反射式机械制长周期光纤光栅带通滤波器的制作方法

文档序号:16496584发布日期:2019-01-04 23:53阅读:220来源:国知局
反射式机械制长周期光纤光栅带通滤波器的制作方法

本实用新型涉及光纤传感领域与光通信无源器件领域,尤其涉及机械制长周期光纤光栅(MLPFG)带通滤波器。



背景技术:

光栅滤波器是用来进行波长选择的光器件,它可以从众多的波长中挑选出所需要的波长。随着光通信技术的发展,光栅滤波器作为波分复用(WDM)光纤网络中必不可少的关键器件,是波分复用光网络中的关键网元之一。自从1996年首次在光纤上写出周期为数百个微米的LPFG以来,LPFG由于其制作简单、易于连接、插入损耗低、无后向反射等优点,在光通信领域发挥着越来越重要的作用。此外,LPFG对环境参数(折射率、温度、湿度、应力、弯曲、扭曲等)的变化很敏感,因此,在传感测量方面也具有很大的竞争优势。

长周期光纤光栅作用于同向传输的纤芯导模和包层模之间,它将纤芯导模耦合到向前传输的包层模从而形成谐振波长的损耗峰,呈现出透射型带通滤波特性。LPFG的滤波特性,如损耗幅度、共振波长和抑制带宽一般由制造工艺决定,并且不能改变。如果将LPFG的被动特性转换为可变或可调谐的,那么就扩展了它们的应用领域,如应用于可调增益均衡器、可变衰减器、模式转换器和可调谐光纤激光器等。

总之,目前的长周期光纤光栅滤波器存在着功能单一、滤波特性不可调节等缺点。



技术实现要素:

为了克服现有长周期光纤光栅滤波器滤波特性存在的不足,本实用新型提供一种具有谐振波长可调谐、模式耦合强度可控、光栅可擦除等优点的反射式机械制长周期光纤光栅带通滤波器。

本实用新型解决其技术问题所采用的技术方案是:

一种反射式机械制长周期光纤光栅带通滤波器,包括有芯光纤、空芯光纤、导热圆柱套管、缠绕线、加热棒和端面反射器,所述有芯光纤放置在所述导热圆柱套管上,所述导热圆柱套管内部放有所述加热棒,所述缠绕线将所述有芯光纤和所述导热圆柱套管缠绕在一起,所述空芯光纤和所述有芯光纤相熔接,所述空芯光纤中心孔的直径和所述有芯光纤纤芯的直径相等,所述空芯光纤的外层直径和所述有芯光纤包层的外径相等,所述端面反射器在空芯光纤的输出端端面处设置。

所述有芯光纤,包括但不限于单模光纤。

所述缠绕线,采用热膨胀系数小、弹性好的材料制成。进一步,所述缠绕线选用的材料包括但不限于铁或聚酰胺纤维等材料。

所述端面反射器,是通过在空芯光纤输出端端面处镀膜,以形成反射镜进而制成的。进一步,所述用于端面反射器的镀膜为金属膜或介质膜。

所述加热棒采用电加热方式,通过调节电流的大小,使加热棒的功率增大或减小,进而改变导热圆柱体套筒的温度;加热棒材料,包含但不仅限于不锈钢。

所述加热棒可以改变温度,由于所述导热圆柱套筒和所述缠绕线热膨胀程度不同,使得所述缠绕线的缠绕紧缩或松弛,从而可以使所述有芯光纤受到不同的压力,控制纤芯和包层之间的耦合强度,

进一步,不同直径的缠绕线对应不同的谐振波长。可以通过选用不同直径的缠绕线来改变谐振波长。

本实用新型的技术构思为:加热棒可以通过改变温度使得缠绕线的缠绕紧缩或松弛,从而可以使有芯光纤受到不同的压力,控制纤芯和包层之间的耦合强度,进一步可通过选用不同直径的缠绕线来改变谐振波长,从而制成压力大小可变、周期可调的长周期光纤光栅,并使用端面反射器,从而实现反射式带通滤波。

本实用新型的有益效果主要表现在:1)目前长周期光纤光栅滤波器存在滤波特性不可调节等缺点,本实用新型反射式机械制长周期光纤光栅带通滤波器可实现谐振波长和振幅损耗的调节;2)通过给光纤缠绕线圈使得光纤受到压力,通过调节加热棒的温度来改变光纤受到的压力大小,这样可以更快、更方便地得到滤波效果更好的长周期光纤光栅。

附图说明

图1是反射式机械制长周期光纤光栅带通滤波器剖面图,图2是机械制长周期光纤光栅的结构示意图。

具体实施方式

下面结合附图对本实用新型作进一步描述。

参照图1,一种反射式机械制长周期光纤光栅带通滤波器,包括有芯光纤101、空芯光纤102、端面反射器103、缠绕线104、导热圆柱套管105和加热棒106,有芯光纤101放置在导热圆柱套管105上,导热圆柱套管105内部放有加热棒106,缠绕线104将有芯光纤101和导热圆柱套管105缠绕在一起,空芯光纤102和有芯光纤101相熔接,在空芯光纤102的输出端端面处设置有端面反射器103。

进一步,缠绕线104,是一种热膨胀系数大、弹性好的材料。再进一步,缠绕线104选用的材料包括但不限于铁或聚酰胺纤维等材料。

进一步,端面反射器103,是通过在空芯光纤102输出端端面处镀膜,以形成反射面进而制成的。

再进一步,用于端面反射器103的镀膜可以为金属膜或介质膜。

所述加热棒106采用电加热方式,通过调节电流的大小,使加热棒的功率增大或减小,进而改变导热圆柱体套筒的温度;加热棒材料,包含但不仅限于不锈钢。

所述加热棒106可以改变温度,由于所述导热圆柱套筒和所述缠绕线热膨胀程度不同,使得所述缠绕线的缠绕紧缩或松弛,从而可以使所述有芯光纤受到不同的压力,控制纤芯和包层之间的耦合强度,

进一步,不同直径的缠绕线对应不同的谐振波长。可以通过选用不同直径的缠绕线104来改变谐振波长。

参照图1和图2,整个器件的工作过程和原理如下:首先,有芯光纤101受到缠绕线104施加的周期性压力后,形成长周期光纤光栅109,将宽光谱或波分复用输入光107中的谐振波长(图1中点划线箭头所示)从纤芯模式耦合到包层模式LP1m中,谐振波长λm满足相位匹配条件其中Λ、nco和分别指光栅周期、纤芯基模的有效折射率和LP1m包层模的有效折射率。耦合到包层中的LP1m模式到达空芯光纤102输出端后,被端面反射器103反射,然后在有芯光纤101包层中反向传输的过程中又被光纤光栅109耦合回纤芯,最终返回输入端,所以反射光谱108中在谐振波长处显示出带通特性。没有满足相位匹配条件的波长(图1中实线单向箭头所示)在有芯光纤101的纤芯中继续传播,到达空芯光纤处被损耗掉。

实际应用时可利用光环行器来实现输入和反射信号的区分。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1