在线电子束测试系统的制作方法

文档序号:2679794阅读:155来源:国知局
专利名称:在线电子束测试系统的制作方法
技术领域
本发明的实施例一般地涉及用于衬底的测试系统。更具体地说,本发明涉及生产平板显示器时用于测试大面积衬底的集成测试系统。
背景技术
平板显示器有时被称作有源矩阵液晶显示器(LCD),最近,平板显示器作为对过去使用的阴极射线管的替代,变得非常普遍。LCD与CRT相比具有若干优点,这些优点包括高图像质量、重量更轻、电压需求更低、以及功耗较小。举例来说,这种显示器多应用在计算机监视器、蜂窝电话和电视中。
一种有源矩阵LCD包括夹在薄膜晶体管(TFT)阵列衬底和颜色滤波器衬底之间的液晶材料,以形成平板衬底。TFT衬底包括薄膜晶体管阵列,每个薄膜晶体管都耦合到像素电极,颜色滤波器衬底包括不同的颜色过滤器部分和公用电极。当一定的电压被施加到像素电极时,在像素电极和公用电极之间产生电场,该电场使液晶材料定向从而允许该特定的像素的光线穿过。
一部分制造过程要求对平板衬底进行测试来确定像素的可操作性。在制造过程中用来监控并排查缺陷的一些过程有电压镜像、电荷检测和电子束测试。在典型的电子束测试过程中,像素内的TFT响应被监控来提供关于缺陷的信息。在电子束测试的一种示例中,一定的电压被施加到TFT,并且电子束可以被导向被观察的各个像素电极。从像素电极区域发射出的二次电子被检测来确定TFT电压。
从经济和设计观点来看,平板显示器制造商非常关心处理设备的尺寸及过程全部的时间。当前的平板显示器处理设备一般可以容纳约2200mm×2500mm甚至更大的大面积衬底。对较大的显示器需求,以及增加产量、降低制造成本导致需要新的测试系统,这些新测试系统可以容纳更大的衬底尺寸并且使洁净室空间最小。
因此,需要对大面积衬底进行测试的测试系统使洁净室空间最小化并缩短测试时间。

发明内容
本发明一般地提供了一种方法和装置,用于测试衬底上的电子器件,其通过在来自多个电子束柱的电子束下移动衬底,从而执行测试序列。多个电子束柱形成适于测试衬底的整个宽度或长度的总的测试区域。衬底在一个方向上相对于测试区域移动,直到整个衬底都已经受了电子束。所公开的测试室可耦合到一个或多个装载锁定室,或者测试室也可以充当装载锁定室。
在一个实施例中,描述了用于测试大面积衬底上的电子器件的装置。该装置包括可移动衬底支撑;以及在衬底支撑上方的至少一个测试柱,其中衬底支撑可沿单个轴移动,所述单个轴与至少一个测试柱的光轴正交。
在另一个实施例中,描述了一种用于测试位于大面积衬底上的电子器件的装置。该装置包括具有用于支撑大面积衬底的支撑表面的测试平台;以及耦合到该测试平台的多个测试柱,所述多个测试柱每个都具有在测试区域内的光轴,其中该测试平台可在相对于光轴的线性方向上移动,并且多个测试柱具有在衬底移动过系统时足以测试该衬底的宽度或长度的总的测试区域。
在另一个实施例中,描述了一种用于测试位于大面积衬底上的电子器件的系统。该系统包括室;所述室内的衬底支撑,该衬底支撑的尺寸设置为容纳衬底;以及耦合到该室的上表面的多个测试设备,所述多个测试设备中的每个都具有测试区域,其中这多个测试设备间隔开,以形成在衬底移动过系统时足以测试该衬底的长度或宽度的总的测试区域。
在另一个实施例中,描述了一种用于测试大面积衬底上的多个电子器件的方法。该方法包括提供设置在多个测试设备下的衬底支撑;在衬底支撑上定位具有多个电子器件位于其上的衬底;从多个测试柱在该衬底上提供测试区域;以及相对于这多个测试柱在单个方向轴上移动该衬底。


所以,通过参考实施例、对本发明的更具体的描述、以及上述发明内容可以详细理解本发明的上述特征。但是应当注意,附图仅示出了本发明的一般实施例,因此不应当理解为限制本发明的范围,因为本发明可以具有其他等同效果的实施例。
图1是测试系统的一个实施例。
图2示出了测试系统的另一实施例。
图3是衬底支撑的一个实施例的示意性平面图。
图4是衬底支撑的另一个实施例的立体图。
图5是测试柱的一个实施例。
图6是测试系统的另一个实施例。
图7是测试系统的另一个实施例。
图8A是探测器的一个实施例。
图8B是结构构件的一个实施例的截面图。
图8C是结构构件的另一个实施例的截面图。
为了帮助理解,适当地使用相同的标号来指定在附图中相同的构件。应当设想到在一个实施例中公开的构件可以在不专门引用的情况下有益地用于其他实施例。
具体实施例方式
这里使用的术语“衬底”一般指大面积衬底,这些衬底由玻璃、聚合物材料或者其他适于在其上形成电子器件的其他衬底材料制成。本申请中所示实施例将参考各种驱动器、马达和致动器,它们可以是以下之一或它们的组合气压缸、液压缸、磁驱动器、步进或伺服马达、螺纹型致动器,或者提供垂直运动、水平运动、垂直运动和水平运动的组合的其他类型的运动设备,或者适于提供至少一部分上述运动的其他设备。
这里所述的各种组件能够在水平面和垂直面中水平运动。垂直被定义为与水平面正交运动,并且被称作Z方向。水平被定义为与垂直平面正交运动,并且被称作X或Y方向,X方向为与Y方向正交运动,反之亦然。将利用图中根据需要包括的方向箭头来进一步定义X、Y和Z方向来帮助读者理解。
图1是在线测试系统100的一个实施例的立方图,该在线测试系统100适于对位于大面积平板衬底上的电子器件的可操作性进行测试,所述大面积平板衬底例如是尺寸大至和超过约2200mm×2600mm的大面积衬底。测试系统100包括测试室110、一个或多个装载锁定室120A、120B、以及多个测试柱115(图1中示出了6个),测试柱115可以是电子束柱、或者适于测试位于大面积衬底上的电子器件(例如,薄膜晶体管(TFT))的任何设备。测试系统100一般位于洁净室环境中,并且可能是制造系统的一部分,其中所述制造系统包括衬底处理装备,例如,将一块或多块大面积衬底传送到测试系统100和从测试系统100传送走的传送系统或机器人装备。
一个或多个装载锁定室120A可以设置与测试系统100相邻,并且在测试室110的一侧或两侧利用阀135A和阀135B连接到测试室110,其中阀135A设置在装载锁定室120A和测试室110之间,阀135B设置在装载锁定室120B和测试室110之间。装载锁定室120A、120B利用一般位于洁净室环境中的传输机器人和/或传送系统来辅助传送去往和来自测试室110的大面积衬底和外部环境。在一个实施例中,一个或多个装载锁定室120A、120B可以是双槽装载锁定室,配置为辅助传送至少两块大面积衬底。双槽装载锁定室的示例在2004年12月21日授权的美国专利No.6,833,717(律师案卷No.008500)和2005年6月6日提交的题为“Substrate Support with Integrated Prober Driver”的美国专利申请No.11/298,648(律师案卷No.010143)中有所公开,通过参考这两个申请与本公开不矛盾的内容,将这两个申请结合于此。
在一个实施例中,装载锁定室120A适于通过入口端口130A接收来自洁净室环境的衬底,而装载锁定室120B具有出口端口130B,出口端口130B选择性地开启来将大面积衬底返回到洁净室环境。装载锁定室120A、120B都可以从周围环境密封开,并且一般耦合到一个或多个真空泵122,并且测试室110也可以耦合到一个或多个真空泵122,这些真空泵与装载锁定室120A、120B的真空泵是隔离开的。用于对大面积衬底进行测试的电子束测试系统的各个组件的示例在2004年12月21日授权的题为“Electron Beam Test System with Integrated Substrate Transfer Module”的美国专利No.6,833,717(律师案卷No.008500)中有所描述,该申请在前面已通过引用结合于此。
在一个实施例中,测试系统100包括显微镜158,显微镜158耦合到测试系统来观察大面积衬底上任何感兴趣的区域。显微镜158被示作附接到显微镜组件160,在一个实施例中,显微镜组件160耦合到装载锁定室120A,而替换实施例(未示出)可以将显微镜158和显微镜组件160耦合到测试室110和装载锁定室120B之一或二者。显微镜组件160包括托架(gantry)164,托架164辅助显微镜组件160在装载锁定室120的上表面上的透明部分162的上方移动。透明部分162可由透明材料制成,例如,玻璃、石英,或者设计为耐热、耐负压力和其他工艺参数的其他透明材料。
托架164配置为至少可使显微镜组件160在X方向和Y方向运动,以透过透明部分162观察放置在装载锁定室120中的大面积衬底上的感兴趣区域。例如,显微镜158可以在X方向和Y方向上移动到大面积衬底上的特定坐标,并且还可以在放置在装载锁定室120中的大面积衬底的上方沿Z方向移动。控制器(未示出)可以被耦合到测试系统100和显微镜组件160来接收由测试柱115定位的大面积衬底上的感兴趣区域的输入,然后将坐标提供给显微镜组件160。在一个实施例中(未示出),显微镜组件可以邻近测试柱115耦合到测试室110,并且配置为至少在X方向上平行于多个测试柱115移动。在这种实施例中,测试室110至少在其部分上表面上包括透明部分,并且托架164和显微镜组件160可以耦合到测试室110的上表面来观察放置在测试室110中的大面积衬底上的感兴趣区域。
在一个实施例中,测试系统100配置为将其上有电子器件的大面积衬底105传输过沿单个方向轴的测试序列,其中该方向轴在图中示作Y轴。在其他实施例中,测试序列可以包括沿X和Y轴的组合。在其他实施例中,测试序列可以包括由测试柱115和测试室110内的可移动衬底支撑之一或二者产生的Z方向移动。可以沿衬底105的衬底宽或衬底长将衬底105装入到测试系统100中。衬底105在测试系统中的Y方向移动允许该系统尺寸比衬底105的宽度或长度尺寸稍大。
测试系统100还可以包括可移动衬底支撑台,该支撑台配置为至少在Y方向上移动来通过测试系统100。或者,在有支撑台或没有支撑台的情况下,衬底105都可以由以下机构传输过测试系统传送器、传送带系统、穿梭系统、或者适于将衬底105传输过测试系统100的其他适当的传送机构。在一个实施例中,这些支撑和/或传送机构中的任意一些配置为仅沿一个水平方向轴移动。由于配置为不定向传输系统,所以装载锁定室120A、120B和测试室110的室高可以被最小化。测试系统的最小的宽度和降低后的高度组合产生了装载锁定室120A、120B和测试室110中的较小的体积。这种减小后的体积缩短了装载锁定室120A、120B和测试室110的抽取和排气时间,从而增加了测试系统100的产量。支撑台沿单方向轴的移动也可以消除或者使在X方向上移动支撑台所要求的驱动器最小化。
图2是电子束测试系统100的另一个实施例,该电子束测试系统100具有还作为装载锁定室工作的测试室210。在本实施例中,测试室210利用阀135A、135B有选择地从外部环境密封开,并且被耦合到真空系统122,其中真空系统122设计为向测试室210的内部提供负压力。阀135A、135B每个都具有至少一个致动器,用于在需要是开启和关闭这些阀。探测器交换机构300设置为与测试室210邻近,辅助将一个或多个探测器205传送到测试室210中和从测试室210中传送出。一个或多个探测器205通过耦合到测试室210的可移动侧壁150进入和退出测试室210。可移动侧壁150配置为利用耦合到可移动侧壁150和测试室210的框架部分的一个或多个致动器151有选择地开启和关闭。除了辅助探测器传送外,可移动侧壁150还辅助访问维护测试室210的内部。
当一个或多个探测器205不使用时,一个或多个探测器205可以容纳在测试室210下方的探测器存储区域200。探测器交换器300包括一个或多个可移动支架310A、310B,该可移动支架310A、310B辅助将一个或多个探测器205传送至测试室210或多测试室210中传送出。在其他施例中,一个或多个探测器205可以存储在邻近或耦合到测试室210的其它区域。
在一个实施例中,可移动侧壁150的长度基本上跨过测试室210的长度。在其他实施例中,可移动侧壁150比测试室210的长度短,并且配置为允许有足够的空间用于一个或多个装载锁定室耦合到测试室210的长度侧。在另一个实施例中,未使用可移动侧壁150,至少未用于传送探测器,并且是通过测试室210的上表面来实现探测器传送的。
对探测器交换机构和可移动侧壁的详细描述可以在2005年6月6日提交的题为“Substrate Support with Integrated Porber Drive”的美国专利申请(先前以通过引用结合进来)中对附图的描述中可以找到。适于用在测试系统100中的探测器的示例在2004年7月12日提交的美国专利申请No.10/889,695(律师案卷No.008500.P1)和2004年7月30日提交的No.10/903,216(律师案卷No.008500.P2)中有所描述,这两个申请都题为“Configurable Prober for TFT LCD Array Testing”,并且通过参考这两个申请与本公开一致的内容,将这两个申请结合于此。
图3示出了衬底支撑360的一个实施例的示意平面图,衬底支撑360配置为容纳在测试室210的内部空间内,并且为了清楚起见未示出测试室。在一个实施例中,衬底支撑360是多控制平台型的,其包括第一平台、第二平台和第三平台。这三个平台是基本平行的平板,并且彼此堆叠,在一个方面中,这三个平台利用适当的驱动器和轴承沿正交的轴或维度独立移动。为了简单和易于描述,在下面将进一步将第一平台描述为代表在X方向上移动的平台,该平台将被称作下平台367。将进一步将第二平台描述为代表在Y方向上移动的平台,该平台将被称作上平台362。将进一步将第三平台描述为代表在Z方向上移动的平台,该平台将被称作Z平台365。
衬底支撑360可以还包括末端应变器370。在一个实施例中,末端应变器370包括多个手指,这些手指位于上平台362的上表面上,上平台362具有可以支撑衬底105的平坦或基本平坦的上表面。在一个实施例中,末端应变器370具有由支撑连接369在至少一端连接的两个或更多个手指。支撑连接369适于将每个手指耦合为允许所有手指同时移动。末端应变器370的每个手指可由Z平台365内的槽或空隙隔离。手指的实际数目是设计时考虑的问题,并且确定要处理的衬底的尺寸所需的手指的适当的数目是本领域技术人员熟知的。
例如,末端应变器370可以具有四个均匀间隔的手指371A、371B、371C和371D,并且在衬底105被放置在上面时与衬底105接触并支撑衬底105。末端应变器370被配置为可以伸出测试室来,来将衬底从装载锁定室取出或将衬底堆放到装载锁定室(图1),或者从周围处理系统(例如,传输机器人或传送器系统)取出或堆放到周围处理系统。手指371A~371D可以移动到Z平台365中和移动到Z平台365外,以在末端应变器370位于与Z平台365基本相同的平面内时,使手指371A~371D与节段366A、366B、366C、366D和366E交错。这种配置允许末端应变器370自由地从衬底支撑360伸出到装载锁定室或周围处理系统,或者缩回去。当缩回时,Z平台365可以升到比末端应变器370高,以将衬底105放置与平坦的Z平台365接触。在以下专利中的附图的描述中可以找到对多控制平台的详细描述2004年12月21日授权的美国专利No.6,833,717(律师案卷No.008500,先前已通过参考结合进来),以及2005年7月27日提交的美国专利申请No.11/190,320(律师案卷No.008500.P3),通过参考,该申请与本公开不矛盾的内容被结合于此。
图4是配置为容纳在测试室内的衬底支撑360的一部分的立体图,为了清楚起见,未示出测试室。末端应变器的手指371C、371D示作处于缩回位置,并且比Z平台365高。探测器205被示作处于比Z平台365高的传输位置,并且由探测器定位组件425支撑。探测器定位组件425包括布置在衬底支撑360相对两侧的两个探测器提升构件426(在此图中仅示出了一个)。探测器提升构件426被耦合到多个Z马达420,这多个Z马达420每个都位于衬底支撑360的一角(图中仅示出了一个)。在本实施例中,Z马达420耦合到与探测器支撑架430相邻的衬底支撑360。探测器205还具有至少一个电连接模块414,电连接模块414与多个探测器引脚(未示出)电通信,探测器引脚适于与位于大面积衬底上的器件接触。探测器支撑430还提供用于经由接触模块连接474的探测器205的电连接模块414的接口,接触模块474适当地连接到控制器。
图4示出了探测器定位组件425的一侧,该侧具有耦合到探测器提升构件426的多个摩擦减小构件。摩擦减小构件适于通过可移动地支撑探测器框架410的延伸构件418,帮助传送探测器205。在这种实施例中,探测器提升构件426包括适于容纳探测器框架410的延伸构件418的沟道427。本实施例中的多个摩擦减小构件是耦合到与沟道427相邻的探测器提升构件426的上滚珠轴承450和下滚轴轴承460。下滚轴轴承460支撑延伸构件418,并且上滚珠轴承450在传送探测器框架410期间充当用于延伸构件418的导轨。另外还示出了与探测器205成一体的定位构件416,其适于座在与探测器支撑架430成为一体的相应插孔422内,以便当在探测器支撑架430上定位探测器205时帮助对准并支撑探测器205。
在操作中,大面积衬底可由末端应变器的手指371C、371D支撑,并且在Z方向上驱动Z平台,以将该衬底放置到它的上表面上。探测器205从探测器交换机构300被传送到测试室110、210(图2)。探测器205从探测器交换机构300被侧向传送到探测器定位组件425上,其中在探测器框架410接触到止动器425时探测器205的侧向移动停止。利用轴423耦合到探测器定位组件的Z驱动420然后可以在Z方向上被降低,以使探测器引脚(未示出)与大面积衬底上的所选区域或位于该衬底上的器件接触。一旦探测器205接触到衬底,衬底支撑360就通过在测试柱115下移动其上支撑的大面积衬底,开始测试序列。
在参考图4的示例性测试操作中,大面积衬底105被从衬底处理系统(其可以是传送系统或传输机器人)导入到装载锁定室120A中。装载锁定室120A是密封的,并且被真空系统122抽到适当的压力。阀135A然后被打开,并且通过伸出末端应变器370和缩回从而将衬底传送到测试室110。参考这里所述的任意实施例,可以从系统的任意端卸载大面积衬底。例如,大面积衬底可以通过系统的一端进入,并且从另一端退出,或者从相同端进入或退出。
探测器205配置为向位于大面积衬底上的器件提供信号或者从位于大面积衬底上的器件检测信号,并且探测器205可以通过可移动侧壁150从与测试系统100相邻的探测器交换机构300被引入。或者,探测器205可以被传送到装载锁定室120A中,然后耦合到装载锁定室120A中的衬底105,或者在传送到装载锁定室120A之前被耦合到衬底。作为另一种替换,测试系统100可以包括可移动工作台,该可移动工作台包括集成的探测器,探测器在通过测试系统100的整个传输路径中都被耦合到衬底。
图5是测试柱115的一个实施例,测试柱115是具有光轴510的电子束柱。在一个实施例中,光轴510是每个测试柱115纵轴,并且一般包括衬底105上的测试区域500的中心区域。每个测试柱115被配置为产生这样的测试区域500,该测试区域500被限定为由电子束柱在衬底105上产生的电子束的地址区域或可寻址质量区域。在一个实施例中,每个电子束柱在衬底105上产生的测试区域500在Y方向上为约230mm到约270mm,并且在X方向上为约340mm到约380mm。
在另一个实施例中,测试区域500在Y方向上为约240mm到约260mm,例如约250mm,并且在X方向上为约350mm到约370mm,例如约360mm。在本实施例中,相邻的测试柱115可能在测试区域中存在约0.001mm到约2mm的重叠,例如约1mm,或者没有重叠,其中相邻电子束的测试区域适于无重叠地接触。在另一个实施例中,每个测试柱的测试区域在Y方向上为约325mm到约375mm,并且在X方向上为约240mm到约290mm。在另一个实施例中,测试区域500在Y方向上为约355mm到约365mm,例如约345mm,并且在X方向上为约260mm到约280mm,例如约270mm。
在另一个实施例中,总的测试区域在X方向上为约1950mm到约2250mm,并且在Y方向上为约240mm到约290mm。在另一个实施例中,总的测试区域在X方向上为约1920mm到约2320mm,并且在Y方向上为约325mm到约375mm。在一个实施例中,相邻的测试柱115可以在测试区域中存在约0.001mm到约2mm的重叠,例如约1mm。在另一个实施例中,相邻测试柱115的测试区域可以不重叠。
一旦衬底105已被引入到探测器已连接到的测试室110,测试室110就可以被密封并抽气。每个测试柱115配置为朝衬底发射电子束。在这种配置中,多个测试柱115提供适于当衬底在测试柱下移动时对衬底的整个宽度或长度进行测试的总的测试面积。在一个实施例中,沿长度方向将衬底105提供到测试系统100,并且可以使用六个测试柱115来在衬底移动过该系统时对衬底的整个宽度进行测试。在另一个实施例中,沿宽度方向将衬底105提供到测试系统100,并且可以使用八个测试柱115来在衬底移动过该系统时对衬底的整个长度进行测试。本发明不受限于这里公开的测试柱的数目,并且取决于衬底尺寸和一个或多个电子束在衬底上形成的测试区域的,实际的数目可以更多或更少。图1和图2所示的测试柱115的交错配置在衬底上产生相邻的测试区域,并且所产生的测试区域可能部分重叠,至少在X方向上部分重叠,以允许衬底上的每个像素在沿一个方向轴的测试期间都经受电子束。
图6是具有多个测试柱115的一个测试室110的另一个实施例,这多个测试柱115以直线配置耦合到测试室110。这种多个测试柱115的直线配置提供了在衬底移动过系统时足以测试大面积衬底的长度或宽度的总的测试区域。虽然示出了八个测试柱,但是根据处理需求,其他实施例可能要求更多或更少的测试柱。
衬底105在测试期间可以连续运动,或者在测试序列中衬底被渐进地移动。在任一情形中,整个衬底105都可以在测试室110中沿一个传输路径被测试。一旦测试序列完成,测试室110就可以被通风,探测器被传送出测试室,并且衬底105可以被传送到装载锁定室120A、120B,以便随后返回到周围环境。在图2和图6所示实施例中,衬底105可以在不传送到装载锁定室的情况下被返回到周围环境。
图7是测试系统700的另一个实施例。该测试系统包括测试室710,测试室710具有多个测试柱115和一个或多个侧面部分705、706、707和708。这一个或多个侧面部分705、706、707和708配置为耦合到一个或多个装载锁定室120A~120D,这一个或多个装载锁定室120A~120D以虚线示出耦合到室710,以便示出对各种衬底传输路径的适应性。使用耦合到室710的一个或多个装载锁定室120A~120D的衬底传输路径和各种配置适用于测试系统700保护洁净室空间并且符合各种洁净室工作流程路径。
在一个实施例中,一个或多个装载锁定室120A~120D可以限定“T”形配置,其中大面积衬底通过一个或多个装载锁定室120A~120D传送到测试室710并且从测试室710传送出。例如,大面积衬底可以从洁净室的周围环境传送到装载锁定室120A中,然后在测试序列完成后传送回装载锁定室120B的周围环境。
在另一个实施例中,一个或多个装载锁定室120A~120D可以限定“U”形配置,其中大面积衬底被传送入和传送出一个或多个装载锁定室120A~120D。例如,大面积衬底可以从洁净室中的周围环境被传送到装载锁定室120A中,然后在测试序列完成后从装载锁定室120C传送回周围环境中。
在另一个实施例中,一个或多个装载锁定室120A~120D可以限定“Z”形配置,其中大面积衬底被传送入和传送出一个或多个装载锁定室120A~120D。例如,大面积衬底可以从洁净室中的周围环境被传送到装载锁定室120A中,然后在测试序列完成后从装载锁定室120D传送回周围环境中。
在示出了一个或多个装载锁定室120A~120D的T、U和Z形配置的实施例中,这一个或多个装载锁定室120A~120D可以是上述双槽装载锁定室或者单槽装载锁定室。双槽配置帮助将未测的大面积衬底传送到测试室,并且将测试后的大面积衬底传送到周围环境。可移动侧壁可以适于允许使一个或多个装载锁定室耦合到一个或多个侧面部分705、706、707和70的空间。侧面部分705、706、707和708在一个或多个装载锁定室120A~120D之间可能具有阀(未示出),用于帮助在其间传送大面积衬底。在一个实施例中,可由上述探测器交换机构提供探测器交换顺序。在其他实施例中,可以通过测试室的上部来提供探测器交换,或者一个或多个探测器可以被耦合到一个或多个装载锁定室中的大面积衬底。
图8A是具有矩形探测器框架410的探测器205的一个实施例,该矩形探测器框架410配置为向位于大面积衬底上的器件提供信号或者从位于大面积衬底上的器件检测信号。在一个实施例中,矩形探测器框架410被配置为覆盖大面积衬底的周界,具有大于等于大面积衬底的尺寸,并且包括多个结构构件411。这样,探测器205提供了访问或观察至少大面积衬底和位于其上的电子器件的中央部分的视线。在另一个实施例中,探测器205可以包括一个或多个探测器条810,探测器条810布置在探测器框架410内,或者探测器框架410的平行部分之间。这一个或多个探测器条810在探测器框架410内是固定的或可移动的。在本实施例中,这一个或多个探测器条810和框架410位于衬底上方,以使来自测试柱的主电子束被探测器框架遮挡的部分最小,或者没有遮挡,并且/或者使探测器条使次电子束被遮断的部分最小,或者没有部分被遮断。这样,使得主电子束或次电子束被遮断、或者在大面积衬底上的“阴影”效果最小化或不存在。
图8B和8C分别是结构构件805和806的实施例的截面图。结构构件805和806是探测器框架的结构构件411的截面图,以及/或者一个或多个探测器条810的截面图。在一个实施例中,结构构件805、806具有两个主侧面和至少一个副侧面,并且两个主侧面中的至少一个是倾斜的。该倾斜的部分被配置为提供不受遮断的电子束路径802,该路径可以是主电子束路径和/或次电子束路径。在其他实施例中,结构构件805、806形状上是多边形的,以提供刚性并使阴影效果最小化。提供刚性并使阴影效果最小化的结构形状的示例有三角形、梯形、具有一个直角的梯形、或者它们的组合。
尽管前面集中描述了本发明的实施例,但是在不脱离由所附权利要求书确定的本发明的范围、本发明的基本范围的情况下,可以设计出本发明的其他实施例。
权利要求
1.一种用于测试大面积衬底上的电子器件的装置,包括可移动衬底支撑;以及在所述衬底支撑上方的至少一个测试柱,其中所述衬底支撑可沿单个轴移动,所述单个轴与所述至少一个测试柱的光轴正交。
2.如权利要求1所述的装置,其中,所述衬底支撑容纳在测试室内。
3.如权利要求2所述的装置,其中,所述测试室耦合到真空泵。
4.如权利要求1所述的装置,其中,所述至少一个测试柱是具有测试区域的电子束柱。
5.如权利要求4所述的装置,其中,所述至少一个电子束柱的测试区域在第一方向上为约230mm到约270mm,并且在与所述第一方向正交的方向上为约340mm到约380mm。
6.如权利要求4所述的装置,其中,所述至少一个电子束柱的测试区域在第一方向上为约325mm到约375mm,并且在与所述第一方向正交的方向上为约240mm到约290mm。
7.如权利要求1所述的装置,其中,所述至少一个测试柱包括六个或更多个测试柱。
8.如权利要求1所述的装置,其中,所述衬底支撑还包括末端应变器。
9.如权利要求7所述的装置,其中,所述六个或更多个测试柱在所述衬底支撑上方基本成一条直线。
10.如权利要求9所述的装置,其中,所述六个或更多个测试柱形成足以测试所述衬底的长度或宽度的总的测试区域。
11.一种用于测试位于大面积衬底上的电子器件的装置,包括测试平台,其具有用于支撑所述大面积衬底的支撑表面;以及耦合到所述测试平台的多个测试柱,所述多个测试柱每个都具有在测试区域内的光轴,其中所述测试平台可在相对于所述光轴的线性方向上移动,并且所述多个测试柱具有在所述衬底移动过所述系统时足以测试所述衬底的宽度或长度的总的测试区域。
12.如权利要求11所述的装置,其中,所述线性方向与所述光轴正交。
13.如权利要求11所述的装置,其中,所述光轴定向于垂直方向,并且所述线性方向与所述垂直方向正交。
14.如权利要求11所述的装置,其中,所述测试平台包括具有末端应变器的衬底支撑。
15.如权利要求11所述的装置,其中,所述测试平台在测试室内,并且测试室耦合到真空泵。
16.一种用于测试位于大面积衬底上的电子器件的系统,包括室;所述室内的衬底支撑,所述衬底支撑的尺寸设置为容纳所述衬底;以及耦合到所述室的上表面的多个测试设备,所述多个测试设备中的每个都具有测试区域,其中所述多个测试设备间隔开,以形成在所述衬底移动过所述系统时足以测试所述衬底的长度或宽度的总的测试区域。
17.如权利要求16所述的系统,其中,所述多个测试设备中的每个具有光轴,并且所述衬底支撑可在与所述光轴正交的方向上移动。
18.如权利要求16所述的系统,其中,所述室包括可移动侧壁,用来帮助将一个或多个探测器传送到所述室或从所述室传送出。
19.如权利要求16所述的系统,其中,其中所述多个测试设备包括至少六个电子束柱。
20.如权利要求19所述的系统,其中,其中所述多个测试设备基本成一条直线。
21.如权利要求16所述的系统,其中,所述衬底支撑包括末端应变器。
22.如权利要求16所述的系统,其中,所述多个测试设备中的每个的测试区域在Y方向上为约230mm到约270mm,并且在X方向上为约340mm到约380mm。
23.如权利要求16所述的系统,其中,所述多个测试设备中的每个的测试区域在Y方向上为约325mm到约375mm,并且在X方向上为约240mm到约290mm。
24.一种用于测试位于大面积衬底上的电子器件的装置,包括探测器框架,包括多个结构构件,所述多个结构构件限定在下表面上具有多个接触引脚的矩形框架;以及与所述多个接触引脚通信的至少一个电连接模块。
25.如权利要求24所述的装置,其中,所述多个结构构件中的每个为矩形、梯形、三角形或者其组合。
26.如权利要求24所述的装置,其中,所述电子器件为薄膜晶体管。
27.如权利要求24所述的装置,其中,所述探测器框架的尺寸大于等于所述大面积衬底的尺寸。
28.如权利要求24所述的装置,其中,所述多个结构构件中的一个或多个包括两个主侧面和至少一个副侧面,并且所述主侧面中的至少一个是倾斜的。
29.如权利要求24所述的装置,其中,所述探测器框架还包括设置在所述矩形框架的至少两个平行侧面之间的至少一个探测器条。
30.如权利要求29所述的装置,其中,所述至少一个探测器条在其下表面上包括多个接触引脚。
31.如权利要求29所述的装置,其中,所述至少一个探测器条具有下述截面形状,所述截面形状为矩形、梯形、三角形或其组合。
32.如权利要求29所述的装置,其中,所述至少一个探测器条包括两个主侧面和至少一个副侧面,并且至少一个所述主侧面是倾斜的。
33.如权利要求29所述的装置,其中,所述至少一个探测器条可相对于所述矩形框架移动。
34.一种用于测试大面积衬底上的多个电子器件的方法,包括提供设置在多个测试设备下的衬底支撑;在所述衬底支撑上定位具有所述多个电子器件位于其上的衬底;从多个测试柱在所述衬底上提供测试区域;以及相对于所述多个测试柱在单个方向轴上移动所述衬底。
35.如权利要求34所述的装置,其中,所述测试区域在第一方向上为约1950mm到约2250mm,并且在与所述第一方向正交的方向上为约240mm到约290mm。
36.如权利要求34所述的装置,其中,所述测试区域在第一方向上为约1920mm到约2320mm,并且在与所述第一方向正交的方向上为约325mm到约375mm。
37.如权利要求34所述的装置,其中,所述电子器件中的每个都是薄膜晶体管。
38.如权利要求34所述的装置,其中,所述多个测试设备中的每个都是电子束柱。
39.如权利要求34所述的装置,其中,所述移动步骤包括在所述单个方向轴上渐进移动所述衬底。
全文摘要
本发明公开了一种在线电子束测试系统。描述了一种用于测试衬底上的电子器件的方法和装置。在一个实施例中,该装置在至少一个室中沿一个线性轴对衬底进行测试,其中该室比被测衬底的尺寸稍宽。由于该系统较小的尺寸和体积,洁净室空间和处理时间可以被最小化。
文档编号G02F1/13GK1854743SQ20061007907
公开日2006年11月1日 申请日期2006年4月29日 优先权日2005年4月29日
发明者法耶茨·E·阿波德, 西拉姆·克里施纳斯瓦弥, 本杰明·M·约翰斯通, 亨·T·恩古尹, 麦特瑟斯·波拉纳, 拉尔夫·施密德, 约翰·M·怀特, 栗田伸一, 詹姆斯·C·亨特 申请人:应用材料公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1