屏幕和投影系统的制作方法

文档序号:18819308发布日期:2019-10-09 00:29阅读:275来源:国知局
屏幕和投影系统的制作方法

本发明涉及屏幕领域。具体地,本发明涉及一种具有高对比度的结构简单的投影屏幕和投影系统。



背景技术:

近年来,随着投影机亮度的不断提高,大尺寸的投影显示系统被广泛使用。例如,投影显示系统在大尺寸家庭影院应用中的优势日益体现了出来。相比于传统的lcd电视,投影系统整体尺寸小,便于安装和收纳,整套系统价格低,并可以轻松实现大于100寸的显示画面。

在投影显示系统中,除了投影机之外,投影屏幕是周边设备中最常使用的产品之一。在投影屏幕的投影显示中,图像对比度是评价屏幕画面质量的一个重要参数。通常,投影机的对比度可以达到数千比一,但是在实际的使用中,环境光对屏幕画面的对比度会产生较强的影响,使得对比度严重下降,极大地影响观看体验。因此,需要通过技术手段降低环境光对投影显示带来的不利影响,使投影画面具有较高的对比度,提升显示质量。

例如,如图1的a和b所示,在公开号为cn105408777a的中国专利申请中提出了一种圆形对称的菲涅尔光学屏幕结构。该屏幕采用的是阵列微结构加上吸光层的技术方案。该屏幕的阵列微结构由透镜面32和非透镜面33组成。透镜面32与屏幕平面的夹角小于非透镜面33与屏幕平面的夹角,投影机的入射光线l1只入射到具有小夹角的透镜面32上。入射在透镜面32上的光线是依靠由层叠在其表面上的多个金属薄膜25构成的反射层20反射至观看者侧。虽然该屏幕可以将投影机的入射光线反射到观众的眼睛,但镜面反射层20不可避免地同时也会反射从其它方向入射的光线,比如环境中的杂光,所以无法大幅提高投影屏幕的对比度。为了提高对比度,还需要在阵列微结构的观看者侧添加一层着色层42。着色层42吸收杂光,但也吸收了部分投影光线。因此,虽然提高了屏幕的对比度,但降低了整个投影系统的光学效率,相当于在对比度和光学效率之间进行了折中。目前市场上量产的采用该结构的投影屏幕能够实现的屏幕增益仅为大约0.9~1.1。

另外,如图2所示,在公开号为cn1954260a的中国专利申请也提出了一种反射屏幕。该反射屏幕10设置有基底部11、光透过部12、反射层13和光吸收部14能够使从影像源l投影的影像光l1、l2反射,同时,能够使来自设置于反射屏10的上方的室内照明g等的外部光g1、g2被光吸收部14吸收。此外,反射屏幕还设置有前面处理层15。前面处理层15可以根据需要选择设置,从而实现防眩光处理、散射处理、防反射处理、防带电处理、硬涂层处理、防污处理等各种技术效果。

可见,在上述现有技术中,一方面,难以有效地同时提供屏幕的光学增益和对比度,另一方面,现有的屏幕一般具有多层结构,结构复杂,导致成本高且成品率较低。



技术实现要素:

针对上述问题,本发明期望提供一种兼具高对比度和高屏幕增益,并且结构简单、低成本的屏幕和投影系统。

根据本发明的第一实施例提供了一种屏幕。所述屏幕能够将来自投影机的投影光线反射至观看者的视场范围内。所述屏幕至少包括从所述投影光线的入射侧依次层叠设置的透明基材层、全反射层和吸光层。所述吸光层能够吸收透过所述透明基材层和所述全反射层到达所述吸光层的光,所述全反射层包括多个微结构单元,所述微结构单元具有两个相交平面,所述多个微结构单元构成锯齿结构,所述全反射层能够透过环境光,并且使至少部分所述投影光线在发生全反射后出射。所述微结构单元的所述两个相交平面中的至少一个平面上设置有微结构扩散层。

优选地,所述微结构扩散层的折射率与所述全反射层的折射率的差值不大于0.1。

优选地,所述微结构单元的所述两个相交平面上均设置有所述微结构扩散层。

优选地,所述微结构扩散层的厚度小于50微米。

例如,所述微结构扩散层是通过在所述全反射层上进行喷砂处理而形成的。可替代地,所述微结构扩散层是通过模具表面粗糙化处理而形成在所述全反射层上的胶水转印结构。可替代地,所述微结构扩散层是通过在对所述全反射层的表面进行光滑处理时喷涂具有散射粒子的胶水而形成的。

所述全反射屏幕还可以包括内侧层,所述内侧层位于所述全反射层和所述吸光层之间,所述内侧层具有与所述全反射层的所述微结构单元相匹配的锯齿状结构,所述全反射层的折射率n1和所述内侧层的折射率n2满足关系:n2<n1-0.2。

各所述微结构单元设置成旋转对称的全反射棱镜,所述微结构单元的两个相交平面与所述屏幕的平面的夹角分别为θ1和θ2,且θ1和θ2满足关系:θ1+θ2<90。例如,在多个所述微结构单元中,各所述θ1具有不同的角度且各所述θ2均等于45度。或者,在多个所述微结构单元中,各所述θ1具有不同的角度,并且各所述θ2也具有不同的角度。

优选地,所述两个相交平面被设置为使得所述投影光线在所述两个相交平面中的一个平面上发生全反射之后沿着与所述屏幕的平面平行的方向行进。

优选地,旋转对称的多个所述微结构单元的旋转中心轴线垂直于所述屏幕的平面且位于所述屏幕的下方。

根据本发明的第二实施例提供了一种投影系统。所述投影系统包括投影机和上述屏幕。

如上所述,根据本发明的屏幕和投影系统至少具有如下优势:

1、简化投影屏幕的结构,只需要通过设置包括光学功能层和黑色吸光层的双层简单结构就能够实现提高增益和对比度的技术效果;

2、相比于单独设置厚重的散射膜,设置于光学功能层的微结构单元中的散射材料层更轻薄且更容易加工,降低了成本,提高了成品率;

3、通过对光学功能层角度的设计,既可以将来自投影机的投影光线和来自环境的环境光线区分开,提高屏幕的对比度,又可以将投影光线以一定散射角反射至观众的视野中,增大了投影屏幕的视场角。

应当理解,本发明的有益效果不限于上述效果,而可以是本文中说明的任何有益效果。

附图说明

图1是示出了现有技术中的投影屏幕的示例的示意图;

图2是示出了现有技术中的投影屏幕的另一示例的示意图;

图3是示出了根据本发明实施例的投影系统的结构示意图;

图4是示出了根据本发明实施例的的全反射屏幕的光学功能层的旋转对称结构的示意图;

图5是示出了根据本发明实施例的屏幕的光学功能层的微结构单元的截面结构示意图;

图6是示出了根据本发明实施例的屏幕的光学功能层的微结构的光学原理的示意图;

图7是示出了根据本发明实施例的屏幕的微结构单元的光学倾角的选择的示意图;

图8是示出了根据本发明实施例的屏幕的微结构单元的光学角度的模拟实例;

图9是示出了根据本发明实施例的屏幕的光学功能层和吸光层的材料折射率的选择范围示意图;

图10是示出了根据本发明实施例的屏幕的微结构扩散层的示意图;

图11示出了根据本发明实施例的屏幕的散射分布及屏幕增益的仿真模拟结果;

图12示出了根据本发明实施例的屏幕的散射分布及屏幕增益的仿真模拟结果;

图13示出了根据本发明的实施例的屏幕的散射分布及屏幕增益的仿真模拟结果;

图14示出了根据本发明实施例的屏幕的光学对比度的仿真模拟结果。

具体实施方式

下面,将参照附图详细说明根据本发明的各具体实施例。需要强调的是,附图中的所有尺寸仅是示意性的并且不一定是按照真实比例图示的,因而不具有限定性。例如,应当理解,图示出的投影屏幕的多层结构中各层的厚度以及厚度比例并不是按照实际的尺寸和比例示出的,仅是为了图示方便。

一、全反射投影系统概述

图3是示出了根据本发明实施例的投影系统的结构示意图。如图3中所示,投影系统包括屏幕10和投影机20。屏幕10包括依次层叠设置的吸光层11和光学功能层12,光学功能层12相对于吸光层11位于投影机的投影光线的入射侧。在下文中,也将屏幕10的投影光线的入射侧称为屏幕的外侧(即,面向观众一侧),将吸光层侧称为屏幕的内侧(即,背向观众一侧)。光学功能层12形成有微结构单元阵列。每个微结构单元包含两个倾斜平面。这两个倾斜平面的倾斜角度经过精确的设计,使得从屏幕10下方入射的至少大部分投影光线31在两个倾斜平面处发生全反射,最终成为被反射至观看者的视场范围内的出射光线33,而来自于屏幕10上方的环境杂光32绝大部分的角度无法满足全反射条件而透过所述光学功能层12被吸光层11吸收。也即,至少部分透过所述光学功能层的环境光被吸光层吸收。其中,所述吸光层11含有黑色的吸光材料。

光学功能层12包括多个微结构单元,其中每个微结构单元优选为具有三角形的横截面结构,还可包括其他形状的结构,比如:二维结构为梯形结构。

如图4所示,光学功能层12的微结构单元在屏幕平面上具有旋转对称的阵列排布结构。该旋转对称的阵列排布结构的旋转中心(光学中心)轴线垂直于屏幕平面且位于屏幕的下方。优选地,投影机20布置在该旋转中心轴线上。

进一步的,在光学功能层12的外侧还可以添加设置保护层以防止刮伤或者化学腐蚀,该保护层可以是聚酰亚胺(pi)膜、聚酯(pet)膜、聚萘酯(pen)膜、聚氯乙烯(pvc)膜、聚碳酸酯(pc)膜或液晶聚合物(lcp)膜、玻璃板、pc板、布料等的一种或几种,比如玻璃板上的聚萘酯(pen)膜。当然,还可以根据设计需要设置其它的辅助功能层。

图5示出了根据本发明实施例的屏幕的光学功能层12的微结构单元的截面结构示意图。所图5所示,光学功能层12包括层叠设置的透明基材层120、全反射层121和内侧层122。透明基材层120位于光学功能层12的最外侧,其中所述透明基材层120包括pet、pc或pmma等透明材料。全反射层121设置在透明基材层120的与光入射侧相反的一侧。其中,所述全反射层121采用树脂材料,所述树脂通常为环氧树脂胶系、丙烯酸酯胶系、聚酯胶系、聚氨酯胶系或聚酰亚胺胶系等。透明基材层120和全反射层121通过uv涂布设备或者热成型设备形成一体。内侧层122形成在全反射层121的靠近吸光层11的一侧,并且与吸光层11相接触。形成内侧层122的材料的折射率低于形成全反射层121的材料的折射率。全反射层121设置有多个微结构单元。其中,在每一个微结构单元中,全反射层121被形成为全反射棱镜并且具有两个倾斜的相交平面124和125。换言之,在全反射层121的每一个微结构单元中,全反射层121是在透明基材层120的表面上形成的一排旋转对称的棱镜,相交表面124和125是全反射层121与内侧层122这两种不同的材料层之间的界面,其中全反射层121为第一材料层,所述内侧层122为第二材料层。在图5所述的横截面中,全反射层121与内侧层122均具有锯齿状的结构。例如,这样的棱镜是通过在透明基材层120上采用对涂布树脂和uv固化或热固化工艺加工而成的。图5中为了图示清楚,仅示出了两个微结构单元。来自屏幕下方的投影机的入射光线31在两个倾斜表面124和125处分别发生一次全反射,最终反射到观看者的眼睛方向,成为屏幕10的出射光线33。环境杂光32主要来自于房间中的顶灯。在绝大部分情况下,顶灯远离屏幕的微结构单元的旋转对称结构的旋转轴线并且环境杂光32的入射角远小于投影光线的入射角度。因此,环境杂光32无法满足在表面124和表面125均发生全反射的条件,绝大部分透过了微结构单元而被吸光层11吸收。由于吸光层11整体地设置在光学功能层12的内侧,所以制造工艺简单,且不会导致投影光线损失。其中,内侧层122可以是空气或石英或玻璃。

此外,如图5所示,根据本发明实施例的屏幕10在全反射层121的微结构单元中还设置有微结构扩散层123。微结构扩散层123设置在全反射层121的微结构单元的两个倾斜平面124和125的内侧层122侧。例如,可以通过在微结构单元的两个倾斜平面124和125的背面加工扩散微结构或者镀覆不规则散射薄膜,从而形成微结构扩散层123。微结构扩散层123用于使入射的投影光线31在全反射层121的倾斜平面处发生全反射的同时,还能够被扩散。微结构扩散层123的折射率与全反射层121的折射率接近,两者的差值小于等于0.1。优选地,微结构扩散层123的厚度小于50微米。通过这样的结构,根据本发明实施例的屏幕10无需像现有技术中的屏幕那样在屏幕表面额外设置单独的扩散层,而是使全反射层121的微结构单元兼具光扩散功能,从而简化了屏幕的结构。

如上所述,根据本发明实施例的屏幕10利用了光学功能层12的角度选择性反射特性,使得屏幕能够自动区分投影光线与环境光线,并且用于吸收环境杂光的吸光层11整体地设置在光学功能层12的内侧,从而实现了高对比度、高增益的光学特性。另外,通过使全反射层的微结构单元兼具光扩散功能,简化器件结构,降低了成本,提高了成品率。

二、全反射微结构单元的光学原理及角度选择

图6图示了根据本发明实施例的屏幕的全反射微结构单元的光学原理。如图6所示,全反射层121的折射率为n1和内侧层122的折射率为n2,微结构单元的两个斜面与屏幕平面(即,垂直方向)的夹角分别为θ1和θ2(单位为度,下同)。入射光线和反射光线与水平方向的夹角分别为α和β(单位为度,下同)。其中,当反射光线水平出射时,β显然为0度,并且设定:当反射光线在水平线以下(即,偏向地面)时β为负值,当反射光线在水平线以上(即,偏向天花板)时β为正值。为了使来自投影机20的入射光线在两个倾斜面上发生两次全反射后向着观看者的眼睛方向出射,根据几何光学原理和光学全反射条件,必须要满足如下的公式(1)~(3):

基于上述公式(1)~(3)并不能完全确定θ1和θ2的值,还留有一定的设计自由度。假设入射光线和出射光线之间的中间光线与屏幕平面(即,垂直方向)的夹角为γ,并且设定当中间光线偏向观众侧时γ为正值,当中间光线偏向远离观众侧时γ为负值。则根据几何光学原理和光学全反射条件可以计算出:

由公式(4)和(5)可知,只要确定了入射光线、出射光线和中间光线的光路(即,确定了α、β和γ),就可以完全确定微结构的两个相交平面的倾斜角度θ1和θ2。

此外,由公式(4)和(5)还可知,即便在确定了入射光线、出射光线的光路的情况下,还可以根据不同的应用需求,通过调整中间光线的光路(即,调整γ的取值)在一定范围内对θ1和θ2的取值进行选择。例如,在超短焦投影的应用中,投影机位于屏幕的下方,所以α>0总是成立;且观众的眼睛位于投影机的上方,为了保证出射光线入射至观众眼睛,所以α+β>0也总是成立;在此情况下,由公式(1)可以得到:

θ1+θ2<90(6)

由公式(4)可知,在超短焦投影的应用中,根据本发明的屏幕的微结构单元的两个倾斜面124和125之间的夹角必须为钝角。

图7的a中示出了一种理想的光路情况,其中,入射的投影光线vin经过微结构单元的一个斜面的全反射后的中间光线vmid在全反射层121中沿着与屏幕平面平行的方向行进,vmid经过微结构单元的另一个斜面的全反射之后成为向着观看者方向水平出射的出射光线vout。

在图7的a中所示的情况下,此时,γ=0度,β=0度,当θ2=45度,出射光线沿着与屏幕垂直的出射即β=0度,再依据上述公式(6)可知θ1<45度,也即θ1<θ2。

但在实际应用中,也可能存在如图7的b和c示出了非理想的光路情况。在图7的b中,入射光线vin经微结构单元的第一斜面的全反射后产生了中间光线vmid,但vmid的行进方向不平行于屏幕平面,而是偏向于观看者一侧(此时γ为正值)。因此,部分vmid可能不被第二斜面反射而直接出射,无法充分利用微结构单元的第一斜面。在图7的c中,入射光线vin经微结构单元的第一斜面的全反射后产生了中间光线vmid,但vmid的行进方向不平行于屏幕平面,而是偏向于背向观看者的一侧(此时γ为负值)。因此,无法充分利用微结构单元的第二斜面。

另外,如上所述,根据本发明的屏幕10具有旋转对称结构,且包含多个微结构单元。因此,每个微结构单元的角度设计可以是相同的或不同的。例如,图8图示了根据本发明的屏幕的微结构单元的光学角度的模拟实例。图8的a所示的屏幕的焦点位于无穷远处,也即是说,在屏幕的所有微结构单元中,出射光线均水平地射向观看者的方向,所以β=0度且θ2=45度一直成立。根据模拟结果可知,微结构单元的θ1随着靠近屏幕的上方而逐渐减小,且θ1<θ2,因而满足上述公式(6)。在图8的b所示的屏幕中,屏幕的焦点不再位于无穷远处。在此情况下,沿着从屏幕的中心至屏幕边缘的方向,屏幕的微结构单元的θ1的取值不断减小而θ2的取值不断增大。

三、全反射微结构单元的折射率选择

除了θ1和θ2的取值之外,由光学全反射公式可知,满足两次全反射的全反射微结构单元还受到全反射层121的折射率n1和内侧层122的折射率n2的影响。根据本发明的屏幕的全反射层121通常是由透明树脂材料制成的,其折射率在1.3~1.7的范围内。或者,全反射层121也可以使用具有类似折射率的其它材料制成。另外,还可以在制成全反射层121的材料中掺杂散射离子或吸收材料等。因而,为了满足全反射的条件,需要考虑内侧层122的折射率n2的选择。图9显示了内侧层122的不同折射率n2对于微结构单元的入射光线的全反射区域的影响。如图9的a所示,入射光线v可以表示成(vx,vy,vz),其中z轴垂直于屏幕,而x,y轴平行于屏幕。显然,入射光线的全反射区域取决于vx和vy的取值范围。vz满足:

假定出射光线朝向观看者的眼睛且全反射层121的折射率n1为1.6,根据上述公式(2)和(3)可以获得满足全反射条件的入射光线的分量(vx,vy)的取值范围随内侧层122的折射率n2的变化趋势。如图9的b所示,随着n2的增大,满足在微结构单元的两个斜面均发生全反射的入射光线的区域不断减少。换言之,随着n2的增大,从投影机发出的光线无法在微结构单元的两个斜面发生两次全反射的几率增大。因此,为了保证一定的屏幕反射效率,需要使n1和n2满足:

n2<n1-0.2(8)

应当理解,在满足上述条件的情况下,内侧层122可以是空气层。

四、微结构扩散层的示例

如上所述,为了增加投影画面的可视范围,在全反射层的外侧设置微结构扩散层123。图5中示出了在全反射层121的微结构单元的两个相交平面的背面均设置有微结构扩散层123的示例。然而,本发明不限于此。如图10所示,可以根据需要选择微结构扩散层123在微结构单元中的具体设置位置。图10的a示出了跟图5中类似的情况,通过在微结构单元的两个相交平面上都设置微结构扩散层123,能够实现视场角更大的光线输出。图10的b示出了在微结构单元的两个相交平面中的上侧平面上设置微结构扩散层123的示例。在此情况下,垂直屏幕方向的出射光线的扩散角等于用于形成微结构扩散层123的扩散材料的扩散角。图10的c示出了在微结构单元的两个相交平面中的下侧平面上设置微结构扩散层123的示例。

微结构扩散层123例如可以通过如下三种方式获得:1.在全反射层的表面上进行喷砂处理;2.通过模具表面粗糙化处理,在全反射层的表面上形成胶水转印结构;3.在全反射层的表面进行光滑处理时,喷涂具有粒子的胶水。

五、屏幕的性能的仿真结果

图11至图13分别示出了根据本发明的实施例的屏幕的散射分布及屏幕增益的仿真模拟结果。

图11图示了在使用15度的高斯散射薄膜作为光扩散层的情况下屏幕对投影机的光线的反射的仿真模拟。图11的a示出了屏幕反射的投影光线在全视场中的分布,图11的b示出了屏幕的屏幕增益。由图11的a可知,来自投影机的大部分光线都集中在靠近屏幕中心的圆形有效视场区域中;小部分光线因屏幕表面的菲涅尔反射而被反射至天花板的方向。由图11的b可知,在20度增益角的情况下,可以实现峰值增益5.5的水平。图12图示了在使用15度的高斯散射薄膜作为光扩散层的情况下屏幕对环境光线的反射的仿真模拟。仿真结果显示大部分环境光线透过光学功能层后被黑色的吸光层吸收,只有小部分环境光线因屏幕表面的菲涅尔反射而被反射至地面的方向。因而,仅有极少部分的环境光线会进入到观看者的有效视场中,因此不会对投影画面的对比度造成影响。

在实际的应用场景中,观众观看屏幕的水平视角大于垂直视角。因此采用椭圆高斯散射分布的散射薄膜作为光扩散层可以有效的增大反射光束的水平散射分布,从而增加了反射光的利用率。图13的仿真结果显示,采用椭圆的高斯分布散射薄膜的屏幕可以将屏幕的水平视角扩大到35~40度,而垂直视角在20度的范围内,增益的峰值仍然可以高达3~5或更高。

图14示出了对根据本发明的屏幕进行的对比度的仿真测试结果。如图14的a所示,将屏幕分成若干区域,并在位于屏幕下方的投影机和位于屏幕上方的客厅顶灯在屏幕上的照度相同的情况下测试其中9个点的对比度。如图14的b所示,仿真结果显示对比度的平均值可以高于20,已经远远超过目前市场上的投影屏幕的水平。在实际使用的情况下,投影机的投影光线在屏幕上的照度会大于环境光的照度。因而,随着投影光线的照度的增大,相对于环境光的对比度还会进一步增大,完全可以满足家庭投影和商业投影对投影画面对比度的需求。

尽管在上面已经参照附图说明了根据本发明的屏幕和投影系统,但是本发明不限于此,且本领域技术人员应理解,在不偏离本发明随附权利要求书限定的实质或范围的情况下,可以做出各种改变、组合、次组合以及变型。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1