光学系统、取像模组及电子设备的制作方法

文档序号:22426847发布日期:2020-10-02 10:01阅读:131来源:国知局
光学系统、取像模组及电子设备的制作方法
本发明涉及摄像领域,特别是涉及一种光学系统、取像模组及电子设备。
背景技术
:在摄像领域中,需要通过注塑成型的方式形成透镜,并通过控制多个透镜之间的相对位置,将多个透镜与镜筒组装形成摄像镜头。但是,在实现本发明的过程中,发明人发现传统技术至少存在如下问题:摄像镜头在组装的过程中,多个透镜之间容易相互碰撞,导致组装过程中透镜的损坏,降低摄像镜头的组装良率,进而导致摄像镜头的制造成本增加。技术实现要素:基于此,有必要针对组装过程中多个透镜之间容易相互碰撞的问题,提供一种光学系统、取像模组及电子设备。一种光学系统,由物侧至像侧依次包括:具有正屈折力的第一透镜;具有负屈折力的第二透镜;具有屈折力的第三透镜;具有正屈折力的第四透镜,所述第四透镜的物侧面及像侧面均为非球面,且所述第四透镜的物侧面及像侧面中至少一个存在反曲点;具有负屈折力的第五透镜;且所述光学系统满足以下条件式:0.5≤et8/ct8≤1.2;其中,et8为所述第四透镜的像侧面及所述第五透镜的物侧面组成的空气透镜的边缘厚度,ct8为所述第四透镜的像侧面至所述第五透镜的物侧面于光轴上的距离。上述光学系统,满足上述条件式时,能够对所述第四透镜的像侧面及所述第五透镜的物侧面进行合理配置,使所述第四透镜及所述第五透镜于光轴上的空气间隔适中,有利于节省所述第四透镜及所述第五透镜之间的连接元件,降低所述光学系统的制造成本。另外,也能够使所述第四透镜及所述第五透镜之间于光轴上的空气间隔不会过小,进而使组装过程中所述第四透镜及所述第五透镜之间不易相互碰撞,同时能够避免所述光学系统对所述第四透镜与所述第五透镜之间的空气间隔的敏感度过大,从而容易降低所述光学系统的成像质量,且不利于提升所述光学系统的组装良率。并且,满足上述条件式时,也能够防止所述第四透镜及所述第五透镜之间于光轴上的空气间隔过大而导致偏心敏感度的增大。在其中一个实施例中,所述光学系统满足以下条件式:0.3≤f/f45≤0.8;其中,f为所述光学系统的总有效焦距,f45为所述第四透镜及所述第五透镜的组合焦距。满足上述条件式时,能够对所述光学系统的总有效焦距以及所述第四透镜与所述第五透镜的组合焦距进行合理配置,以提升所述光学系统对光线的会聚能力,进而缩短所述光学系统的系统总长。同时,所述第四透镜提供的正屈折力以及所述第五透镜提供的负屈折力也能够校正所述光学系统的球差,提升所述光学系统的成像质量。在其中一个实施例中,所述第一透镜的物侧面为凸面,且所述光学系统满足以下条件式:3.0≤r2/r1≤4.0;其中,r2为所述第一透镜的像侧面于光轴处的曲率半径,r1为所述第一透镜的物侧面于光轴处的曲率半径。满足上述条件式时,能够对所述第一透镜进行合理配置,使所述第一透镜的物侧面为凸面,以增强所述第一透镜的正屈折力,进而缩短所述光学系统的系统总长,有利于实现小型化设计。同时也能够避免所述第一透镜的物侧面及像侧面于光轴处的曲率过大而产生较严重的像差,导致所述光学系统的成像质量降低。在其中一个实施例中,所述光学系统满足以下条件式:1.0≤(ct1+ct2)/(t12+t23)≤1.9;其中,ct1为所述第一透镜于光轴上的厚度,ct2为所述第二透镜于光轴上的厚度,t12为所述第一透镜的像侧面至所述第二透镜的物侧面于光轴上的距离,t23为所述第二透镜的像侧面至所述第三透镜的物侧面于光轴上的距离。满足上述条件式时,能够使所述第一透镜、所述第二透镜及所述第三透镜中相邻两透镜之间于光轴上有足够的空气间隔,避免在组装过程中所述第一透镜、所述第二透镜及所述第三透镜中相邻两透镜之间相互碰撞,进而提高所述光学系统的组装良率。同时,也能够增大所述第一透镜及所述第二透镜的中心厚度,使所述光学系统中各透镜的排布更合理,且有利于降低所述光学系统的敏感度。另外,也能够防止组装时所述第一透镜、所述第二透镜及所述第三透镜的偏心及倾斜敏感度的增加。在其中一个实施例中,所述光学系统满足以下条件式:1≤ct4/|sag41|≤220;其中,ct4为所述第四透镜于光轴上的厚度,sag41为所述第四透镜的物侧面与光轴的交点至所述第四透镜的物侧面的最大有效孔径位置于平行于光轴方向上的距离。满足上述条件式时,能够对所述第四透镜进行合理配置,有利于所述第四透镜的制造与成型,提升所述第四透镜的成型良率。同时使所述第四透镜能够更好地修正位于所述第四透镜的物侧各透镜产生的场曲,进而更好地平衡所述光学系统的场曲,提升所述光学系统的成像质量。当ct4/|sag41|<1时,所述第四透镜的物侧面于圆周处的面型变化过于平缓,使所述第四透镜对轴外视场光线的偏折能力不足,不利于所述光学系统的畸变和场曲等像差的校正。当ct4/|sag41|>220时,所述第四透镜的物侧面于圆周处的面型过度弯曲,不利于所述第四透镜的成型,导致所述第四透镜成型良率下降。在其中一个实施例中,所述光学系统满足以下条件式:0.4≤bfl≤0.8;其中,bfl为所述第五透镜的像侧面至所述光学系统的成像面于平行于光轴方向上的最短距离。满足上述条件式时,能够对bfl的数值进行合理配置,以缩短所述光学系统的系统总长,有利于实现小型化设计。同时也能够使所述第五透镜的像侧面至所述光学系统的成像面之间具有足够的调焦范围。在其中一个实施例中,所述光学系统满足以下条件式:0≤vd3-vd2≤40;其中,vd2为所述第二透镜在d线(587.56nm)下的阿贝数,vd3为所述第三透镜在d线下的阿贝数。满足上述条件式时,能够对所述第二透镜以及所述第三透镜在d线下的阿贝数进行合理配置,以使所述第二透镜及所述第三透镜能够有效修正所述光学系统的色差,提高所述光学系统的成像清晰度,进而提升所述光学系统的成像质量。在其中一个实施例中,所述光学系统满足以下条件式:5.5≤f3/f1≤45;其中,f1为所述第一透镜的有效焦距,f3为所述第三透镜的有效焦距。满足上述条件式时,能够对所述第一透镜以及所述第三透镜的有效焦距进行合理配置,以更好地校正所述光学系统的球差,提升所述光学系统的成像质量。当f3/f1<5.5时,所述第三透镜的正屈折力过大,导致所述第三透镜的像差校正过度,进而导致所述光学系统的成像质量下降。当f3/f1>45时,所述第三透镜为所述光学系统提供的正屈折力不足,导致所述光学系统的球差校正困难。在其中一个实施例中,所述第二透镜的像侧面于近轴处为凹面,且所述光学系统满足以下条件式:-9≤r3/r4≤-2;其中,r3为所述第二透镜的物侧面于光轴处的曲率半径,r4为所述第二透镜的像侧面于光轴处的曲率半径。满足上述条件式时,能够对所述第二透镜的面型进行合理配置,以降低所述第二透镜的公差敏感度,提升所述第二透镜的成型良率。同时能够使所述第二透镜的像侧面于近轴处为凹面,以有效扩大所述光学系统的最大视场角,且有利于校正所述光学系统的像差,进而提升所述光学系统的成像质量。附图说明图1为本申请第一实施例中的光学系统的示意图;图2为本申请第一实施例中的光学系统的球差图、像散图及畸变图;图3为本申请第二实施例中的光学系统的示意图;图4为本申请第二实施例中的光学系统的球差图、像散图及畸变图;图5为本申请第三实施例中的光学系统的示意图;图6为本申请第三实施例中的光学系统的球差图、像散图及畸变图;图7为本申请第四实施例中的光学系统的示意图;图8为本申请第四实施例中的光学系统的球差图、像散图及畸变图;图9为本申请第五实施例中的光学系统的示意图;图10为本申请第五实施例中的光学系统的球差图、像散图及畸变图;图11为本申请第六实施例中的光学系统的示意图;图12为本申请第六实施例中的光学系统的球差图、像散图及畸变图;图13为本申请一实施例中的镜头组件的示意图;图14为本申请一实施例中的取像模组的示意图;图15为本申请一实施例中的电子设备的示意图。具体实施方式为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图对本发明的具体实施方式做详细的说明。在下面的描述中阐述了很多具体细节以便于充分理解本发明。但是本发明能够以很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似改进,因此本发明不受下面公开的具体实施例的限制。在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。需要说明的是,当元件被称为“固定于”或“设置于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“上”、“下”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。请参见图1,在本申请的一些实施例中,光学系统100由物侧到像侧依次包括第一透镜l1、第二透镜l2、第三透镜l3、第四透镜l4以及第五透镜l5。具体地,第一透镜l1包括物侧面s1及像侧面s2,第二透镜l2包括物侧面s3及像侧面s4,第三透镜l3包括物侧面s5及像侧面s6,第四透镜l4包括物侧面s7及像侧面s8,第五透镜l5包括物侧面s9及像侧面s10。其中,第一透镜l1具有正屈折力。第二透镜l2具有负屈折力。第三透镜l3具有屈折力。第四透镜l4具有正屈折力,第四透镜l4的物侧面s7及像侧面s8均为非球面,且第四透镜l4的物侧面s7及像侧面s8中至少一个存在反曲点。第五透镜l5具有负屈折力。另外,在一些实施例中,光学系统100设置有光阑sto,光阑sto可设置于第一透镜l1的物侧或设置于第一透镜l1与第二透镜l2之间。在一些实施例中,光学系统100还包括设置于第五透镜l5像侧的红外滤光片l6,红外滤光片l6包括物侧面s11及像侧面s12。进一步地,光学系统100还包括位于第五透镜l5像侧的像面s13,像面s13即为光学系统100的成像面,入射光经第一透镜l1、第二透镜l2、第三透镜l3、第四透镜l4以及第五透镜l5调节后能够成像于像面s13。值得注意的是,红外滤光片l6可为红外截止滤光片,用于滤除干扰光,防止干扰光到达光学系统100的像面s13而影响正常成像。在一些实施例中,光学系统100的各透镜的物侧面和像侧面均为非球面。非球面结构的采用能够提高透镜设计的灵活性,并有效地校正球差,改善成像质量。在另一些实施例中,除第四透镜l4外,光学系统100的其余各透镜的物侧面和像侧面也可以均为球面。需要注意的是,上述实施例仅是对本申请的一些实施例的举例,在一些实施例中,除第四透镜l4外,光学系统100中其余各透镜的表面可以是非球面或球面的任意组合。在一些实施例中,光学系统100中的各透镜的材质可以均为玻璃或均为塑料。采用塑料材质的透镜能够减少光学系统100的重量并降低生产成本。而采用玻璃材质的透镜使光学系统100具备优良的光学性能以及较高的耐温性能。需要注意的是,光学系统100中各透镜的材质也可以为玻璃和塑料的任意组合,并不一定要是均为玻璃或均为塑料。需要注意的是,第一透镜l1并不意味着只存在一片透镜,在一些实施例中,第一透镜l1中也可以存在两片或多片透镜,两片或多片透镜能够形成胶合透镜,胶合透镜最靠近物侧的表面可视为物侧面s1,最靠近像侧的表面可视为像侧面s2。或者,第一透镜l1中的各透镜之间并不形成胶合透镜,但各透镜之间的距离相对固定,此时最靠近物侧的透镜的物侧面为物侧面s1,最靠近像侧的透镜的像侧面为像侧面s2。另外,一些实施例中的第二透镜l2、第三透镜l3、第四透镜l4或第五透镜l5中的透镜数量也可大于或等于两片,且任意相邻透镜之间可以形成胶合透镜,也可以为非胶合透镜。进一步地,在一些实施例中,光学系统100满足条件式:0.5≤et8/ct8≤1.2;其中,et8为第四透镜l4的像侧面s8及第五透镜l5的物侧面s9组成的空气透镜的边缘厚度,ct8为第四透镜l4的像侧面s8至第五透镜l5的物侧面s9于光轴上的距离。具体地,et8/ct8可以为:0.556、0.578、0.631、0.684、0.712、0.754、0.893、0.902、0.955或1.034。满足上述条件式时,能够对第四透镜l4的像侧面s8及第五透镜l5的物侧面s9进行合理配置,使第四透镜l4及第五透镜l5于光轴上的空气间隔适中,有利于节省第四透镜l4及第五透镜l5之间的连接元件,降低光学系统100的制造成本。另外,也能够使第四透镜l4及第五透镜l5之间于光轴上的空气间隔不会过小,进而使组装过程中第四透镜l4及第五透镜l5之间不易相互碰撞,同时能够避免光学系统100对第四透镜l4与第五透镜l5之间的空气间隔的敏感度过大,从而容易降低光学系统100的成像质量,且不利于提升光学系统100的组装良率。并且,满足上述条件式时,也能够防止第四透镜l4及第五透镜l5之间于光轴上的空气间隔过大而导致偏心敏感度的增大。在一些实施例中,光学系统满足条件式:0.3≤f/f45≤0.8;其中,f为光学系统100的总有效焦距,f45为第四透镜l4及第五透镜l5的组合焦距。具体地,f/f45可以为:0.434、0.439、0.445、0.467、0.471、0.496、0.521、0.539、0.552或0.599。满足上述条件式时,能够对光学系统100的总有效焦距以及第四透镜l4与第五透镜l5的组合焦距进行合理配置,以提升光学系统100对光线的会聚能力,进而缩短光学系统100的系统总长。同时,第四透镜l4提供的正屈折力以及第五透镜l5提供的负屈折力也能够校正光学系统100的球差,提升光学系统100的成像质量。在一些实施例中,光学系统满足条件式:3.0≤r2/r1≤4.0;其中,r2为第一透镜l1的像侧面s2于光轴处的曲率半径,r1为第一透镜l1的物侧面s1于光轴处的曲率半径。具体地,r2/r1可以为:3.286、3.325、3.374、3.416、3.495、3.528、3.580、3.610、3.684或3.791。满足上述条件式时,能够对第一透镜l1进行合理配置,使第一透镜l1的物侧面s1为凸面,以增强第一透镜l1的正屈折力,进而缩短光学系统100的系统总长,有利于实现小型化设计。同时也能够避免第一透镜l1的物侧面s1及像侧面s2于光轴处的曲率过大而产生较严重的像差,导致光学系统100的成像质量降低。在一些实施例中,光学系统满足条件式:1.0≤(ct1+ct2)/(t12+t23)≤1.9;其中,ct1为第一透镜l1于光轴上的厚度,ct2为第二透镜l2于光轴上的厚度,t12为第一透镜l1的像侧面s2至第二透镜l2的物侧面s3于光轴上的距离,t23为第二透镜l2的像侧面s4至第三透镜l3的物侧面s5于光轴上的距离。具体地,(ct1+ct2)/(t12+t23)可以为:1.197、1.202、1.237、1.298、1.354、1.381、1.437、1.512、1.567或1.67。满足上述条件式时,能够使第一透镜l1、第二透镜l2及第三透镜l3中相邻两透镜之间于光轴上有足够的空气间隔,避免在组装过程中第一透镜l1、第二透镜l2及第三透镜l3中相邻两透镜之间相互碰撞,进而提高光学系统100的组装良率。同时,也能够增大第一透镜l1及第二透镜l2的中心厚度,使光学系统100中各透镜的排布更合理,且有利于降低光学系统100的敏感度。另外,也能够防止组装时第一透镜l1、第二透镜l2及第三透镜l3的偏心及倾斜敏感度的增加。在一些实施例中,光学系统满足条件式:1≤ct4/|sag41|≤220;其中,ct4为第四透镜l4于光轴上的厚度,sag41为第四透镜l4的物侧面s9与光轴的交点至第四透镜l4的物侧面s9的最大有效孔径位置于平行于光轴方向上的距离。具体地,ct4/|sag41|可以为:2.623、10.547、27.856、60.735、90.221、115.412、130.632、165.331、192.856或208.333。满足上述条件式时,能够对第四透镜l4进行合理配置,有利于第四透镜l4的制造与成型,提升第四透镜l4的成型良率。同时使第四透镜l4能够更好地修正位于第四透镜l4的物侧各透镜产生的场曲,进而更好地平衡光学系统100的场曲,提升光学系统100的成像质量。当ct4/|sag41|<1时,第四透镜l4的物侧面s9于圆周处的面型变化过于平缓,使第四透镜l4对轴外视场光线的偏折能力不足,不利于光学系统100的畸变和场曲等像差的校正。当ct4/|sag41|>220时,第四透镜l4的物侧面s9于圆周处的面型过度弯曲,不利于第四透镜l4的成型,导致第四透镜l4成型良率下降。在一些实施例中,光学系统满足条件式:0.4≤bfl≤0.8;其中,bfl为第五透镜l5的像侧面s10至光学系统100的成像面于平行于光轴方向上的最短距离。具体地,bfl可以为:0.425、0.456、0.487、0.501、0.528、0.594、0.655、0.681、0.723或0.771。满足上述条件式时,能够对bfl的数值进行合理配置,以缩短光学系统100的系统总长,有利于实现小型化设计。同时也能够使第五透镜l5的像侧面s10至光学系统100的成像面之间具有足够的调焦范围。在一些实施例中,光学系统满足条件式:0≤vd3-vd2≤40;其中,vd2为第二透镜l2在d线下的阿贝数,vd3为第三透镜l3在d线下的阿贝数。具体地,vd3-vd2可以为:0、2.64、9.58、15.64、17.31、20.23、25.93、28.25、31.99或35.37。满足上述条件式时,能够对第二透镜l2以及第三透镜l3在d线下的阿贝数进行合理配置,以使第二透镜l2及第三透镜l3能够有效修正光学系统100的色差,提高光学系统100的成像清晰度,进而提升光学系统100的成像质量。在一些实施例中,光学系统满足条件式:5.5≤f3/f1≤45;其中,f1为第一透镜l1的有效焦距,f3为第三透镜l3的有效焦距。具体地,f3/f1可以为:7.492、13.584、19.335、21.502、25.387、29.368、31.228、34.647、38.984或41.412。满足上述条件式时,能够对第一透镜l1以及第三透镜l3的有效焦距进行合理配置,以更好地校正光学系统100的球差,提升光学系统100的成像质量。当f3/f1<5.5时,第三透镜l3的正屈折力过大,导致第三透镜l3的像差校正过度,进而导致光学系统100的成像质量下降。当f3/f1>45时,第三透镜l3为光学系统100提供的正屈折力不足,导致光学系统100的球差校正困难。在一些实施例中,光学系统满足条件式:-9≤r3/r4≤-2;其中,r3为第二透镜l2的物侧面s3于光轴处的曲率半径,r4为第二透镜l2的像侧面s4于光轴处的曲率半径。具体地,r3/r4可以为:-7.23、-6.95、-6.24、-5.32、-4.99、-4.65、-4.33、-4.01、-3.96或-3.81。满足上述条件式时,能够对第二透镜l2的面型进行合理配置,以降低第二透镜l2的公差敏感度,提升第二透镜l2的成型良率。同时能够使第二透镜l2的像侧面s4于近轴处为凹面,以有效扩大光学系统100的最大视场角,且有利于校正光学系统100的像差,进而提升光学系统100的成像质量。根据上述各实施例的描述,以下提出更为具体的实施例及附图予以详细说明。第一实施例请参见图1和图2,图1为第一实施例中的光学系统100的示意图,光学系统100由物侧至像侧依次包括具有正屈折力的第一透镜l1、光阑sto、具有负屈折力的第二透镜l2、具有正屈折力的第三透镜l3、具有正屈折力的第四透镜l4以及具有负屈折力的第五透镜l5。图2由左至右依次为第一实施例中光学系统100的球差、像散及畸变的曲线图,其中像散图和畸变图的参考波长为587.5618nm,其他实施例相同。第一透镜l1的物侧面s1于近轴处为凸面,于圆周处为凸面;第一透镜l1的像侧面s2于近轴处为凹面,于圆周处为凹面;第二透镜l2的物侧面s3于近轴处为凹面,于圆周处为凹面;第二透镜l2的像侧面s4于近轴处为凹面,于圆周处为凸面;第三透镜l3的物侧面s5于近轴处为凸面,于圆周处为凹面;第三透镜l3的像侧面s6于近轴处为凹面,于圆周处为凸面;第四透镜l4的物侧面s7于近轴处为凸面,于圆周处为凹面;第四透镜l4的像侧面s8于近轴处为凸面,于圆周处为凸面;第五透镜l5的物侧面s9于近轴处为凸面,于圆周处为凸面;第五透镜l5的像侧面s10于近轴处为凹面,于圆周处为凸面。第一透镜l1、第二透镜l2、第三透镜l3、第四透镜l4以及第五透镜l5的物侧面和像侧面均为非球面。需要注意的是,在本申请中,当描述透镜的一个表面于近轴处(该侧面的中心区域)为凸面时,可理解为该透镜的该表面于光轴附近的区域为凸面。当描述透镜的一个表面于圆周处为凹面时,可理解为该表面在靠近最大有效半径处的区域为凹面。举例而言,当该表面于光轴处为凸面,且于圆周处也为凸面时,该表面由中心(光轴)至边缘方向的形状可以为纯粹的凸面;或者是先由中心的凸面形状过渡到凹面形状,随后在靠近最大有效半径处时变为凸面。此处仅为说明光轴处与圆周处的关系而做出的示例,表面的多种形状结构(凹凸关系)并未完全体现,但其他情况可根据以上示例推导得出。第一透镜l1、第二透镜l2、第三透镜l3、第四透镜l4以及第五透镜l5的材质均为塑料。进一步地,光学系统100满足条件式:et8/ct8=0.700;其中,et8为第四透镜l4的像侧面s8及第五透镜l5的物侧面s9组成的空气透镜的边缘厚度,ct8为第四透镜l4的像侧面s8至第五透镜l5的物侧面s9于光轴上的距离。满足上述条件式时,能够对第四透镜l4的像侧面s8及第五透镜l5的物侧面s9进行合理配置,使第四透镜l4及第五透镜l5于光轴上的空气间隔适中,有利于节省第四透镜l4及第五透镜l5之间的连接元件,降低光学系统100的制造成本。另外,也能够使第四透镜l4及第五透镜l5之间于光轴上的空气间隔不会过小,进而使组装过程中第四透镜l4及第五透镜l5之间不易相互碰撞,同时能够避免光学系统100对第四透镜l4与第五透镜l5之间的空气间隔的敏感度过大,从而容易降低光学系统100的成像质量,且不利于提升光学系统100的组装良率。并且,满足上述条件式时,也能够防止第四透镜l4及第五透镜l5之间于光轴上的空气间隔过大而导致偏心敏感度的增大。光学系统满足条件式:f/f45=0.434;其中,f为光学系统100的总有效焦距,f45为第四透镜l4及第五透镜l5的组合焦距。满足上述条件式时,能够对光学系统100的总有效焦距以及第四透镜l4与第五透镜l5的组合焦距进行合理配置,以提升光学系统100对光线的会聚能力,进而缩短光学系统100的系统总长。同时,第四透镜l4提供的正屈折力以及第五透镜l5提供的负屈折力也能够校正光学系统100的球差,提升光学系统100的成像质量。光学系统满足条件式:r2/r1=3.791;其中,r2为第一透镜l1的像侧面s2于光轴处的曲率半径,r1为第一透镜l1的物侧面s1于光轴处的曲率半径。满足上述条件式时,能够对第一透镜l1进行合理配置,使第一透镜l1的物侧面s1为凸面,以增强第一透镜l1的正屈折力,进而缩短光学系统100的系统总长,有利于实现小型化设计。同时也能够避免第一透镜l1的物侧面s1及像侧面s2于光轴处的曲率过大而产生较严重的像差,导致光学系统100的成像质量降低。光学系统满足条件式:(ct1+ct2)/(t12+t23)=1.67;其中,ct1为第一透镜l1于光轴上的厚度,ct2为第二透镜l2于光轴上的厚度,t12为第一透镜l1的像侧面s2至第二透镜l2的物侧面s3于光轴上的距离,t23为第二透镜l2的像侧面s4至第三透镜l3的物侧面s5于光轴上的距离。满足上述条件式时,能够使第一透镜l1、第二透镜l2及第三透镜l3中相邻两透镜之间于光轴上有足够的空气间隔,避免在组装过程中第一透镜l1、第二透镜l2及第三透镜l3中相邻两透镜之间相互碰撞,进而提高光学系统100的组装良率。同时,也能够增大第一透镜l1及第二透镜l2的中心厚度,使光学系统100中各透镜的排布更合理,且有利于降低光学系统100的敏感度。另外,也能够防止组装时第一透镜l1、第二透镜l2及第三透镜l3的偏心及倾斜敏感度的增加。光学系统满足条件式:ct4/|sag41|=22.583;其中,ct4为第四透镜l4于光轴上的厚度,sag41为第四透镜l4的物侧面s9与光轴的交点至第四透镜l4的物侧面s9的最大有效孔径位置于平行于光轴方向上的距离。满足上述条件式时,能够对第四透镜l4进行合理配置,有利于第四透镜l4的制造与成型,提升第四透镜l4的成型良率。同时使第四透镜l4能够更好地修正位于第四透镜l4的物侧各透镜产生的场曲,进而更好地平衡光学系统100的场曲,提升光学系统100的成像质量。当ct4/|sag41|<1时,第四透镜l4的物侧面s9于圆周处的面型变化过于平缓,使第四透镜l4对轴外视场光线的偏折能力不足,不利于光学系统100的畸变和场曲等像差的校正。当ct4/|sag41|>220时,第四透镜l4的物侧面s9于圆周处的面型过度弯曲,不利于第四透镜l4的成型,导致第四透镜l4成型良率下降。光学系统满足条件式:bfl=0.556;其中,bfl为第五透镜l5的像侧面s10至光学系统100的成像面于平行于光轴方向上的最短距离。满足上述条件式时,能够对bfl的数值进行合理配置,以缩短光学系统100的系统总长,有利于实现小型化设计。同时也能够使第五透镜l5的像侧面s10至光学系统100的成像面之间具有足够的调焦范围。光学系统满足条件式:vd3-vd2=32.23;其中,vd2为第二透镜l2在d线下的阿贝数,vd3为第三透镜l3在d线下的阿贝数。满足上述条件式时,能够对第二透镜l2以及第三透镜l3在d线下的阿贝数进行合理配置,以使第二透镜l2及第三透镜l3能够有效修正光学系统100的色差,提高光学系统100的成像清晰度,进而提升光学系统100的成像质量。光学系统满足条件式:f3/f1=9.167;其中,f1为第一透镜l1的有效焦距,f3为第三透镜l3的有效焦距。满足上述条件式时,能够对第一透镜l1以及第三透镜l3的有效焦距进行合理配置,以更好地校正光学系统100的球差,提升光学系统100的成像质量。当f3/f1<5.5时,第三透镜l3的正屈折力过大,导致第三透镜l3的像差校正过度,进而导致光学系统100的成像质量下降。当f3/f1>45时,第三透镜l3为光学系统100提供的正屈折力不足,导致光学系统100的球差校正困难。光学系统满足条件式:r3/r4=-4.83;其中,r3为第二透镜l2的物侧面s3于光轴处的曲率半径,r4为第二透镜l2的像侧面s4于光轴处的曲率半径。满足上述条件式时,能够对第二透镜l2的面型进行合理配置,以降低第二透镜l2的公差敏感度,提升第二透镜l2的成型良率。同时能够使第二透镜l2的像侧面s4为凹面,以有效扩大光学系统100的最大视场角,且有利于校正光学系统100的像差,进而提升光学系统100的成像质量。另外,光学系统100的各项参数由表1给出。其中,表1中的像面s13可理解为光学系统100的成像面。由物面(图未示出)至像面s13的各元件依次按照表1从上至下的各元件的顺序排列。表1中的y半径为相应面序号的物侧面或像侧面于光轴处的曲率半径。面序号1和面序号2分别为第一透镜l1的物侧面s1和像侧面s2,即同一透镜中,面序号较小的表面为物侧面,面序号较大的表面为像侧面。第一透镜l1的“厚度”参数列中的第一个数值为该透镜于光轴上的厚度,第二个数值为该透镜的像侧面至像侧方向的后一透镜的物侧面于光轴上的距离。需要注意的是,在该实施例及以下各实施例中,光学系统100也可不设置红外滤光片l6,但此时第五透镜l5的像侧面s10至像面s13的距离保持不变。在第一实施例中,光学系统100的总有效焦距f=2.79mm,光圈数fno=2.07,最大视场角的一半hfov=39.4°,光学系统100的系统总长ttl=3.678mm。且各透镜的焦距、折射率和阿贝数为d线(587.56nm)下的数值,其他实施例也相同。表1进一步地,光学系统100各透镜像侧面或物侧面的非球面系数由表2给出。其中,面序号从1-10分别表示像侧面或物侧面s1-s10。而从上到下的k-a10分别表示非球面系数的类型,其中,k表示圆锥系数,a4表示四次非球面系数,a6表示六次非球面系数,a8表示八次非球面系数,以此类推。另外,非球面系数公式如下:其中,z为非球面上相应点到与表面顶点相切的平面的距离,r为非球面上相应点到光轴的距离,c为非球面顶点的曲率,k为圆锥系数,ai为非球面面型公式中与第i项高次项相对应的系数。表2第二实施例请参见图3和图4,图3为第二实施例中的光学系统100的示意图,光学系统100由物侧至像侧依次包括具有正屈折力的第一透镜l1、光阑sto、具有负屈折力的第二透镜l2、具有正屈折力的第三透镜l3、具有正屈折力的第四透镜l4以及具有负屈折力的第五透镜l5。图4由左至右依次为第二实施例中光学系统100的球差、像散及畸变的曲线图。第一透镜l1的物侧面s1于近轴处为凸面,于圆周处为凸面;第一透镜l1的像侧面s2于近轴处为凹面,于圆周处为凹面;第二透镜l2的物侧面s3于近轴处为凹面,于圆周处为凹面;第二透镜l2的像侧面s4于近轴处为凹面,于圆周处为凸面;第三透镜l3的物侧面s5于近轴处为凸面,于圆周处为凸面;第三透镜l3的像侧面s6于近轴处为凹面,于圆周处为凹面;第四透镜l4的物侧面s7于近轴处为凸面,于圆周处为凹面;第四透镜l4的像侧面s8于近轴处为凸面,于圆周处为凸面;第五透镜l5的物侧面s9于近轴处为凸面,于圆周处为凸面;第五透镜l5的像侧面s10于近轴处为凹面,于圆周处为凸面。第一透镜l1、第二透镜l2、第三透镜l3、第四透镜l4以及第五透镜l5的物侧面和像侧面均为非球面。第一透镜l1、第二透镜l2、第三透镜l3、第四透镜l4以及第五透镜l5的材质均为塑料。另外,光学系统100的各项参数由表3给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。表3进一步地,光学系统100各透镜像侧面或物侧面的非球面系数由表4给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。表4并且,根据上述所提供的各参数信息,可推得以下数据:et8/ct80.897bfl0.567f/f450.581vd3-vd235.37r2/r13.286f3/f17.492(ct1+ct2)/(t12+t23)1.657r3/r4-3.81ct4/|sag41|208.333第三实施例请参见图5和图6,图5为第三实施例中的光学系统100的示意图,光学系统100由物侧至像侧依次包括具有正屈折力的第一透镜l1、光阑sto、具有负屈折力的第二透镜l2、具有正屈折力的第三透镜l3、具有正屈折力的第四透镜l4以及具有负屈折力的第五透镜l5。图6由左至右依次为第三实施例中光学系统100的球差、像散及畸变的曲线图。第一透镜l1的物侧面s1于近轴处为凸面,于圆周处为凸面;第一透镜l1的像侧面s2于近轴处为凹面,于圆周处为凹面;第二透镜l2的物侧面s3于近轴处为凹面,于圆周处为凹面;第二透镜l2的像侧面s4于近轴处为凹面,于圆周处为凸面;第三透镜l3的物侧面s5于近轴处为凸面,于圆周处为凹面;第三透镜l3的像侧面s6于近轴处为凹面,于圆周处为凸面;第四透镜l4的物侧面s7于近轴处为凸面,于圆周处为凹面;第四透镜l4的像侧面s8于近轴处为凸面,于圆周处为凸面;第五透镜l5的物侧面s9于近轴处为凸面,于圆周处为凸面;第五透镜l5的像侧面s10于近轴处为凹面,于圆周处为凸面。第一透镜l1、第二透镜l2、第三透镜l3、第四透镜l4以及第五透镜l5的物侧面和像侧面均为非球面。第一透镜l1、第二透镜l2、第三透镜l3、第四透镜l4以及第五透镜l5的材质均为塑料。另外,光学系统100的各项参数由表5给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。表5进一步地,光学系统100各透镜像侧面或物侧面的非球面系数由表6给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。表6并且,根据上述所提供的各参数信息,可推得以下数据:et8/ct81.034bfl0.523f/f450.509vd3-vd234.22r2/r13.342f3/f121.946(ct1+ct2)/(t12+t23)1.215r3/r4-6.7ct4/|sag41|109.000第四实施例请参见图7和图8,图7为第四实施例中的光学系统100的示意图,光学系统100由物侧至像侧依次包括具有正屈折力的第一透镜l1、光阑sto、具有负屈折力的第二透镜l2、具有正屈折力的第三透镜l3、具有正屈折力的第四透镜l4以及具有负屈折力的第五透镜l5。图8由左至右依次为第四实施例中光学系统100的球差、像散及畸变的曲线图。第一透镜l1的物侧面s1于近轴处为凸面,于圆周处为凸面;第一透镜l1的像侧面s2于近轴处为凹面,于圆周处为凹面;第二透镜l2的物侧面s3于近轴处为凹面,于圆周处为凹面;第二透镜l2的像侧面s4于近轴处为凹面,于圆周处为凸面;第三透镜l3的物侧面s5于近轴处为凸面,于圆周处为凹面;第三透镜l3的像侧面s6于近轴处为凹面,于圆周处为凸面;第四透镜l4的物侧面s7于近轴处为凸面,于圆周处为凹面;第四透镜l4的像侧面s8于近轴处为凸面,于圆周处为凸面;第五透镜l5的物侧面s9于近轴处为凸面,于圆周处为凸面;第五透镜l5的像侧面s10于近轴处为凹面,于圆周处为凸面。第一透镜l1、第二透镜l2、第三透镜l3、第四透镜l4以及第五透镜l5的物侧面和像侧面均为非球面。第一透镜l1、第二透镜l2、第三透镜l3、第四透镜l4以及第五透镜l5的材质均为塑料。另外,光学系统100的各项参数由表7给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。表7进一步地,光学系统100各透镜像侧面或物侧面的非球面系数由表8给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。表8并且,根据上述所提供的各参数信息,可推得以下数据:et8/ct80.556bfl0.658f/f450.530vd3-vd21.99r2/r13.376f3/f141.412(ct1+ct2)/(t12+t23)1.221r3/r4-5.86ct4/|sag41|8.235第五实施例请参见图9和图10,图9为第五实施例中的光学系统100的示意图,光学系统100由物侧至像侧依次包括具有正屈折力的第一透镜l1、光阑sto、具有负屈折力的第二透镜l2、具有正屈折力的第三透镜l3、具有正屈折力的第四透镜l4以及具有负屈折力的第五透镜l5。图10由左至右依次为第五实施例中光学系统100的球差、像散及畸变的曲线图。第一透镜l1的物侧面s1于近轴处为凸面,于圆周处为凸面;第一透镜l1的像侧面s2于近轴处为凹面,于圆周处为凹面;第二透镜l2的物侧面s3于近轴处为凹面,于圆周处为凹面;第二透镜l2的像侧面s4于近轴处为凹面,于圆周处为凸面;第三透镜l3的物侧面s5于近轴处为凸面,于圆周处为凹面;第三透镜l3的像侧面s6于近轴处为凹面,于圆周处为凸面;第四透镜l4的物侧面s7于近轴处为凸面,于圆周处为凹面;第四透镜l4的像侧面s8于近轴处为凸面,于圆周处为凸面;第五透镜l5的物侧面s9于近轴处为凸面,于圆周处为凸面;第五透镜l5的像侧面s10于近轴处为凹面,于圆周处为凸面。第一透镜l1、第二透镜l2、第三透镜l3、第四透镜l4以及第五透镜l5的物侧面和像侧面均为非球面。第一透镜l1、第二透镜l2、第三透镜l3、第四透镜l4以及第五透镜l5的材质均为塑料。另外,光学系统100的各项参数由表9给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。表9进一步地,光学系统100各透镜像侧面或物侧面的非球面系数由表10给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。表10并且,根据上述所提供的各参数信息,可推得以下数据:et8/ct80.925bfl0.771f/f450.599vd3-vd20.00r2/r13.300f3/f119.515(ct1+ct2)/(t12+t23)1.197r3/r4-7.23ct4/|sag41|9.319第六实施例请参见图11和图12,图11为第六实施例中的光学系统100的示意图,光学系统100由物侧至像侧依次包括光阑sto、具有正屈折力的第一透镜l1、具有负屈折力的第二透镜l2、具有正屈折力的第三透镜l3、具有正屈折力的第四透镜l4以及具有负屈折力的第五透镜l5。图12由左至右依次为第六实施例中光学系统100的球差、像散及畸变的曲线图。第一透镜l1的物侧面s1于近轴处为凸面,于圆周处为凸面;第一透镜l1的像侧面s2于近轴处为凹面,于圆周处为凹面;第二透镜l2的物侧面s3于近轴处为凹面,于圆周处为凹面;第二透镜l2的像侧面s4于近轴处为凹面,于圆周处为凸面;第三透镜l3的物侧面s5于近轴处为凸面,于圆周处为凸面;第三透镜l3的像侧面s6于近轴处为凹面,于圆周处为凸面;第四透镜l4的物侧面s7于近轴处为凸面,于圆周处为凹面;第四透镜l4的像侧面s8于近轴处为凸面,于圆周处为凸面;第五透镜l5的物侧面s9于近轴处为凸面,于圆周处为凸面;第五透镜l5的像侧面s10于近轴处为凹面,于圆周处为凸面。第一透镜l1、第二透镜l2、第三透镜l3、第四透镜l4以及第五透镜l5的物侧面和像侧面均为非球面。第一透镜l1、第二透镜l2、第三透镜l3、第四透镜l4以及第五透镜l5的材质均为塑料。另外,光学系统100的各项参数由表11给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。表11进一步地,光学系统100各透镜像侧面或物侧面的非球面系数由表12给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。表12并且,根据上述所提供的各参数信息,可推得以下数据:et8/ct80.967bfl0.425f/f450.506vd3-vd232.33r2/r13.547f3/f19.184(ct1+ct2)/(t12+t23)1.571r3/r4-3.89ct4/|sag41|2.623请参见图13,在一些实施例中,光学系统100可与镜筒120组装形成镜头组件110,光学系统100设置于镜筒120内。镜筒120开设有通光孔140,且在镜筒120的轴向上,第一透镜l1、第二透镜l2、第三透镜l3、第四透镜l4以及第五透镜l5依次排列,其中,第一透镜l1最靠近通光孔140,光线从通光孔140处进入光学系统100内。各透镜采用胶粘等方式与镜筒120固定,且各透镜之间通过隔片130隔开。请参见图14,在一些实施例中,光学系统100可与感光元件210组装形成取像模组200。此时,感光元件210的感光面可视为光学系统100的像面s13。取像模组200还可设置有红外滤光片l6,红外滤光片l6设置于第五透镜l5的像侧面s10与像面s13之间。具体地,感光元件210可以为电荷耦合元件(chargecoupleddevice,ccd)或互补金属氧化物半导体器件(complementarymetal-oxidesemiconductorsensor,cmossensor)。在取像模组200中采用上述光学系统100,能够使第四透镜l4及第五透镜l5之间于光轴上的空气间隔不会过小,进而使组装过程中第四透镜l4与第五透镜l5之间不易相互碰撞,提升取像模组200的组装良率。请参见图14和图15,在一些实施例中,取像模组200可运用于电子设备300中,电子设备包括壳体310,取像模组200设置于壳体310。具体地,电子设备300可以为但不限于便携电话机、视频电话、智能手机、电子书籍阅读器、行车记录仪等车载摄像设备或智能手表等可穿戴装置。在电子设备300中采用取像模组200,在组装过程中第四透镜l4与第五透镜l5之间不易相互碰撞,提升电子设备300中的取像模组200的组装良率。以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。当前第1页12
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1