e在X轴方向上可弹性变形。而上述平行弹簧部1f,1g在Y轴方向上可弹性变形。而且,这些平行弹簧在用后述的调整螺钉通过螺钉接触部向各自方向推压的情况下,为了使内框1a、或者中框1b相对于光轴O不倾斜地平行移动地进行变形,在分别包含X轴、Y轴的面上具有基本对称的形状。
在上述中框1b上,在X轴上设有阴螺纹部1j。在内框1a上,在上述阴螺纹部1i的内侧相对位置上设有螺钉接触面1k,在外框1c上,在上述阴螺纹部1i的外侧相对位置上设置着调整螺钉插通用的开口1h。同样地在上述外框1c上,在Y轴上设有阴螺纹部1i,在上述中框1b上在上述阴螺纹部1i的内侧相对位置上设置着螺钉接触面1m。
作为第1调节构件的调整螺钉6穿过开口1h并旋入到上述中框1b的阴螺纹部1i中。另外,作为第2调节构件的调整螺钉7旋入到外框1c的阴螺纹部1j内。上述调整螺钉6、7为带螺旋开槽的小螺钉。
再有,在本实施例的镜框9组装之后,在光学系统位置未调整状态下的初始的透镜光轴位置Z在图2上比作为调整目标的光轴O位置稍微向右上方偏离地被设置着。其偏移量至少要大于透镜轴位置的调整量。这是为了在调整范围内在旋入调整螺钉6、7的状态下保持其前端面与接触面1k,1m接触的状态下进行调整。
下面,对以上那样构成的本第1实施例的镜框9的光学系统位置调整动作进行说明。
首先,在镜框9单体上进行调整时,用调整工具握持住镜框本体1的外框1c的外径,上述镜框本体1处于透镜2和凸轮推杆3、4、5已经组装上了的状态,然后把调整螺钉6、7插入阴螺纹部1i,1j内。边观察设置在调整工具的由点光源部和光轴检测用CCD部输出的检测信号边旋转上述调整螺钉6、7微量移动初始透镜光轴位置Z,使之调整到调整目标的光轴O位置上。上述调整后,用粘接剂把调整螺钉6、7固定在阴螺纹部1i,1j上,调整结束。
上述光轴位置Z的调整时的移动,是由上述平行弹簧部(变形部)1d,1e和平行弹簧部1d,1e分别在X轴方向和Y轴方向上进行变形而得到的,其变形是微小的变形,它是由上述平行弹簧部的弯曲力矩产生的弯曲变形和由剪切力产生的剪切变形合成而形成的。另外,如果不对镜框进行再调整,该变形不仅是利用弹性变形,而且也可以是利用塑性变形的变形。
另外,如图4的透视图所示,在把镜框9组装到保持镜框的导引框8中的状态进行调整时,把装入透镜2的镜框本体1装在导引框8内,将凸轮推杆3等插入在导引槽8a、8b、8c内并固定在外框1c上。然后,从导引框8的外周侧使调整螺钉6、7穿过调整用开口8d、8e而插入阴螺纹部1i,1j内。其后,可以用与上述的在镜框单体上的调整相同的上述调整工具进行调整。
当采用上述说明的第1实施例的镜框9时,由于镜框本体是一体构造,所以构成简单。再有,透镜光轴O的位置调整可以由2个调整螺钉进行,所以调整极其容易。而且,即使进行其透镜光轴O的位置调整,光轴O也不产生倾斜,可以得到光学精度好的镜框。另外,即使在镜框装入到凸轮环等的导引框内的状态下,也可以从导引框的外周通过调整用开口进行调整。
在上述的第1实施例的镜框9中,作为上述连接部的平行弹簧部1d、1e或者1f、1g,不仅可用平行弹簧形状的连接部,也可以采用板弹簧形状,或者单一圆柱形状的连接部。另外,上述平行弹簧部的调整时的变动虽然是由弯曲变形和剪切变形产生的合成变形,但也可以使用弯曲变形或者剪切变形的任何一种变形进行调节的构造。
另外,即使是上述透镜2与镜框本体1一体地成形而形成的、也可以原封不动应用上述实施例的光学系统位置调整构造。另外,作为上述调整螺钉6、7也可以使用具有防松功能的螺钉,这样就可以不需要调整后的后续作业。
另外,作为上述连接部的平行弹簧部虽是与镜框本体1一体地模制而成的,但也可以采用把金属板弹簧构件嵌入到镜框本体上来形成。这时,可以取得大的调整量。另外,上述镜框本体虽是由模制形成的,但也可以采用冲压成形的金属板。
下面对作为本发明的第2实施例的镜筒装置的镜框进行说明。
图5是上述第2实施例的镜框的正视图。图6是图5的II-O-II剖面图。图7是把进给螺栓和导引轴组装到上述镜框上状态的透视图。
本实施例的镜框10是透镜镜筒或者是安装在光学仪器上的光学系统位置可调整的镜框,主要由镜框本体11和棱柱透镜12构成,上述棱柱透镜12是保持在上述镜框本体上的光学构件(光学元件),在组装到光学仪器上时,如图7所示那样,镜框10由进给螺栓15和导引轴16沿光轴O方向可进退地支承着。
与上述镜框10同样,可以进行上述透镜12的光学系统位置,即相对于镜框本体11的透镜光轴位置的微调整。但是,光轴O位置调整时的调整基准,在本实施例情况下,为旋合支承本镜框10的进给螺栓15的阴螺纹11k位置和嵌合导引轴16的缺口部11m位置。
再有,把与上述透镜12的光轴O正交并通过透镜12的光轴方向中心点P0的互相正交的轴作为X轴(水平)、Y轴(垂直)。
上述镜框本体11是由后述的连接部把四方框状的内框11a、隧道形状的中框11b和四方框状的外框11c连接成一体的构造的构件,上述四方框状的内框11a是保持透镜12的保持构件,上述隧道形状的中框11b是夹着间隙地配置在内框11a的外周上的第1支承框,上述四方框形状的外框11c是夹着间隙地配置在中框11b的外周上的第2支承框。
上述内框11a和中框11b之间,由平行弹簧部11d和11e连接着,该平行弹簧部11d和11e是与上述框一体地形成的部分,是把Y轴作为中心在其两侧沿上下方向延伸的各2枚相对的板状的第1连接部。
上述中框11b和外框11c之间由平行弹簧部11f和11g连接着,该平行弹簧部11f和11g是与上述框一体地形成的部分,是以X轴为中心,在其两侧沿左右方向延伸的各2枚相对的板状的第2连接部。
上述平行弹簧部11d,11e沿X轴方向可弹性变形。上述平行弹簧部11f,11g沿Y轴方向可弹性变形。而且,上述平行弹簧部11d和11e以及11f和11g是关于包含X轴、Y轴的平面大致对称的形状的平行弹簧,其相对于X轴或者Y轴的刚性大致相等。
因此,在用后述的调整螺钉通过接触部向各自的方向推压时,内框11a或者中框11b相对光轴O无倾斜地平行移动地进行变形,而且,在上述变形时,作为棱柱透镜的透镜12也不会围绕光轴O进行转动位移。
在上述中框11b上,在X轴上设置阴螺纹部11i。同样地,在上述外框11c上,在Y轴上设置阴螺纹部11j,还设置着旋合进给螺栓15的阴螺纹部11k和缺口部11m。
作为第1调节构件的调整螺钉13穿过开口11h而旋入上述中框11b的阴螺纹部11j内。另外,作为第2调整构件的调整螺栓14旋入在外框11c的阴螺纹部11j中。上述调整螺钉13、14为带螺旋开槽的小螺钉。
再有,本实施例的镜框10的组装之后的光学系统位置未调整状态下的初始透镜光轴位置Z是与第1实施例的情况相同地在图5上比调整目标的光轴O位置稍微向右上方偏移地被设置着。
下面,对如上构成的本第2实施例的镜框10的光学系统位置调整动作进行说明。
在调整镜框10时,在安装透镜12的状态下如图7所示地把进给螺栓15旋入阴螺纹部11k内、并把导引轴16插入缺口部11m内地进行支承。
在上述各支承状态下,把调整螺钉13、14插入阴螺纹部11i、11j内。与上述第1实施例的情况相同地,边观察由设置在调整工具上的点光源部和光轴检测用CCD部输出的检测信号边旋转上述调整螺钉13、14,把初始透镜光轴位置Z移动到调整目标的光轴O位置上。上述调整后,用粘接剂把调整螺钉13、14固定在阴螺纹11i、11j上,调整结束。
上述光轴位置Z的移动,是由上述平行弹簧部11d,11e和11f,11g分别沿X轴方向和Y轴方向变形进行的,该变形与上述第1实施例的情况相同是弯曲变形和剪切变形的合成。
当采用上述说明的本第2实施例的镜框10时,有与上述第1实施例的镜框9相同的效果,但特别适用于采用棱柱透镜12的镜框,可以在不伴有上述棱柱透镜12的旋转位移和倾斜的状态下进行精度好的光学系统位置调整。
下面,对作为本发明的第3实施例的镜框进行说明。
图8是上述第3实施例的镜框的正视图。图9是图8的III-O-III剖视图,图10是上述镜框的分解透视图。
本实施例的镜框20是透镜镜筒或者是安装在光学仪器上的光学系统位置可调整的镜框,特别适用于在光轴方向有余裕空间的场合。该镜框20主要由镜框本体21、作为保持在上述镜框本体上的光学构件(光学元件)的透镜22和凸轮推杆23、24、25构成。而且上述透镜22的光学系统位置调整,即相对于镜框本体将初始的透镜光轴Z位置移动到作为调整目标的透镜光轴O位置上是可能的。但是,上述光轴位置的调整基准是镜框本体21的外框21c的外径部。
另外,把与上述透镜22的光轴正交的轴、并通过透镜22的光轴方向中心点P0的互相正交的轴作为X轴(水平)、Y轴(垂直)。
上述镜框本体21是用后述的连接部把环状的内框21a、环状的中框21b和环状的外框21c连接成一体的构造的构件,上述环状的内框21a是保持透镜22的保持构件,上述环状的中框21b是配置在内框21a后方的第1支承框,上述环状的外框21c是配置在上述内框21a的外周侧的第2支承框。而且,在上述外框21c的外周3分割位置上,固定着凸轮推杆23、24、25。
上述内框21a和中框21b之间由弹簧部21d,21e连接着,上述弹簧部21d,21e是与上述框一体地形成的部分,是沿包含光轴O和X轴的面向后方延伸的可左右变形的板状的第1连接部。但是,弹簧部21d被分割成上下二个。
上述中框21b和外框21c之间由弹簧即21f和21g连接着,该弹簧部21f、21g是与上述框一体地形成的部分,是沿包含光轴O和Y轴的面向后方延伸的上下2片的可变形的板状的第2连接部。
上述弹簧部21d、21e可沿X轴方向弹性变形,另外,上述弹簧部21f、21g可沿Y轴方向弹性变形。而且上述各弹簧部由于在其延伸方向上形成得比较长,所以在由后述的调整螺钉沿X轴或者Y轴方向推压内框21a时,内框21a不相对光轴O倾斜地平行移动地进行变形。
在上述外框21c上,在x轴上设有阴螺纹部21i,在Y轴上设有阴螺纹部21j。在上述阴螺纹部21i内旋进作为第1调节构件的调整螺钉26。在上述阴螺纹部21j内旋进作为第2调节构件的调整螺钉27。上述调整螺钉26、27为带螺旋开槽的小螺钉。
在本实施例的镜框20中,也与上述第1实施例的情况相同,在光学系统位置未调整状态下的初始透镜光轴位置Z设置成在图8上比作为调整目标的光轴位置O稍微向右上偏离。设置这样的偏离量的理由也与上述第1实施例的情况相同,是由于调整螺钉必须在抵接接触部的状态下进行调整。
下面,对于以上那样构成的本第3实施例的镜框20的光学系统位置调整动作进行说明。
首先,用调整工具保持镜框本体21的外框21c的外径,该镜框本体21处于组装了透镜22和凸轮推杆23、24、25的状态,把调整螺丝插入阴螺纹部21i、21j内。接着与上述第1实施例的情况一样地,边观察由设在调整工具上的点光源部和光轴检测CCD部输出的检测信号边旋入上述调整螺钉把初始透镜光轴位置Z移动到目标的光轴O位置上。上述调整后,用粘接剂把调整螺钉26、27固定在阴螺纹部21i、21j上,调整结束。
当采用以上说明的本第3实施例的镜框10时,具有与上述第1实施例的镜框9相同的效果,特别是由于作为连接部的弹簧部在延伸方向上做的比较长,因此可以实施透镜光轴位置的在较宽的范围内的高精度的调整。
下面,对本发明的第4实施例的镜筒装置的镜框进行说明。
图11是上述第4实施例的镜框的正视图,图12是图11的IV-O-IV剖面图,图13是上述镜框的分解透视图。
本实施例的镜框30是安装在光学仪器上的光学系位置可调整的镜框,主要由镜框本体31、保持在上述镜框本体上作为光学构件(光学元件)的透镜32和凸轮推杆33、34、35构成。可进行上述透镜32的光学系统位置调整、即相对于镜框本体31的调整基准(例如,外框31c的外径部)把初始透镜光轴Z位置向作为调整目标的光轴位置O的移动调整。
再有,把与上述透镜32的光轴O正交并通过透镜32的光轴方向中心点P0的互相正交的轴作为X轴(水平),Y轴(垂直)。
上述镜框本体31是用后述的连接部把环状的内框31a、环状的中框31b和环状的外框31c连接成一体的构造的构件,上述环状内框31a是保持透镜32的保持部,上述环状中框31b是夹着间隙地配置在内框31a的外周上的第1支承框,上述外框31c是夹着间隙地配置在中框31b的外周的第2支承框。在上述外框31c的外周3分割位置上固定着凸轮推杆33、34、35。
上述内框31a和中框31b之间由弹簧部31d和31e连接着,上述弹簧部31d和31e是与上述框一体地形成的部分,是从光轴方向看在X轴上的左右的位置上从内框31a的前面侧出来穿过内框31a与中框31b的间隙连接到中框31b的后面的可变形的弯曲带板状的第1连接部。
上述中框31b和外框31c之间由弹簧部31f和31g连接着,上述弹簧部31f,31g是与上述框一体地形成的部分,是从光轴方向看,在Y轴上的上下的位置上从中框31b的前面侧出来穿过中框31b与外框31c的间隙连接到外框31c的后面的可变形的弯曲带板状的第2连接部。
上述弹簧部31d,31e在X轴方向可弹性变形,上述弹簧部31f,31g在Y轴方向可弹性变形。而且,上述弹簧部31d和31e或者31f和31g的形状具有相对于包含X轴、Y轴的平面对称的形状,在用后述的调整螺钉沿各自的方向推压上述弹簧部上的接触部时,内框31a或者中框31b相对于光轴O进行无倾斜的平行移动。
在上述中框31b上,在X轴上设有阴螺纹部31i,在外框31c上,在与上述阴螺纹部的相对位置上设置着调整用开口31h。另外,在外框31c上,在Y轴上设有阴螺纹部31j。
在上述阴螺纹部31i内旋进了作为第1调节构件的调整螺钉36,上述第1调节构件可与弹簧部31d接触,另外,在上述阴螺纹部31j内旋进了作为第2调节构件的调整螺钉37,上述第2调节构件可与弹簧部31f接触。
上述调整螺钉36,37为带螺旋开槽的小螺钉。
即使在本实施例的镜框30中,也与上述第1实施例的情况相同地,光学系统位置未调整状态下的初始透镜光学系统位置Z设置成在图11上比调整目标的光轴O位置稍微向右上方偏离,设置该偏离的理由与上述第1实施例的情况相同,是为了在调整螺钉必须接触接触部的状态下进行调整。
下面,对以上那样构成的本第4实施例的镜框30的光学系统位置调整动作进行说明。
首先,用调整工具保持镜框本体31的外框31c的外径,上述镜框本体31是组装了透镜32和凸轮推杆33、34、35的状态的镜框本体31,把调整螺钉36、37插入阴螺纹部31i、31j内。边观察设置在调整工具上的由点光源部和光轴检测用CCD部输出的检测信号边旋入调整螺钉36、37,把初始透镜光轴位置Z移动到调整目标的光轴O位置上。经过上述调整后,用粘接剂把调整螺钉36、37固定在阴螺纹部31i、31j上,调整结束。上述调整也可以在上述镜框30装入光学仪器的镜筒部的状态下进行。
当采用以上说明的本第4实施例的镜框30时,具有与上述第1实施例的镜框9相同的效果,特别是由于作为连接部的弹簧部采用了易变形的形状,所以即使在透镜光轴O位置的调整范围大的状态下,也可以进行高精度的光学系统位置调整。
当采用上述的本发明的第1~第4实施例的镜筒装置时,可以提供进行光学构件的光学系统位置调整(中心找正)容易的镜框。
下面,对本发明的第5实施例的镜框进行说明。
图14是本实施例的镜框的正视图。图15是图14的V-O-V剖视图,图16是上述的镜框的分解透视图。
本实施例的镜框40是透镜镜筒或者是组装到光学仪器里的保持光学构件的可调整光学系统姿势的镜框。而且,主要由镜框本体41、保持在上述镜框本体上的作为光学构件(光学元件)的透镜42和固定在镜框本体41的外周的凸轮推杆43、44、45构成。
该镜框40可对上述透镜42的光学系统姿势、即相对上述镜框本体41的光轴倾斜进行调整。但是,上述调整的基准,虽然在本实施例的情况下是镜框本体41的最外径(后述的外框41的外径部),但该调整基准要根据镜框安装到光学仪器上的状态来选择。
再有,把与上述透镜42的光轴O正交并相互正交的轴作为X轴(水平)、Y轴(垂直)。而且,把X轴、Y轴的交点作为后述的圆柱部41d、41e、41f、41g各轴的相交的点,把它作为点Po。另外,在镜框40上,把图14上的表面侧(图15上的左侧)做为前面侧,把图14上的里面侧(图15上的右侧)作为后面侧。
上述镜框本体41是用后述的连接部把环状的内框41a、环状的中框41b和环状的外框41c连接成一体的构造的构件,上述环状的内框41a是保持透镜42的保持构件,上述环状的中框41b是夹设着间隙地配置在内框41a的外周的第1支承框,上述环状的外框41c是夹设着间隙地配置在中框41b的外周的第2支承框。在上述外框41c的外周3分割位置上固定着凸轮推杆43、44、45。
上述内框41a和中框41b之间由在Y轴上向上下方向延伸的可弹性变形的第1连接部的圆柱部41d和41e连接着,上述圆柱部41d和41e是与上述框一体地形成的部分。
上述中框41b和外框41c之间由在X轴上向左右方向延伸的可弹性变形的第2连接部的圆柱部41f和41g连接着,上述圆柱部41f和41g是与上述框一体地形成的部分。再有,上述圆柱部41d、41e及41f、41g沿Y轴或X轴相对于光轴中心对称地配置着。
另外,在上述中框41b上,并在图14的框的右侧位置上设置着穿过X轴的与光轴O平行的阴螺纹部41k和缺口部41n,在上述外框41c上的图14的框的上侧位置上设置着穿过Y轴的与光轴O平行的阴螺纹部41m和缺口部41p。在缺口部41n的外侧半径方向上设置着缺口部41q(镜框40的成形上的需要)。
在上述中框41b的阴螺纹部41k内旋合着作为第1调整构件的调整螺钉46,在上述外框41c的阴螺纹部41m内旋合着作为第2调整构件的调整螺钉47。调整螺钉46、47为带螺旋开槽的小螺钉。
在内框41a上,在其外周的右方向上设置着平板状突起部41i,该突起部41i是沿X轴方向突出到与上述中框41b的阴螺纹部41k相对的位置的被推压部。另外,同样地在中框41b上在其外周的上方向上设置着平板状的突起部41j,该平板状的突起部41j是沿Y轴方向突出到与上述外框41c的阴螺纹41m相对的位置的被推压部。上述平板状突起部41i、41j可以由从与光轴O平行方向旋入的调整螺钉46、47推压。当上述平板状突起部41i、41j分别被沿光轴O方向推压时,作为光学系统位置(姿势)的透镜2的光轴的方向α(倾角)发生变化。
在本实施例的镜框40组装之后,在光学系统位置未调整状态下的初始透镜光轴的方向αz(初始状态下的倾角)与作为调整目标的光轴方向αo(倾斜角0度)相比,图16的X′、Y′平面上的交点在X′轴上更向左方(X1′)偏离,在Y′轴上更向下方偏离那样地倾斜着。上述X′轴,Y′轴是把上述X轴,Y轴沿光轴O平行移动了的轴。
而且,把上述初始透镜光轴方向αz作为侧棱的四角锥的范围成为调整范围(调整界限)θR,如果在该调整范围θR内进行调整,在上述调整螺钉46、47旋入的状态下其前端面抵接平板状突起部41i、41j的状态会被保证,而且,圆柱部41d、41f、41e、41g也不过分地变形,可以进行高精度的调整。
下面,对以上那样构成的本第5实施例的镜框40的光学系统倾斜调整动作进行说明。
在对镜框40单体进行调整的时候,用调整工具保持镜框本体41的外框41c的外径,上述镜框本体41是组装了透镜42和凸轮推杆43、44、45的状态,把调整螺钉46、47插入阴螺纹部41k、41m内。边观察从设置在调整工具上的点光源部和光轴检测用CCD部输出的检测信号边从光轴O的平行方向上旋入调整螺钉46、47,使圆柱部41d、41e、41f、41g变形并摆动光轴。由此,将初始透镜光轴方向αz移动到应该调整到的光轴方向αo上。在其调整时,由于作为上述变形部的上述圆柱部41d、41e或41f、41g分别对称地配置在Y轴、X轴上,所以只是单纯的扭动,上述点Po几乎没有移动。
上述调整后,用粘接剂把调整螺钉46、47固定在阴螺纹部41f、41j上,调整结束。
另外,如图17的分解透视图所示的那样,当在把上述镜框40装入直进凸轮环48,然后再装入转动凸轮环49的状态下进行调整时,把装入透镜42的镜框本体41装到直进凸轮环48内,把凸轮推杆43等插入导引槽48a、48b、48c内并固定在外框41c上。接着把凸轮推杆43等嵌入凸轮槽49a、49b、49c内地把转动凸轮环49装在直进凸轮环48上。在该安装状态下,与上述的镜框单体的情况相同地,从与光轴O平行的D1、D2方向加减调整螺钉46、47的旋入量进行调整。
如果采用以上说明的第5实施例的镜框40,由于镜框本体41是一体构造,所以构成简单,而且可以从光轴O方向通过2个调整螺钉对透镜光轴方向α的倾斜进行调整。因此镜框单体不言而喻,即使在安装凸轮环的状态下都可以不设置调整用的开口地进行简单的调整。并且由于调整时变形的圆柱部配置在X、Y轴上,因此,即使进行上述透镜光轴α的倾斜调整,光轴O的X轴,Y轴平面上的位置几乎不发生变化,所以可以得到光学精度高的镜框。
再有,在本实施例的镜框40中,上述调整时圆柱部41d、41e或者41f、41g的变形主要是由绕Y轴或者绕X轴的扭转变形而产生的,但如果没有镜框的再调整,不仅是弹性变形,而且也可以利用塑性变形。
另外,上述各圆柱部41d、41e、41f、41g也可以做成沿Y轴或X轴的棱柱形状部。另外镜框本体41也没必要一定是一体构造,例如也可以用作为连接部的上述各圆柱部把内框41a、中框41b、外框41c分离,采用把各圆柱部嵌合到相应的框体上的构造。这时调整螺钉不设置在镜框上,而是设置在调整工具侧,调整后必须粘接固定上述圆柱部的嵌合部。
另外,即使是上述透镜42与镜框本体41一体成形的镜框,也可以原封不动地应用上述的实施例的光学系统姿势调整构造。作为上述调整螺钉46、47,也可以采用具有防松功能的螺钉,这时候就不需要调整后的后续作业了。
下面,对本发明的第6实施例的镜筒装置的镜框进行说明。
图18是上述第6实施例的镜框的正视图。图19是图18的VI-O-VI剖视图,图20是上述镜框的分解透视图。
本实施例的镜框50是保持光学构件的镜框,要装入透镜镜筒或者光学仪器中,主要由镜框本体51、作为在上述镜框本体51内保持的光学构件(光学元件)的透镜52和固定在镜框本体51的外周上的凸轮推杆53、54、55构成。
该镜框50与上述第5实施例的情况一样,可以对上述透镜52的光学系统姿势,即相对于镜框本体51的透镜光轴方向α(光轴的倾斜)进行调整。
再有与上述第5实施例的情况相同,把与上述透镜52的光轴O正交并互相垂直的轴作为X轴(水平)、Y轴(垂直)。而且,把X轴、Y轴的交点作为后述的圆柱部51d、51e、51f、51g各轴的交点。把该交点作为点Po。另外对于镜框本体51来说,把图18上的表面侧(图19的左侧)作为前面侧,把图18上的里面侧(图19上的右侧)作为后面侧。
上述镜框本体51是用后述的连接部把环状的内框51a、环状的中框51b和环状的外框架51c连接成一体的构造的构件,上述环状的内框51a是保持透镜52的保持构件,上述环状的中框51b是夹设着间隙地配置在内框51a的外周的第1支承框,上述环状的外框51c是夹设着间隙地配置在中框51b的外周的第2支承框。在上述外框51c的外周3分割位置上固定着凸轮推杆53、54、55。
在上述内框51a和中框51b之间,与上述第5实施例的情况相同,由圆柱部51d和51e连接着,上述圆柱部51d和51e是与上述框一体地形成的部分,也是在Y轴上沿上下方向延伸的可扭曲变形的第1连接部。
又,上述中框51b与外框51c之间也与上述第5实施例的情况相同地由圆柱部51f和51g连接着,上述圆柱部51f和51g是与上述框一体地形成的部分,也是在X轴上沿左右方向延伸的可扭曲变形的第2连接部。上述圆柱部51d、51e或者51f、51g沿Y轴或者沿x轴相对于光轴中心对称地配置着。
另外,在上述中框51b上,并在图18的中框的右侧外周位置上沿X轴设置着阴螺纹部51k。另外在上述外框51c上,并在图18的外框的上侧外周位置上沿Y轴设置着阴螺纹部51m。在上述外框51c的与上述阴螺纹部51k相对的部分上设置着调整螺钉穿过用的缺口51n。
在上述中框51b的阴螺纹部51k内旋合着作为第1调整构件的调整螺钉56,在上述外框51c的阴螺纹部51m内旋合着作为第2调整构件的调整螺钉57。调整螺钉56、57是具有圆锥状前端的带螺旋开槽的小螺钉。
再有,在内框51a上设置着倾斜突起部51i,该倾斜突起部51i是突出到内框51a的外周的右侧的与上述阴螺蚊部51k相对的位置的具有朝向X轴的外方并向前方倾斜的后面侧倾斜面的被推压部。同样地,在中框51b上设置着倾斜突起部51j,该倾斜突起部51j是突出到中框51b的外周的上方侧的与上述阴螺纹部51m相对的位置的具有向Y轴的外方并向后方倾斜的前面倾斜面的被推压部。
上述倾斜突起部51i、51j,其倾斜面可以由从X轴、Y轴方向旋入的调整螺钉56、57的前端推压。通过推压倾斜面使中框51b或者外框51c绕Y轴或者X轴作微小角度转动。透镜52的光轴方向α发生变化。
再有,在本实施例的镜框50组装之后,在光学系统位置未调整状态下的初始透镜光轴方向αz(光轴的倾斜)与调整目标的光轴方向αo(倾斜角0度)相比,其图20的X′、Y′平面上的交点在X′轴上更向右方向(X1′)偏离,在Y′轴上更向下方向(Y1′)偏离。
而且,以上述初始透镜光轴方向αz作为侧棱的四角锥的范围成为调整范围θR,如果在该调整范围θR内进行调整,在上述调整螺钉56、57旋入的状态下,其前端面抵接平板状突起部51i、51j的状态能得到保证。再有,圆柱部51d、51e、51f、51g也不过分地变形,可以进行高精度的调整。
下面,对以上那样的构成的第6实施例的镜框50的光学系统倾斜调整动作进行说明。
本实施例的镜框50的调整动作也和上述第1实施例的情况大致相同,但调整螺钉56、57向镜框的插入旋进方向不同,即对本实施例的镜框50单体进行调整时,从X轴、Y轴方向旋装调整螺钉56、57,通过加减其旋入量来摆动光轴,使透镜光轴方向α(倾斜)与调整目标的光轴方向αo(光轴角度0度)重合。这时,上述点Po不移动,其理由与上述第5实施例的情况相同。
图21表示将本镜框50组入凸轮环58后再装入转动凸轮环59的状态。在该组装状态下进行镜框50的调整时,穿过凸轮环59和58的调整用开口59d、58d和59e、58e从沿X轴、Y轴D3或D4方向旋装调整螺钉56、57,通过调整其旋入量来调整光轴方向α。其后的动作与上述镜框单体时相同。
如果采用本第6实施例的镜框50,将得到与上述第5实施例的镜框40相同的效果,由于透镜光轴的倾斜调整可以从与光轴O正交的方向进行,特别在凸轮环组装的状态下的调整变容易。
上述那样的本发明的第5、6实施例的镜筒装置具有简单的构成,通过摆动透镜、棱镜等的光学构件的光轴可以调整光学系统姿势,即使在上述那样地摆动光轴的情况下,光轴中心位置的变化也极少,所以可以进行精度高的姿势调整。
下面,对本发明的第7实施例的镜筒装置的镜框进行说明。
图22是本实施例的镜框的正视图。图23(A)、图23(B)是图22的VII_VII剖视图和VIII_VIII剖视图,图24是上述镜框的透视图。
本实施例的镜框60是具有光学构件的、装入透镜镜筒或光学仪器(照相机,显微镜等)里的可调整光学系统位置及姿势的镜框,主要由镜框本体61、作为保持在上述镜框本体61内的光学构件(光学元件)的透镜62、固定在镜框本体61的外周的凸轮推杆63a、63b、63c和作为位置·姿势调整用的调整构件的调整螺钉65、66、67、68构成。
该镜框60是对在镜框本体61上安装透镜62时的光轴的偏差可以进行修正调整的镜框,即是可以调整与透镜光轴O正交方向的光轴位置和可以调整透镜光轴O的方向(光轴的倾斜)的镜框。上述调整的基准,可以根据镜框在光学仪器上的安装状态来选择,如选择镜框61的外径部分等。
再有把与上述透镜62的光轴O正交的并相互正交的轴作为X轴(水平)、Y轴(垂直)。而且,把Y轴、X轴的交点作为点Po。上述交点Po在从光轴O方向见到的平面上与后述的圆柱部61d、61e、61f、61g的轴的交点相一致。但严格地讲,圆柱部61g、61f的轴心根据构造上的需要相对于圆柱部61d、61e的轴心做成在光轴方向上有稍微的偏移。另外,对于镜框60,把图22上的纸面表侧作为前面侧,把图22上的纸面里侧作为后面侧。
上述镜框本体61是由环状的内框61a、环状的中框61b、环状的外框61c和后述的连接部组成的一体构造的构件。上述环状的内框61a是保持透镜62的保持构件(第1框部),上述环状的中框61b是夹设着间隙地配置在内框61a的外周的第1支承框(第2框),上述环状的外框61c是夹设着间隙地配置在中框61b的外周的第2支承框(第3框),后述的连接部连接着这些框部。在上述外框61c的外周3分割位置上固定着凸轮推杆63a、63b、63c。
上述内框61a和中框61b之间由圆柱部61f和61g连接着,上述圆柱部61f和61g是与该框部一体地形成的部分,也是通过光轴O的在极接近X轴的平行的X1轴上(参照图23(B))向左右方向延伸的可弹性变形的第1连接部(平行移动机构、倾斜调整机构)。X1轴与光轴O的交点为交点P1。
再有,上述中框61b和外框61c之间由圆柱部61d和61e连接着,上述圆柱部61d和61e是与该框部一体地形成的部分,也是在Y轴上向上下方向延伸的可弹性变形的第2连接部(平行移动机构,倾斜调整机构)。
在上述中框61b上设置着沿Y1轴(参照图23(A)通过交点P1)且相对配置的阴螺纹部61n、61k,上述Y1轴与作为上述圆柱部61f、61g的轴心的上述X1轴正交。
为避免上述阴螺纹部61n、61k与圆柱部61d、61e干涉,作为阴螺纹部61n、61k的轴心的Y1轴和与其正交的X1轴如上述那样地在光轴O方向上稍微偏离X、Y轴。
在上述外框61c上设置着沿X轴且相对的阴螺纹部61m、61j。另外,在上述外框61c上,在与上述中框的阴螺纹部61k、61m相对的部分上设置着调整螺钉穿过用的缺口61p、61q。
在上述中框61b的阴螺纹部61k、61n上旋合着作为第1调整构件的调整螺钉66、68,在上述外框61c的阴螺纹部61j、61m上旋合着作为第2调整构件的调整螺钉65、67。但是,上述调整螺钉65、66是平端形状的带螺旋开槽的小螺钉,上述调整螺钉67、68是圆锥状前端的带螺旋开槽的小螺钉。
再有,在内框61a上设置着倾斜突起部61i,该倾斜突起部61i在内框61a的外周的上侧的与上述阴螺纹部61n相对的位置上突出,是朝向Y1轴的外径方向并向后方侧进行倾斜的倾斜调整机构。另外,同样地在中框61b上设置着倾斜突起部61h,该倾斜突起部61h在中框61b的外周的左方侧的与上述阴螺纹部61m相对的位置上突出,是朝向X轴上外径方向并向后方侧进行倾斜的倾斜调整机构。
再有,本实施例的镜框60的组装之后的光学系统位置未调整状态中的初始透镜光轴位置Pa比作为调整目标的光轴O位置Po更向左下(参照图22)偏离。另外,初始透镜光轴方向Da(光轴的倾斜)相对调整目标的光轴方向Do(光轴倾斜角0度)在光入射侧向右下方向倾斜(参照图24的透视倾斜图)。带有这样的初始的偏移和倾斜是为了在调整范围内在上述调整螺钉65、66、67、68被旋入的状态下保持其前端与框外径面和倾斜突起部61h、61i相接触地进行调整。
下面,对以上那样构成的本第7实施例的镜框60的光学系统位置·姿势动作进行说明。
上述调整,例如,使用由点光源部和光轴检测用CCD部构成的调整工具。而且,上述点光源部放在光入射侧,上述CCD部放在光出射侧,根据CCD部的光轴检测信号边检测光出射侧的光轴的倾斜和光轴位置边进行调整。
在对镜框60单体进行调整的场合,调整螺钉65、66、67、68分别旋装在各自的阴螺纹部上,加减各个调整螺钉的旋入量,根据上述CCD部的检测输出调整光轴的倾斜,接着调整光轴位置。
首先,旋入旋合在中框61b的阴螺纹部61n内的调整螺钉68,当用调整螺钉前端推压内框61a的倾斜突起部61i的斜面时,圆柱部61f、61g由于扭曲而产生弹性变形。内框61a向顺时针旋转(在图24上从右方看)的+θx方向倾倒。
接着,旋入旋合在外框61c的阴螺纹部61m内的调整螺钉68,当用调整螺钉前端推压中框61b的倾斜突起部61h的斜面时,圆柱部61d、61e由于扭曲而产生弹性变形,中框61b向顺时针旋转(在图24上从上向看)的+θy方向倾倒。由于上述的框部向两个方向倾倒。光轴的倾斜重合到作为目标的光轴方向Do上。
其次,旋入旋合在中框61b的阴螺纹部61k内的调整螺钉66,当沿Y1轴推压内框61a外周下部时,圆柱部61f、61g进行剪切或弯曲弹性变形,与内框61a一起透镜62无倾斜地向Y1轴上方平行移动。
再其次,当旋入旋合在外框61c的阴螺纹部61j内的调整螺钉65沿X轴推压中框61b外周右方时,圆柱部61d、61e产生剪切或弯曲弹性变形,中框61b与透镜62同时无倾斜地向X轴左方平行移动。由于上述两个方向上的平行移动,光轴位置可以从初始透镜光轴位置Pa移动到调整目标的光轴O位置Po。
其后,粘接固定上述各调整螺钉,本镜框60的光学系统位置·姿势调整结束。
下面,对在本第7实施例的镜框60装入凸轮环状态下的光学系统位置·姿势调整动作进行说明。
图25是表示本镜框60可装入直进凸轮环71,上述直进凸轮环可装入转动凸轮环72的透镜镜筒的分解透视图。
本镜框60是在其凸轮推杆63a、63b、63c滑动自如地嵌入直进凸轮环71的直进槽71a(3个位置)和转动凸轮环72的凸轮槽72a、72b、72c的状态下被装入上述直进凸轮环71和转动凸轮环72内的。在上述组装状态下对镜框60进行调整时,调整穿过设在直进凸轮环71的4个方向上的调整用开口71d、71e、71f、71g和设在转动凸轮环72的4个方向上的调整用开口72d、72e、72f、72g被旋装着的调整螺钉65、66、67、68的旋入量通过这样调整,上述光轴的倾斜和光轴位置可以与作为目标的倾斜、位置相重合。
在本第7实施例的镜框60中,镜框本体61是简单的一体构造,可以调整与透镜62的光轴O正交的方向的光轴位置和光轴倾斜双方。而且,由于上述光轴位置、光轴的倾斜可以分别单独调整,所以调整作业容易。
在本实施例的镜框60中,上述调整时的圆柱部61d、61e或者61f,61g的变形本质上是由利用了剪切变形产生的扭曲,以及向一方向的剪切、弯曲等弹性变形引起的。但如果不进行镜框的再调整,也可以利用塑性变形进行调整。另外在上述光轴的倾斜调整之后,再进行光轴位置的调整,也可以不按这个调整顺序。
下面,对本发明的第8实施例的镜简装置的镜框进行说明。
图26是本第8实施例的镜框的正视图,图27是图26的IX-IX剖视图,图28是图26的XI-XI剖视图。而且,图29是上述镜框安装到光学装置状态的透视图。
本实施例的镜框80带有光学构件,是装入透镜镜筒或光学仪器内的可调整光学系统位置·姿势的镜框。主要由镜框本体81、作为保持在上述镜框本体81上的光学构件(光学元件)的透镜82、作为光学系统位置调整用的调整构件的调整螺钉85、86、87、88、89、沿光轴O进退驱动镜框本体81的进给螺栓91和沿光轴进行导引的导引轴92构成。
该镜框80是能够调整的镜框,上述调整是为了修正透镜82安装在镜框本体81上时的光轴的偏差的调整,即在上述透镜82的光轴O的倾斜和与透镜光轴O正交方向的光轴位置的调整(光轴的平行移动)之上再加上绕透镜光轴O的透镜的左右的倾斜(姿势)的调整。上述调整的基准为支承镜框的进给螺栓91和导引轴92。
再有,把与上述透镜82的光轴正交的并互相正交的轴作为X轴(水平)、Y轴(垂直)。而且,把Y轴、X轴的交点作为点Po。上述交点Po在从光轴O方向看的平面上与后述圆柱部81d、81e、81f、81g的轴的交点相一致,严格地说,圆柱部81g、81f的轴心相对圆柱部81d、81e的轴心由于构造上的需要沿光轴方向稍有偏移。
另外,对于镜框80,把图26上的纸面表侧作为前面侧。把图26上的纸面里侧作为后面侧。
上述透镜82是L型形状的复杂的曲面透镜,由入射侧透镜块82a和出射侧透镜块82b形成,入射侧透镜块82a的入射侧光轴为光轴O,出射侧透镜块82b的出射侧光轴为光轴O′。上述光轴O′是与入射侧光轴O离开规定距离的平行光轴。
上述镜框本体81是由环形的内框81a、环形的中框81b、环形的外框81c和后述的连接部构成的一体构造的构件。上述环形的内框81a是保持透镜82的保持构件,上述环形的中框81b是夹着间隙地配置在内框81a的外周的第1支承框(第2框〕,上述环形的外框81c是夹着间隙地配置在中框81b的外周的第2支承框(第3框〕,上述后述的连接部连接着这些框部。
上述内框81a和中框81b之间由通过光轴O的在接近X轴的平行的X1轴上(参照图28)向左右方向延伸的可弹性变形的第1连接部(平行移动调整机构,倾斜调整机构)的圆柱部81f和81g连接着,上述圆柱部81f和81g是与该框部一体形成的部分。另外,上述X1轴和光轴O的交点为点P1。
上述中框81b与外框81c之间由在Y轴上向上下方向延伸的可弹性变形的第2连接部(平行移动调整机构,倾斜调整机构)的圆柱部81d和81e连接着,上述圆柱部81d、81e是与该框部一体形成的部分。
在上述中框81b上,设置着沿Y1轴(参照图27,通过交点P1)相对配置的阴螺纹部81n、81K。上述Y1轴与作为上述圆柱部81f、81g的轴心的上述X1轴正交。
为了避免阴螺纹部81n、81k与圆柱部81d、81e干涉,作为阴螺纹部81n、81k的轴心的Y1和与其正交的X1轴如上述那样地为相对X、Y轴在光轴方向稍微偏离的轴。
在上述外框81c上设置着沿X轴相对的阴螺纹部81m、81j,另外在与Y轴上的上述中框的阴螺纹部81k、81m相对的部分上设置着调整螺钉穿过用的缺口81q、81p。再有,在上述外框81c上,在上部右侧面部上设置着朝向与X轴平行的水平方向的阴螺纹部81s,另外,在右下位置上设置着旋合进给螺栓的阴螺纹部81t,在左上位置上设置着嵌入导引轴92的缺口81u。
在上述中框81b的阴螺纹部81k,81n上旋装着作为第1调整构件的调整螺钉86、88,在上述外框81c的阴螺纹部81j,81m上旋装着作为第2调整构件的调整螺钉85、87,在同一个外框81c的阴螺纹部81s上旋合着作为第3调整构件的调整螺钉89。但是,上述调整螺钉85、86、89是平端形状的带螺旋开槽的小螺钉,上述调整螺钉87、88是有圆锥状前端的带螺旋开槽的小螺钉。
在内框81a上设置着倾斜突起部81i(参照图27),上述倾斜突起部81i在与内框81a的外周的上侧的与上述阴螺纹部81n相对的位置上突出,它是在Y1轴上朝向外径方向并向后方侧倾斜的倾斜调整机构。另外,同样地在中框81b上设置着倾斜突起部81h(参照图28),该倾斜突起部81h在与中框81b的外周的左方侧的与上述的阴螺纹部81m对应的位置上突出,是在X轴上朝向外径方向且向后方侧倾斜的倾斜调整机构。
在本实施例的镜框80的组装后的光学系统位置·姿势未调整的状态中,在与光轴O正交方向上的初始透镜光轴位置Pa与作为调整目标的光轴O位置Po相比,与之平行地向其右下侧偏离(参照图26和图29)。另外,初始透镜光轴方向Da(光轴的倾斜)相对调整目标的光轴方向Do(光轴倾斜角0度)在光入射侧向右下方向倾斜(参照图29的透视图)。而且绕透镜光轴O的初始透镜倾斜方向Ea(光轴O′的左右的偏离)相对于与Y′轴(与Y轴平行方向)一致的调整目标的光轴O旋转方向Eo稍微地向顺时针方向倾斜。
上述那样地使初始的偏离和倾斜偏移向规定方向的理由是为了在调整范围内在上述调整螺钉85、86及87、88再有89被旋入的状态下保持其前端与框外径面和倾斜突起部81h、81i以及螺钉接触面81r处于接触状态,在此状态下进行调整。
下面,对以上那样构成的本第8实施例的镜框80的光学系统位置·姿势调整动作进行说明。
上述调整与上述第7实施例的情况相同,使用由点光源部和光轴检测用CCD部构成的调整工具,但上述CCD部放置在图27、28的光出射侧的光轴O′上,边考虑与光轴O的相对位置关系边进行调整。
本实施例的镜框80的光学系统位置·姿势调整是在由进给螺钉91和导引轴92支承镜框本体81的状态下进行的。首先,将调整螺钉85、86、87、88、89分别旋装到各自的阴螺纹部上,通过加减各个调整螺钉的旋入量,先调整透镜82的绕光轴O的倾斜(摆动),接着,调整透镜82的光轴的倾斜,最后调整透镜82的光轴位置(平行移动)。
如果进行详细地说明,首先,旋入旋合在外框81c的阴螺纹部81s内的调整螺钉89,推压中框81b的调整螺钉接触部81r,使圆柱部81d、81e产生剪切或者弯曲弹性变形,使中框81b向绕光轴方向倾倒。而且,使保持在内框81a上的透镜82的绕光轴O的倾斜与作为目标的倾斜方向Eo相重合地进行调整。
接着,当旋入螺合在中框81b的阴螺纹部件1n内的调整螺钉88时,用调整螺钉前端推压内框81a的倾斜突起部81i的斜面,圆柱部81f、81g由于扭曲而进行弹性变形,内框81a向顺时针方向(图29中从右看)的+θx方向倾斜。
再有,当旋入旋合在外框81c的阴螺纹部81m内的调整螺钉87时,由于用调整螺钉前端推压中框81b的倾斜突起部81a的斜面,圆柱部81d、81e因扭曲而弹性变形,中框81b向顺时针方向(图29中从上方看)的+θy方向倾倒。由于上述框部的双方向的倾倒,使透镜光轴的倾斜与目标光轴方向Do相重合。
接着,旋入旋合在中框81b的阴螺纹部81k内的调整螺钉86,在Y1轴上推压内框81a的外周下部,使圆柱部81f,81g剪切或弯曲弹性变形。由于这些变形,内框81a与透镜82同时无倾斜的向上平行移动。
再有,旋入旋合在外框81c的阴螺纹部81j内的调整螺钉85,在X轴上推压中框81b的外周右方,使圆柱部81d、81e剪切或者弯曲弹性变形。因这些变形,中框81b和透镜82同时无倾斜地向左方平行移动。由于上述两个方向的平行移动,光轴位置从初始透镜光轴位置Pa可以移动到调整目标的光轴O位置Po上。
另外旋入旋合在外框81c的阴螺纹部81s内的调整螺钉(摆动调整构件)89,通过推压处于中框81b的外周的接触部81r,可以主要借助由圆柱部81d的剪切变形和圆柱部81e的弯曲变形而进行摆动。之后,粘接固定上述各调整螺钉,本镜框的光学系统位置·姿势调整结束。
当采用上述本第8实施例的镜框80时,与上述第7实施例的镜框60同样,镜框本体81具有一体的简单的构造,通过调整螺钉的旋入调整,与透镜82的光轴O正交的方向的光轴位置和光轴的倾斜可以很容易地进行调整。而用通过同样地调整螺钉的旋入调整也可以对绕光轴O的倾斜进行调整。
再有,作为保持在上述各实施例的镜框内的光学构件采用了透镜62或者82,作为该光学构件也可以采用透镜以外的棱镜和反射镜等光学构件。
另外,在光学构件未安装在镜框本体的状态下,也可以暂时安装基准光学构件对该镜框的轴心位置和轴倾斜进行调整,另外也不一定限定于上述的先调整绕光轴的倾斜,再调整光轴的倾斜,接着调整光轴位置的调整顺序。
再有,在本实施例的说明中,将透镜的光轴,例如,重合到镜框的中心轴上地进行了说明,如果存在其他的镜框的相对位置,就不必调整到该镜框中心上。关键是能将透镜的光轴自由地调整在任意方向上。
如果采用上述那样的第7、8实施例的光学系统位置·姿势可调整的镜筒装置,光学构件的光轴倾斜的调整(摇摆光轴)和在与光轴正交的平面内的光轴位置的调整是容易的,可以提供镜框的构造本身也很简单的镜框。
下面,对本发明的第9实施例的镜筒装置进行说明。
图30是本发明的第9实施例的镜筒装置的分解透视图,在本图中表示的本镜筒装置是装入到照像机、显微镜等光学仪器里的光学系统光轴位置可调整的镜筒装置,它由镜框100、镜框110、直进凸轮环122和转动凸轮环121构成,上述直进凸轮环122沿光轴O方向进退自由地组装入了上述镜框100和镜框110,上述转动凸轮环121可转动地嵌合上述直进凸轮环122外周部。在本镜筒装置中,光入射侧光轴作为光轴O1,光出射侧光轴作为光轴O2。
如作为镜框的正视图的图31和作为图31的XII-O-XII剖面图的图32所示,上述镜框100主要由镜框本体101、透镜102和凸轮推杆103、104、105构成,上述镜框本体101是可调整透镜光轴位置的第1框,该调整是通过向与透镜光轴O垂直的平面内的第1方向(Y1轴方向)的平行移动进行的,上述透镜光轴O相当于框的中心轴,上述透镜102是保持在上述镜框本体内的光学元件,上述凸轮推杆103、104、105固定在镜框本体101的外周上。
再有,把与上述透镜102的光轴正交且互相正交的轴作为X1轴(水平)、Y1轴(垂直)。而且在该轴的交点P1上通过作为后述连接板的板弹簧部101d、101e的轴心。
另外,本镜筒装置中的透镜光轴位置的调整基准为装入的直进凸轮环122。
上述镜框本体101是用后述的连接部(板弹簧部)把环状的内框101a和环状的外框101b连接成一体的构件,上述环状的内框101a保持透镜102,上述环状的外框101b夹有间隙地配置在内框101a的外周上。在上述外框101b的外周3分割位置上固定着凸轮推杆103、104、105。
上述内框101a和外框101b之间由从光轴方向看沿X1轴延伸的左右2个可变形的作为第1移动机构的连接部的板弹簧部101d和101e连接着,该板弹簧部101d和101e是与上述框一体形成的部分。
再有,上述板弹簧部101d、101e做成可以在Y1轴方向进行以剪切变形为主的弹性变形,由后述调整螺钉106经内框101a的外周螺钉接触部向Y1轴方向推压时,上述板弹簧部进行变形,内框101a相对于光轴O进行无倾斜的平行移动。为此,上述板弹簧部具有分别关于包含X1轴和Y1轴的面大致对称的形状。也就是说,后述的板弹簧部101d、101e的轴心通过该轴的交点P1,在通过上述交点P1的面上放置着调整螺钉106的接触面。
在上述外框101b上,在Y1轴上设置作为第1调整机构的阴螺纹部101c,而且,在上述阴螺纹部101c内旋装着作为第1调节机构的调整螺钉106。该调整螺钉106的前端部可以接触内框101a的外周上面,该调整螺钉是具有平端形状的带螺旋开槽的小螺钉。
再有,本实施例的镜框100中的组装之后的光学系统位置未调整状态的初始透镜光轴位置Pa设置成比中心位置(镜框100的目标光轴O位置)相比在图31上更向Y1轴上的上方偏离。
上述Y1轴方向的偏离量至少要比透镜光轴位置的调整量大,其理由是为了在调整范围内在旋入上述调整螺钉106的状态下保证其前端面与内框101a外周螺纹接触面接触并进行调整。
上述初始透镜光轴位置Pa的X1方向位置偏离由于由后述的镜框100综合地进行调整,所以,在制造上的误差范围内可以大致位于Y1轴上。
另一方面,如作为镜框的正视图的图33和作为图33的XIII-O-XIII剖视图34所示,上述镜框110由镜框本体111、透镜112和固定在镜框本体111的外周的凸轮推杆113、114、115构成,上述镜框本体111是能够对透镜光轴位置进行调整的第2框,上述透镜光轴位置的调整是由与上述第1方向正交的与相当于框中心轴的透镜光轴垂直的平面内的第2方向(后述水平的X2轴方向)上的平行移动来实现的,上述透镜112是保持在上述框本体内的光学元件。
再有,把与上述透镜112的光轴O正交的且互相正交的轴作为X2轴(水平)、Y2轴(垂直)。而且,连接板弹簧部111d、111e的轴心通过该轴的交点P2上。因为上述X2轴、Y2轴由于分别与上述镜框100的X1轴、Y1轴有平行的关系,所以,作为第1方向的Y1轴方向和作为第2方向的X2轴的方向互相正交。
上述镜框本体111是由后述的连接部(板弹簧部)把保持透镜112的环状的内框111a和夹有间隙地配置在其外周的环状的外框111b连接成一体的构件。在上述外框111b的外周3分割位置上固定着凸轮推杆113、114、115。
上述内框111a和外框111b之间由从光轴方向看沿Y2轴延伸的上下2个可变形的第2移动机构的连接部的板弹簧部111d和111e连接着,该板弹簧部111d和111e是与上述框一体地形成的部分。
再有,上述板弹簧部111d、111e做成可在X2轴方向进行以剪切变形为主的弹性变形。由后述的调整螺钉116经内框111a的外周弹簧接触部向X2轴方向推压时,上述板弹簧进行变形,内框101A相对光轴O无倾斜地平行移动,为此,上述板弹簧部111d、111e分别具有相对于包含X2轴和Y2轴的面略对称的形状。也就是说,如上述那样连接板弹簧部111d、111e的轴心通过该轴的交点P2上,在通过上述交点P2的面上放置着上述调整螺钉116的接触面。
在上述外框111b上设有作为X2轴上的第2调整机构的阴螺纹部111c。而且,在上述阴螺纹部内旋合着作为第2调节机构的调整螺钉116。该调整螺钉116是具有平端形状的带开槽的小螺钉,其前端部可接触内框111a的外周侧面。
再有,本实施例的镜框110的组装之后的光学系统位置未调整状态的初始透镜光轴位置Pb与中心位置(镜框110的目标光轴O位置)相比,设置成在图33上朝向X2轴上的右方偏离。
上述X2轴方向的偏离量至少比透镜光轴位置的调整量还大。这是为了在调整范围内在旋入上述调整螺钉116的状态下保证其前端面接触内框111a外周接触面的状态下进行调整。上述初始透镜光轴位置Pb的Y2方向位置偏离也可以在制作上的误差范围内大致放置在X2轴上。
上述直进凸轮环122是安装在光学仪器上的固定构件,在其外周部上有镜框100、110的凸轮推杆103、104、105和113、114、115滑动自如地嵌入的3道直进导引槽122a和穿过镜框100、110的调整螺钉106、116或调整用的开口孔122b、122c。
上述转动凸轮环121是可转动嵌装在直进凸轮环122的外周上的构件,在其外周部有3条凸轮槽121a、3条凸轮槽121b、3条导引槽121c和开口孔121d、121e,上述3条凸轮槽121a在其外周部滑动自如地嵌入着镜框100的凸轮推杆103、104、105,上述3条凸轮槽121b滑动自如地嵌入着镜框110的凸轮推杆113、114、115,上述3条导引槽121c用于把上述各凸轮推杆嵌入到凸轮槽121a、121b内,上述开口孔121d、121e用于插通镜框100、110的调整螺钉106、116或用于调整。
在本实施例的镜筒装置中,上述镜框100和镜框110在并设状态下装入直进凸轮环122的内周部,同时把上述凸轮推杆嵌入导引槽122a。在上述直进凸轮环122的外周部上嵌入转动凸轮环121,把镜框的凸轮推杆嵌入凸轮槽121a、121b内。
下面,对上述那样构成的本第9实施例的镜筒装置的光轴位置调整动作进行说明。
使用由点光源部和光轴检测用CCD部组成的调整工具在上述镜框100、110装入上述直进凸轮环和转动凸轮环的状态下对镜筒装置的光轴位置进行调整。在进行调整时,把上述调整工具的点光源部放在光入射侧,把CCD部放在光出射侧,根据上述CCD部的光轴检测信号,在与透镜光轴正交的平面内平行移动透镜的光轴位置,使之与目标光轴位置重合。
再有,把光出射侧的光轴O2作为调整目标的光轴位置,通过该光轴O2与上述Y1轴、Y2轴平行的轴为Y0轴,与上述X1轴、X2轴平行的轴为X0轴。
首先,为了对Y0轴方向的光轴位置进行调整,就要通过开口孔121d和122b对镜框100的调整螺钉106的旋入量进行调整,也就是说,当旋入调整螺钉106时,板弹簧部101d、101e进行变形,内框101a向Y1轴下方向平行移动,从而,光轴的Y0轴方向被定位。
接着,为了对X0轴方向的光轴位置进行调整,就要通过开口孔121e和122c对镜框110的调整螺钉116的旋入量进行调整,也就是说,当旋入调整螺钉116时,板弹簧部111d、111e进行变形,内框111a向X2轴左方向平行移动,从而,光轴的X0轴方向被定位。
借助上述的Y0轴方向和X0轴方向的定位调整,镜框100和110的综合的光出射侧的光轴位置可以重合到作为目标的光轴O2位置上。上述调整位置确定后,用粘接剂把调整螺钉106、116固定在阴螺纹部101c、111c上,调整结束。
再有,上述透镜光轴位置调整时的框部的移动是由上述板弹簧部(变形部)101d、101e和101d、101e分别在Y1轴方向和X2轴方向变形得到的,该变形是微小的变形,是由上述平行弹簧部的弯曲力矩产生的弯曲变形或者由剪切力产生的变形之中的任何一种或者是上述两种变形合成的而得到的。
另外,如果没有镜框的再调整,上述镜框100、110的板弹簧101d、101e、111d、111e的变形,不仅是弹性变形,而且也可以利用塑性变形。
在上述本第9实施例的镜筒装置中,由平行移动进行的光轴位置的调整可以在2个镜框100和110上分别在X0、Y0轴方向上单独进行调整,所以,调整作业极其简单,调整精度也被提高。同时,由于镜框100、110的构造简单,所以可以实现成本的降低。
再有,在上述实施例的镜筒装置中,调整光轴的第1、第2方向为互相正交的方向,但不必是严格正交的方向,即使是接近互相正交的方向,也可以调整光轴位置。另外,在以上的说明中,是将两透镜102、112的光轴调整到光轴O2上,但不限于此,如果两透镜102、112的光轴重合,也可以不必调整到光轴O2上。
如果采用上述那样的本发明的第9实施例的镜筒装置,由于可以使用第1框和第2框并在2个方向上平行移动光轴位置来进行透镜的光轴位置的重合,因此,调整作业容易,而且镜框构造也变得简单。
下面,对本发明的第10实施例的镜筒装置进行说明。
图35是本发明的第10实施例的镜筒装置的分解透视图,本图所示的镜筒装置是装入照相机、显微镜等光学仪器里的镜筒装置,由镜框200、镜框210、直进凸轮环222和转动凸轮环221构成,上述镜框200、210从光轴O方向可进退自如地装入上述直进凸轮环221,上述直进凸轮环222的外周部上可转动地嵌合上述转动凸轮环。在本镜筒装置中,把光入射侧光轴作为光轴O1,把光出射侧光轴作为光轴O2。
如作为镜框的正视图的图36和作为图36的XIV-O-XIV剖视图的图37所示,上述镜框200主要由作为第1框的镜框本体201、作为在上述镜框本体内保持的光学元件的透镜202和固定在镜框本体201的外周上的凸轮推杆203、204、205构成。该镜框200可以平行移动调整(透镜中心找正)上述透镜202的光学系统位置,即与该透镜光轴正交的平面内的光轴位置,装入该镜框200的透镜202具有对于找正透镜光轴位置作用高的透镜构成。
再有,把与上述透镜202的光轴O正交的轴作为X1轴(水平)、Y1轴(垂直),在其两轴的交点上交叉着作为后述连接部的平行弹簧部201d、201e和201f、201g的中心轴(参照图37)。
上述镜框本体201是由后述的连接部把环状的内框201a、环状的中框201b和环状的外框201c连接成一体的构件,上述环状的内框201a保持着透镜202,上述环状的中框201b夹有间隙地配置在内框201a的外周上,上述环状的外框201c夹有间隙地配置在中框201b的外周上。在上述外框201c的外周3分割位置上固定着凸轮推杆203、204、205。
上述内框201a和中框201b之间,由平行弹簧部201d和201e连接着,该平行弹簧部201d和201e是与上述框一体形成的部分,是从光轴方向看在横跨Y1轴的状态下分别向左右方向平行延伸的各2枚的可变形的板状的连接部。
再有,上述中框201b和外框201c之间由平行弹簧部201f和201g连接着。上述平行弹簧部201f和201g是与上述框一体地形成的部分,是从光轴方向看在横跨X1轴的状态下分别向左右方向平行延伸的各2枚的可变形的板状的连接部。
再有,上述平行弹簧部201d、201e和平行弹簧部201f、201g,在由后述的调整螺钉推压接触部时,分别向X1轴方向或者Y1轴方向保持平行状态地进行变形,内框201a或者中框201b不相对光轴O倾斜地平行移动。上述各框这样的平行移动是因为上述平行弹簧部201d、201e和201f、201g的中心线通过上述交点P0,并具有相对包含X1轴、Y1轴的面基本对称的形状,并且后述的调整螺钉的螺钉接触部位于X1轴、Y1轴上。
另外,上述平行弹簧201d、201e和201f、201g分别由2枚构成一组,但即使分别各用1枚也能具有其功能。
在上述中框201b上在X1轴上设置了作为第1调整机构的阴螺纹部201i,在内框201a上,在上述阴螺纹部201i的内侧相对位置上设置了螺栓接触面201k。在外框201c上,在上述阴螺纹部201i的外侧相对位置上设置着调整螺钉插通用的开口201h。同样,在上述外框201c上,在Y1轴上设置了第2调整机构的阴螺纹部201j,在中框201b上,在上述阴螺纹部201j的内侧相对位置上设置着接触面201m。
在上述中框201b的阴螺纹部201i内旋合着穿过开口201h的作为第1调节机构的调整螺钉206。另外,在外框201c的阴螺纹部201j内旋合着作为第1调节机构的调整螺钉207。上述调整螺钉206、207做成平端形状的带螺旋开槽的小螺钉。该前端为曲面状、最好为球面状。
再有,在本实施例的镜框200组装之后的光学系统位置未调整状态的初始透镜光轴位置Z比中心位置(目标光轴O位置)在图36上稍微向右上偏离。上述偏离量做成大于透镜光轴位置的调整量。其理由是为了在调整范围内旋入上述调整螺钉206、207保持其前端面与接触面201k、201m相接触的状态地进行调整。
另一方面,如作为镜框的正视图的图38和作为图38的XV-O-XV剖视图的图39所示,上述镜框210主要由作为第2框的镜框本体211、作为保持在上述镜框本体内的光学元件的透镜212和固定在镜框本体211的外周上的凸轮推杆213、214、215构成。对于该镜框210来说,上述透镜212的光学系统位置,即透镜光轴O的倾斜是可以调整的,装入该镜框210的透镜212有着对于透镜光轴倾斜作用高的透镜构成。
再有,把与上述透镜212的光轴O正交并相互正交的轴作为X2轴(水平)、Y2轴(垂直)。而且,作为后述连接部的圆柱部211d、211e和211f、211g的各自的中心轴在上述X2轴、Y2轴的交点P0上交叉。
另外,对于镜框210,把图38上的表面侧(图39上的左侧)作为前面侧,把图38上的里面侧(图39上的右侧)作为后面侧。
上述镜框本体211是用后述连接部把环状的内框211a、环状的中框211b和环状的外框211c连接成一体的构件,上述环状的内框211a是保持透镜212的保持构件,上述环状的中框211b是夹设间隙地配置在内框211a的外周上的支承框,上述外框211c是夹设间隙地配置在中框211b外周的支承框。在上述外框211c的外周的3分割位置上固定着凸轮推杆213、214、215。
上述内框211a和中框211b之间由圆柱部211d和211e连接着,上述圆柱部211d和211e是在Y2轴上向上下方向延伸的可弯曲变形的连接部,是与上述框一体地形成的部分。
上述中框211b和外框211c之间由圆柱部211f和211g连接着,该圆柱部211f和211g是在X2轴上沿左右方向延伸的扭曲变形的连接部,是与上述框一体地形成的部分。
另外,在上述中框211b上,在图38的中框的右侧外周位置上沿着X2轴的近旁设置着作为第2调整机构的阴螺纹部211k。另外,在上述外框211c上,在图38的外框的上侧外周位置上沿着Y2轴设置着作为第2调整机构的阴螺纹部211m。再有,在与上述外框211c的上述阴螺纹部211k相对的部分上设置着穿过调整螺钉用的缺口211n。
在上述中框211b的阴螺纹部211k内旋合着作为第2调整机构的调整螺钉216,在上述外框211c的阴螺纹部211m上旋合着作为第2调整机构的调整螺钉217。调整螺钉216、217是具有圆锥状前端的带螺旋开槽的小螺钉。
再有,在内框211a上设置着倾斜突起部211i,该倾斜突起部211i是具有向着X2轴的外方并向前方倾斜的后面侧倾斜面的被推压部,它突出到内框211a外周的右侧的上述阴螺纹部211k相对的位置上。
另外,同样地,在中框211b上设置着倾斜突起部211j,该倾斜突起部211j是具有向着Y2轴的外方并向后方倾斜的前面侧倾斜面的被推压部,它突出到中框211b的外周的上方侧的与上述阴螺纹部211m相对的位置上。
上述倾斜突起部211i、211j的倾斜面可由从X2轴、Y2轴方向旋入的调整螺钉216、217的前端推压。由该推压借助倾斜面使中框211b或外框211c相对Y2轴或X2轴倾倒,从而能够改变透镜212的光轴倾斜。
再有,在本实施例的镜框210组装之后的光学系统位置未调整状态的初始透镜光轴方向αz(光出射侧的光轴的倾斜)如图35所示,仅以可调整范围内的角度向调整目标的光轴方向αo(光出射侧的光轴的倾斜,角度0度)的左上方向倾斜。这样地预先按规定的角度倾斜初始透镜光轴方向αz的理由是为了在上述调整螺钉216、217被旋入的状态下确保调整螺钉的圆锥状前端经常接触倾斜突起部211i、211j。
上述直进凸轮环222是安装在光学装置上的固定构件,在其外周部上有滑动自如地嵌入镜框200、210的凸轮推杆203、204、205和213、214、215的3条直进导引槽222a,穿过调整镜框200的调整螺钉用的开口孔222d、222e和穿过调整镜框210的调整螺钉用的开口孔222f、222g。
上述转动凸轮环221是可转动地嵌装在直进凸轮环222的外周上的构件,在其外周部上具有滑动自如地嵌入镜框200、210的凸轮推杆203、204、205和213、214、215的3条凸轮槽221a和3条凸轮槽221b;上述各凸轮推杆嵌入凸轮槽221a、221b内用的3个导引槽221c,用于插通调整镜框200的调整螺钉206、207或用于调整的开口孔221d、221e;用于插通调整镜框210的调整螺钉216、217、或用于调整的开口孔221f、221g。
在本实施例的镜筒装置中,把上述各凸轮推杆嵌入导引槽222a内地把上述镜框200和210装入直进凸轮环222的内周部,但上述镜框210装在光出射侧,上述镜框200装在光入射侧。在上述直进凸轮环222的外周部上把镜框的凸轮推杆嵌入凸轮槽221a、221b内地转动自如地嵌装转动凸轮环221,作为本镜筒装置的组装完成。
下面,对上述那样构成的本第10实施例的镜筒装置的光学系统位置调整动作进行说明。
为了对上述镜框200、210装入上述直进凸轮环222和转动凸轮环221的状态下的镜筒装置进行调整,使用由点光源部和光轴检测用CCD部构成的调整工具。该调整工具的上述点光源部放置在光入射侧,CCD部放置在光出射侧。然后,根据CCD部的光轴检测信号进行透镜光轴倾斜的调整和通过与透镜光轴正交平面内的透镜平行移动进行透镜光轴位置的调整。
首先,为了调整透镜光轴的倾斜,通过开口孔221f、222f和221g、222g调整镜框210的调整螺钉216和217的旋入量。也就是说,用调整螺钉的前端部推压倾斜突起部211i,使圆柱部211d、211e扭曲变形、从而使保持透镜212的内框211a向顺时针方向(从图35的上方看)倾斜。
另外,由于用调整螺钉217的前端部推压倾斜突起部211j,所以,圆柱部211f、211g扭曲变形,内框211a与中框211b同时向顺时针方向(从图35的右方看)倾斜。通过上述调整使出射侧光轴O2的倾角αz与目标光轴的倾角αo一致。通过该调整,镜框200和镜框210的综合的光轴倾斜被调整,这样,至少沿一个方向的倾斜可调整。
其次,为了调整透镜光轴位置,通过开口孔221d、222d和221e、222e调整镜框200的调整螺钉206和207的旋入量,即,当旋入调整螺钉206时,平行弹簧部201d、201e弯曲变形(严格地说,是弯曲或剪切或者是它们的复合),内框201a向X1轴方向平行移动。
另外,当旋入调整螺钉207时,平行弹簧部201f、201g变形,中框201b向Y1轴方向平行移动。借助上述平行移动,使出射侧光轴O2的透镜光轴位置与目标光轴的光轴位置O相一致。通过该调整,镜框200和镜框210的综合的光轴位置被调整,这样,至少在一个方向上可进行其平行移动调整。
上述调整之后,用粘接剂把调整螺钉206、207和216、217固定在阴螺纹部201i、201j和201k、201m内,调整结束。
如果采用上述那样的本第10实施例的镜筒装置,可以分别由2个镜框200和210分别单独地调整平行移动所产生的光轴位置和光轴倾斜的调整,调整作业极其简单,调整精度也提高了,同时,由于镜框200、210的构造简单,也可以降低成本。
再有,在本实施例中,按镜框210、镜框200的顺序进行了调整,但也不一定限于这个顺序。
另外,在上述的实施例的镜筒装置中,在镜框200和210装入直进凸轮环222的状态下进行由平行移动产生的光轴的位置和光轴的倾斜的调整。但是,由于镜框200或者210分别对光轴位置或者光轴倾斜的作用效率高,可以在镜框200、210单体的状态下分别调整上述的光轴位置和光轴倾斜,然后,再装入直进凸轮环222和转动凸轮环221内。
另外,对于上述镜框200的平行弹簧部201d、201f等的变形和上述镜框210的圆柱部211d、211f等的变形如果没有镜框的再调整,不仅是弹性变形,也可以利用塑性变形进行调整。
如果采用上述那样的本发明的第10实施例的镜筒装置,可以分别用第1框和第2框对透镜光轴的倾斜和透镜光轴的位置进行调整,所以调整是容易的,调整的精度也提高了,另外,由于其构成简单,也可以降低成本。
权利要求
1.一种镜筒装置,它包括框构件和调节构件;上述框构件包括用于保持具有光轴的第1框部、配置在上述第1框部外周的第2框部、配置在上述第2框部外周的第3框部、连接上述第1框部和上述第2框部并可变形的第1连接部、连接上述第2框部和上述第3框部并可向与上述第1连接部的变形方向不同的方向变形的第2连接部;上述调节构件分别设置在上述第2框部和上述第3框部上,设置在上述第2框部上的调节构件推压上述第1框部、使上述第1连接部变形,设置在上述第3框部上的调节构件推压上述第2框部、使上述第2连接部变形,不使上述第1框部旋转地在与上述光轴正交的平面内平行移动调节上述第1框部。
2.如权利要求1所述的镜筒装置,其特征在于,上述第1、第2连接部分别由平行弹簧形成。
3.如权利要求1所述的镜筒装置,其特征在于,上述光学元件由外径是非圆形的透镜构成的。
4.如权利要求1所述的镜筒装置,其特征在于,上述第1框部、第2框部及第3框部是一体地构成的。
5.如权利要求1所述的镜筒装置,其特征在于,上述调节构件是螺钉。
6.如权利要求1所述的镜筒装置,其特征在于,上述调节构件是从与上述光轴正交的方向被调整的。
7.如权利要求1所述的镜筒装置,其特征在于,还包括对上述第1框部在与上述光轴正交的平面内进行摆动调整的第3调整构件。
8.如权利要求1所述的镜筒装置,其特征在于,上述框构件是矩形形状。
全文摘要
本发明的镜筒装置的镜框的镜框本体由保持透镜的内框、旋装着调整螺钉的中框和旋装着调整螺钉的外框构成,其各框部由互相平行的弹簧连接着,在本镜框中,通过沿水平轴方向旋入上述调整螺钉,使内框沿X轴水平方向位移,通过沿垂直轴方向旋转其他的上述调整螺钉,借助中框使内框沿Y轴方向位移,通过在光轴无倾斜的状态下平行移动透镜的光轴位置,可以容易地进行光轴位置调整,而且,本镜框也可以实现其零件成本的降低。
文档编号G02B7/02GK1576932SQ20041006833
公开日2005年2月9日 申请日期1999年12月24日 优先权日1998年12月25日
发明者高梨立男, 佐藤光浩 申请人:奥林巴斯株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1