三维激光打印方法与系统的制作方法

文档序号:2804017阅读:376来源:国知局
专利名称:三维激光打印方法与系统的制作方法
技术领域
本发明涉及一种三维图像的打印方法与系统,具体涉及一种采用微纳结构表达三维图像的激光打印方法与系统。
背景技术
从物理含义上,表达一幅二维(2D)图像至少需要3个参量:两个平面位置坐标变量和一个灰度变量。据此,如果通过一定的方法和装置在不同坐标上输出不同灰度值,即可实现平面图像的打印输出。根据这一原理产生的激光打印、喷墨打印等方法与系统,已经成为日常办公必不可少的用具。表达一个三维(3D)物体,至少需四个独立变量:三维坐标变量(x-y-z)和颜色(灰度)。如果希望在平面上表达一幅可显示三维信息的彩色图像,那么,也要遵循这一物理原贝U,在平面上至少输出4个独立变量(参量)。通常的打印方法只能在平面上实现3参量调制,因此,只能输出二维图像,或者通过材料成型方式,输出没有颜色的立体模型。要实现三维图像,必须采用合理的方法与系统对空间变量和颜色变量进行编码和输出。根据实现方法的不同,主要可分为两类:一类是激光全息技术;另一类是点阵全息技术。激光全息技术是利用激光相干干涉来记录物体反射光场的振幅和相位信息,其中振幅对应灰度信息,相位对应三维坐标信息,在平面上通过感光材料实现了三维图像的记录和再现。但是,激光全息记录过程需要相干光源和严格稳定的记录环境,同时需要实物模型,应用范围受到限制。为克服激光全息技术的局限,美国人罗曼发明了计算机制全息技术,利用数值计算来代替光学干涉过程,从而拓展了全息三维显示技术。但是,为了实现计算机制全息图的打印输出,需要借助激光直写、电子束直写等大型半导体加工设备的支持,这类设备主要用于集成电路领域,价格昂贵。
`
中国专利CN101051097A公开了一种专用的计算全息制作与输出系统,设计了一种分区微缩装置对全息图进行打印输出。这类系统输出的全息图分辨率受到缩微系统的成像分辨率的限制,同时,光学衍射效率低,且幅面受到全息图海量计算的严重制约。为克服这种制约,美国专利US6330088、US7262891提出了一种数字合成全息打印技术,利用体视技术和分区干涉曝光技术实现了三维图像的反射全息显示。日本索尼(sony)公司、东京工业大学、Toppan Printing印刷公司,根据类似原理开发了相应的合成全息三维显示技术。这类全息显示技术的局限在于其生产的反射型全息显示图像的显示效果受到记录材料的分辨率和衍射效率严重制约,而且仅适合于单幅制造,不能与印刷技术一样地进行大规模的工业化复制。点阵全息图(Dot-Matrix Hologram)是由按一定位置坐标排列的微小光栅像素构成的全息图。每一个光栅像素中包含一组微纳米尺度的光栅条纹,光栅条纹的空频和取向将决定该点衍射光线的传播方向和颜色。因此,采用一维光栅像素,理论上,至少可获得两个独立变量(光栅空频Λ、光栅取向Θ ),加上像素的位置坐标(x,y),就具有四个变量。通过对四个独立变量的调制,点阵全息图可在平面上实现彩虹光变、三维立体等视觉效果。根据四独立变量的编码和输出方式不同,人们设计了不同的点阵全息输出系统。但是,目前并没能很好地解决光栅空频Λ调制这个业内难题,导致图像的三维立体效果不强、观察视场角度受到限制。美国专利US5,132,812公开了一种彩色二维点阵全息图的制作方法,通过三束不同入射角的物光与参考光干涉形成了三种不同空频的光栅像素,实现了光栅空频的离散调制。但是,这种系统无法对光栅空频进行连续调制,而且光能利用率低。美国专利US5, 262,879、US5,822,092对光路及机械结构进行了改进。由于同样利用三组不同夹角的光束干涉原理,所以还是只能形成三种离散的光栅空频。为实现连续而非离散的光栅空频变换,一种考虑是,设置多组相对位置可变的棱镜分光系统和透镜聚光系统,通过将棱镜组在绕光轴向转动的同时沿着光轴上下移动,实现连续变频点阵全息打印输出,但这种设置机械运动机构复杂,不利于光路稳定。

发明内容
本发明的发明目的是提供一种三维激光打印方法与系统,以简单的结构和方法,实现基于光栅空频和角度连续调制的三维激光打印。为达到上述发明目的,本发明采用的技术方案是:一种三维激光打印方法,采用四参量连续调制激光打印输出方法制备由按位置坐标排列的衍射像素构成的三维图像,所述衍射像素内填充有特定空频和取向角的像素光栅,所述四参量包括像素光栅的位置坐标(x,y),像素光栅的空频Λ和取向角θ,所述四参量通过对三维信息的连续调制实现三维图像的激光打印输出,其特征在于:所述像素光栅的调制方法基于4F成像系统与衍射光栅实现,所述4F成像系统包括第一傅立叶变换透镜或透镜组与第二傅立叶变换透镜或透镜组,所述衍射光栅置于第一傅立叶变换透镜或透镜组与第二傅立叶变换透镜或透镜组之间,通过改变所述衍射光栅与第一傅立叶变换透镜或透镜组之间的距离,实现光栅空频的连续调制,通过旋转所述衍射光栅,实现光栅取向角的连续调制,通过4F系统的光轴与记录平面的相对移动实现所述位置坐标的连续调制,所述打印方法通过在不同位置坐标处打印输出经连续调制的光栅像素点 阵实现三维激光打印。上述技术方案中,所输出的三维图像中像素光栅的空频和取向由衍射像素所在的平面坐标和观察窗口的位置坐标确定的衍射光线方向、照明光线的入射方向以及衍射光线的波长根据衍射光栅方程共同确定,所述衍射光线的波长由所述衍射像素对应点的图像信息的颜色确定。采用上述技术方案,可以获得一种光栅空频和取向连续可变的四参量(X,y, Λ,θ )三维彩色图像。所述三维彩色图像信息记录在(x,y)平面内,由与坐标位置对应的系列衍射像素构成,所述衍射像素由一组具有特定空频Λ和取向θ的像素光栅填充而成。衍射像素发出的衍射光线进入距离平面(X,y)—定距离处的平面(X’,y’)中所设定的观察窗口的指定位置坐标处。所述像素光栅的空频和取向由光栅像素所在的平面坐标(x,y)与观察窗口中光线入射位置坐标U’,y’)确定的衍射光线方向、照明光线的入射方向以及衍射光线的波长根据光栅方程共同确定,所述照明光线方向根据使用条件设定,所述衍射光线的波长由所述衍射像素点对应的图像信息的颜色确定。上述方案中,所述观察窗口优选为平行于观察者双眼连线方向的狭缝型窗口,所述狭缝型窗口包含若干观察区域,所述每一观察区域对应三维图像的一个观察视角,三维彩色图像信息记录平面上不同观察视角的衍射像素的衍射光线分别入射不同的观察区域。一种三维激光打印系统,包括光源、光学成像子系统、机电结构子系统、运动控制子系统、记录介质,光源发出的光线入射光学成像子系统形成特定空频和取向的光栅条纹信息,记录在记录介质上,所述光学成像子系统至少包含一组由4F成像透镜和衍射光栅构成的空频和角度连续调制光路,所述4F成像系统包括第一傅立叶变换透镜或透镜组与第二傅立叶变换透镜或透镜组,所述衍射光栅置于第一傅立叶变换透镜或透镜组与第二傅立叶变换透镜或透镜组之间,所述机电结构子系统包括衍射光栅平动机构、衍射光栅转动机构、二维精密平移机构,所述运动控制子系统协调控制衍射光栅的平动和转动,二维精密平台的平动和光源快门,在相应位置坐标处打印输出经连续调制的衍射像素点阵,实现三维图像的打印输出。上述技术方案中,所述光源为相干光源,选自连续激光光源或脉冲激光光源。所述脉冲光源包括并不局限于纳秒脉冲激光光源、皮秒脉冲激光光源、飞秒脉冲激光光源等。上述方案中,所述光源输出的光束通过光学成像子系统后可以对光敏材料曝光形成光栅条纹,也可以直接在基底材料上烧蚀出光栅条纹,还可以直接在基底材料上引发光致变色或者位相结构变化,形成对应的光栅条纹。所述光学成像子系统还包括视场光阑、可变光阑、微缩物镜、自动聚焦光路、实时观测光路。所述视场光阑、可变光阑可以是空间光调制器,也可以是机械可变光阑,光阑的形状和大小可由运动控制系统实时调节,用于控制进入系统的光束直径。所述视场光阑优选位于第二傅立叶变换透镜后的光轴上。所述微缩物镜可对4F成像系统后的视场光阑面上的信息进行微缩成像,提高像素光栅的空频。 所述自动聚焦光路保证光学成像子系统的成像面聚焦在基底材料附近。 所述实时检测光路对基底材料表面进行成像检测。所述机电结构还包括自动聚焦控制机构、光源快门控制机构。所述运动控制子系统优选由计算机和控制程序进行协调控制。由于上述技术方案运用,本发明与现有技术相比具有下列优点:
1.本发明通过设置4F成像系统,将衍射光栅置于第一傅立叶变换透镜或透镜组与第二傅立叶变换透镜或透镜组之间,实现了光栅空频的连续可调,基于光栅空频和取向连续可变的四参量的微纳结构来编码形成三维彩色图像,其三维图像立体感和真实感更强、颜色表现更准确丰富。2.本发明提出的基于光栅空频和取向连续可变的四参量(x,y,Λ,Θ )的微纳结构实现三维彩色图像的方法更加有效。3.本发明的提出的三维激光打印系统能够真正实现四参量(X,y, Λ, Θ )的三维彩色图像输出,系统的打印调制精度高,系统结构简单,打印成像效果好。


图1是实施例1中的三维图像数据及显示结构示意图。
图2是实施例2中的三维彩色图像数据及显示结构示意图。图3实施例3中的一种光栅空频和取向连续可变的四参量(x,y,A,Θ )光学调制方法示意图。图4实施例4中的一种光栅空频和取向连续可变的四参量(x,y,A,Θ )光学调制方法示意图。图5是实施例5中的一种实现光栅空频和取向连续可变的四参量(x,y,Λ,θ )三维图像输出的激光打印系统示意图。图6是实施例6中的一种实现光栅空频和取向连续可变的四参量(x,y,Λ,Θ )三维图像输出的激光打印系统示意图。图7是实施例7中的一种实现光栅空频和取向连续可变的四参量(x,y,Λ,Θ )三维图像输出的激光打印系统示意图。图8是实施例8中的衍射光栅的结构示意图。图9是实施例9中的一种三维激光打印方法与系统流程图。其中:1、三维显示图像;2、衍射像素;3、像素光栅;4、衍射光线;5、观察区域;6、观察窗口 ;7、照明光;8、第一傅立叶变换透镜;9、衍射光栅;10、第二傅立叶变换透镜;11、光轴;12、纳秒脉冲激光;13、空间滤波器;14、反射镜;15、DMD空间光调制器;16视场光阑;17、实时检测光路;18、半透半反镜;19、tubelens ;20、红色子像素;21、绿色子像素;22、蓝色子像素;23、空白区域;30、微缩物镜;31、自动聚焦光路;32、二维精密平移台;33、运动控制器;34、控制计算机;35、感光材料;40、红色衍射光线;41、绿色衍射光线;42、蓝色衍射光线。
具体实施例方式下面结合附图及实施例对本发明作进一步描述:
实施例1:
参见附图1,是本实施例中一种光栅空频和取向连续可变的四参量(X,y,Λ,Θ)三维图像及其显示效果示意图。本实施例的三维图像I位于坐标平面(X,y)处,由一系列衍射像素2构成,所述衍射像素2由一组具有特定空频和取向的像素光栅3填充而成。所述图像I中的像素光栅的空频自上而下逐渐变化,取决于照明光的方向和观察窗口的位置,一般地,从图像的上部到底端,空频逐渐变大。所述三维图像在照明光7的照明下发生衍射,在距离图像平面Z处的U’,y’)平面上形成狭缝型观察窗口 6,所述观察窗口 6由多个观察区域5构成,不同的观察区域对应三维图不同视角的像。三维图像中表示同一视角图像信息的衍射像素的衍射光线4进入所述同一观察区域。所述衍射像素中的光栅空频和取向,由照明光7的入射角、衍射光线4的出射角以及衍射波长共同确定,根据光栅方程其关系满足如下条件:
权利要求
1.一种三维激光打印方法,采用四参量连续调制激光打印输出方法制备由按位置坐标排列的衍射像素构成的三维图像,所述衍射像素内填充有特定空频和取向角的像素光栅,所述四参量包括像素光栅的位置坐标(X,y),像素光栅的空频λ和取向角θ,所述四参量通过对三维信息的连续调制实现三维图像的激光打印输出,其特征在于:所述像素光栅的调制方法基于4F成像系统与衍射光栅实现,所述4F成像系统包括第一傅立叶变换透镜或透镜组与第二傅立叶变换透镜或透镜组,所述衍射光栅置于第一傅立叶变换透镜或透镜组与第二傅立叶变换透镜或透镜组之间,通过改变所述衍射光栅与第一傅立叶变换透镜或透镜组之间的距离,实现光栅空频的连续调制,通过旋转所述衍射光栅,实现光栅取向角的连续调制,通过4F系统的光轴与记录平面的相对移动实现所述位置坐标的连续调制,所述打印方法通过在不同位置坐标处打印输出经连续调制的衍射像素点阵实现三维激光打印。
2.根据权利要求1所述的三维激光打印方法,其特征在于:所输出的三维图像中像素光栅的空频和取向由像素光栅所在的平面坐标和观察窗口的位置坐标确定的衍射光线方向、照明光线的入射方向以及衍射光线的波长根据衍射光栅方程共同确定,所述衍射光线的波长由所述衍射像素对应点的图像信息的颜色确定。
3.根据权利要求2所述的三维激 光打印方法,其特征在于:所输出的三维图像形成的观察窗口为平行于观察者双眼连线方向的狭缝型窗口,所述狭缝型窗口包含若干观察区域,每一观察区域对应三维图像的一个观察视角,三维图像平面上不同观察视角的衍射像素的衍射光线分别入射不同的观察区域,观察者在所述观察窗口内看到三维图像。
4.一种三维激光打印系统,包括光源、光学成像子系统、机电结构子系统、运动控制子系统、记录介质,光源发出的光线入射光学成像子系统形成特定空频和取向的光栅条纹信息,记录在记录介质上,其特征在于:所述光学成像子系统至少包含一组由4F成像透镜和衍射光栅构成的空频和取向角连续调制光路,所述4F成像系统包括第一傅立叶变换透镜或透镜组与第二傅立叶变换透镜或透镜组,所述衍射光栅置于第一傅立叶变换透镜或透镜组与第二傅立叶变换透镜或透镜组之间,所述机电结构子系统至少包括衍射光栅平动机构、衍射光栅转动机构、二维精密平移机构,所述运动控制子系统协调控制衍射光栅的平动、转动、二维精密平台的平动和光源快门,在相应位置坐标处打印输出经连续调制的衍射像素点阵,实现三维图像的打印输出。
5.根据权利要求4所述的三维激光打印系统,其特征在于:光源输出的光线通过光学成像子系统后对光敏材料曝光形成光栅条纹,或者直接在基底材料上烧蚀出光栅条纹,或者直接在基底材料上引发光致变色或位相结构变化形成光栅条纹,实现三维图像的打印输出。
6.根据权利要求4所述的三维激光打印系统,其特征在于:所述光源具有相干性,选自连续激光光源或脉冲激光光源。
7.根据权利要求4所述的三维激光打印系统,其特征在于:所述光学成像子系统还包括视场光阑、可变光阑、微缩物镜、自动聚焦光路、实时观测光路。
8.根据权利要求7所述的三维激光打印系统,其特征在于:所述视场光阑和可变光阑是空间光调制器或机械可变光阑,光阑的形状和大小由运动控制系统实时调节,用于控制进入系统的光束直径,所述视场光阑位于第二傅立叶变换透镜后的光轴上。
9.根据权利要求7所述的三维激光打印系统,其特征在于:所述微缩物镜对4F成像系统后的信息进行微缩成像,提高衍射像素内的像素光栅的空间频率。
10.根据权利要求4或7所述的三维激光打印系统,其特征在于:所述机电结构还包括自动聚焦控制机构、光源快门控制机构,所述机电结构由所述运动控制子系统通过计算机和控制程序进行协调控 制。
全文摘要
本发明公开了一种三维激光打印方法与系统,采用四参量连续调制激光打印输出方法制备由按位置坐标排列的具有特定光栅空频和取向角的衍射像素构成的三维图像。衍射像素中光栅条纹参数的调制方法基于4F成像系统与衍射光栅实现,4F成像系统包括第一傅立叶变换透镜或透镜组与第二傅立叶变换透镜或透镜组,衍射光栅置于第一傅立叶变换透镜或透镜组与第二傅立叶变换透镜或透镜组之间,通过改变衍射光栅与第一傅立叶变换透镜或透镜组之间的距离,实现光栅条纹的空频的连续调制,通过旋转衍射光栅,实现光栅条纹的光栅取向角的连续调制。本发明实现了光栅空频和取向的连续可调,基于光栅空频和取向连续可变的四参量的微纳结构来编码形成三维彩色图像。
文档编号G02B27/22GK103246195SQ20131016634
公开日2013年8月14日 申请日期2013年5月8日 优先权日2013年5月8日
发明者陈林森, 楼益民, 浦东林, 袁晓峰, 朱鹏飞, 魏国军, 张瑾, 朱鸣, 李恒, 胡进, 申溯 申请人:苏州苏大维格光电科技股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1