光学解偏光器及将光束解偏光的方法

文档序号:2768961阅读:310来源:国知局
专利名称:光学解偏光器及将光束解偏光的方法
技术领域
本发明涉及一种光学解偏光器及将光束解偏光的方法,特别是涉及一种可应用在通讯、传感器、光学仪器及其它领域的解偏光器及将光束解偏光的方法。
许多使用在通讯及仪器上的光学装置对光线的偏振光状态非常敏感,例如交换机、耦合器及调变器。使用这种光学装置的通讯系统及仪器的性能会因为偏振光状态(以下称SOP)的改变而改变。SOP的起伏会造成光纤通讯系统中的信号\噪声比降低或降低光纤仪器的灵敏度及精确性。
当光线通过光纤光缆时(以下简称光纤),光线的最初偏振光不论是椭圆式或线式偏振光,都可能因为影响光纤环境因素的改变而改变。这些环境因素会造成光纤折射率的改变。沿着光纤传输的光线会通过具有不同折射率的区域,因此在光线沿着光纤行进时会改变光线的最初SOP。当光线沿着一媒介行进而改变光线SOP的效应被称为双折射性。在光纤输出端接收到的偏振光可能与光纤入射端光线的最初SOP截然不同。因为双折射性会受到改变的环境因素影响,输出SOP与输入SOP之间便没有可预测的关系。于是造成对SOP敏感的仪器及装置的性能降低,并且很不容易预测或修正。
对双折射性问题的一种解决方式是以偏光性保持光纤(以下简称PMF)来取代一般单模光纤,PMF光纤对环境因素较不敏感,因此在光线沿着光纤传输时,可保持最初的SOP。虽然PMF比单模光纤有更多的优点,但使用起来太昂贵了。一公尺长的PMF要花费10美金以上,几乎是单模光纤的100倍。
虽然单模光纤有双折射性问题,但如果在光纤内加强的入射光线能被解除偏振光,那么双折射性便不会改变SOP。解偏振光光线是所有以等比率偏振光状态光线的组合。在单模光纤中的双折射性会均等地改变所有状态的偏振光,于是保持了沿着光纤传输的光线的解除偏振光。因此,如果使用了解偏光,则双折射性将不会造成系统性能的降低。
使用解偏振光光线的另一个问题是光纤系统中使用的光源具有高偏振光程度(以下称DOP)。DOP的定义为偏光化光功率的分数。如要使用偏振光光源,则要使用一解偏光器来解除DOP。现行的解偏光器具有明显的限制,因此不论在光纤通讯系统及光纤仪器上都会降低其实际的应用性。
其中一种类型的解偏光器为光电场解偏光器,该解偏光器是在利用固定于波导两侧的电极来改变波导内的折射率。改变折射率的同时也改变了通过波导光线的SOP。虽然改变波导的折射率也改变了SOP,但测量到的DOP则由检测器速度而定。在对波导折射率改变的几个循环后,时间平均输出光线显示在平均时间内,没有一个较突出的SOP。这种解偏振光形式被称为假-解偏振光或时间-平均解偏振光,且其缺点为当光线在窄的时段内离开解偏光器时,会有很高的DOP。但是,高速检测器可在很窄的时段内检测光线。于是,当在该狭窄时段内的光线为时间平均时,高速检测器可捕捉具有高DOP的光线。此外,光电场假解偏光器为一动态系统,同时需要驱动电流及电源供应器。如果缺少这些动态成分,会导致离开波导的光线具有很高的DOP。光电场假解偏光器的另一项缺点是造价太贵。一部光电场假解偏光器的造价约1000美金。
目前可发现到的另一种解偏光器为音波型解偏光器。一驱动扬声器振动位于解偏光器内光纤的一部分,于是在光纤弯折及振动期间改变了光纤的折射率。光纤内的折射率则在扬声器的频率下改变。偏振光光线在通过振动中的光纤时,便会造成其SOP在扬声器的频率下改变。如在光电场假解偏光器,音波解偏光器是在时间平均基础下使光线为偏振光。DOP于是在扬声器的频率下改变。对于在比偏振光时段更窄的时段下检测偏振光状态的检测器及仪器(该偏振光与扬声器的频率有关),当光线离开音波解偏光器时,会有可辨识的DOP。驱动扬声器解偏光器的另一缺点是其本身为动态系统,因此会受到音波扬声器性能的影响。除了驱动扬声器及相关电路的成本外,如果扬声器的众多组件之一或驱动电路失效,系统会出故障。因此,即使驱动扬声器解偏光器降低DOP,但在狭窄时段内的输出光束,仍有显著的DOP。
另一种类型已知解偏光器则为Lyot解偏光器。该Lyot解偏光器由具有光延迟性的两片石英晶体片构成。与Lyot解偏光器一起使用的光源为宽频光源,例如超亮二极管。该晶体片设置的方式使入射光由第一片晶体片射入,再进入靠近第一片晶体片的第二片晶体片。两片晶体片的厚度比率为2∶1。虽然离开第二片晶体片的光线在大波长范围内被解偏振光,但在小波长范围内的光线则未被解偏振光。因此,Lyot解偏光器对于单色或狭窄波长光源的解除偏振光上没有效率。Lyot解偏光器的另一缺点是因为使用了宽频光源而使其造价昂贵。宽频光源还有另外的缺点,即其输出功率比窄频光源输出功率还要低。Lyot解偏光器的另一项缺点是因为使用宽频光源,因此无法应用在许多光纤通讯系统上。由于来自宽频光源脉冲沿着在许多通讯系统中使用的双折射性单模光纤加强,因此宽频光线脉冲中不同的波长光波便会有不同的光速度,进而光线脉冲之间形成时间差。这种时间差会造成光束脉冲“扩展”(spreading),并会造成与许多光纤通讯系统的高数据传输速率不相容。
现有的另一种类型解偏光器披露于授予麦克等人的美国专利第5,486,916号;及授予哈特等人的美国专利第5,457,756号。这种解偏光器利用PMF构建。该PMF的光轴经过调校,使得其光轴位于45度。在这种解偏光器中,解偏光器的质量与PMF光轴的45度对齐有着必不可分的关系。与Lyot解偏光器一样的是,这种解偏光器也要采用宽频光源。这种解偏光器除了使用宽频光源及PFM使其造价高昂外,还因为PMF的校准及融合(fusing),也导致其造成了制造成本高昂。诚如前述的时间平均假解偏光器,该解偏光器采用光谱平均,且其缺点是这种解偏光器无法与同类型的其它解偏光器以串联方式连接。如果该解偏光器以自身串联,即将两个解偏光器设置成第一解偏光器的输出成为另一解偏光器的输入,第二解偏光器输出光线的DOP会因为第一解偏光器的输出而增加。因此,美国专利第5,486,916号揭露的解偏光器不适合以串联组合方式产生非常低的DOP。
本发明的目的在于提供一种光学解偏光器及将光束解偏光的方法,其能克服现有光学解偏光器的各种局限性及所述缺点。
本发明的目的是这样实现的,即提供一种光学解偏光器以及将光束解偏光的方法,首先光线藉将光束分流成一输出光束及一再循环光束而达到偏振光,该再循环光束通过一条双折射路径,然后在入射光束被分流成输出光束与再循环光束前与入射光束再组合。该组合后的入射光束与再循环光束于是再被分流成输出光束及再循环光束。该分流和沿着双折射路径再循环及与入射光束的再组合步骤会将不同的偏光状态平均起来,使得输出光束为许多具有不同偏光状态光束群的平均光束。
根据本发明的一实施例,一双折射元件与多个镜面一起使用。入射光束利用一部分折射镜面分流成两道光束,其中一道光束形成解偏光器的输出光束。另一道光束经由一双折射元件及数个反射镜面反射再回照到该部分折射镜面,穿过该双折射元件的光束部分形成该再循环回路。反射至该部分折射镜面的该光束一部分则穿过该部分折射镜面,并形成该解偏光器输出光束的一部分。
在本发明的一实施例中,该再循环部分被用在再循环光束沿着入射光线路径及沿着该入射光束的双折射元件的位置处,于是该再循环光束在该入射光束的方向沿着该入射光束的路径折回。
在本发明的一实施例中,使用了2×2光纤耦合器,其中一输入光纤与一输出光纤连接起来以形成一再循环回路。
在本发明的一实施例中,在该输入光纤与该再循环回路中包括偏光控制器,以在很宽的DOP范围值内对该偏光程度进行调整。
在本发明的另一实施例中,不论标准型或可调型多重单环式解偏光器都以串联方式连接,使得一单环式解偏光器的光线输出为下一解偏光器的输入光束。
在本发明的另一实施例中,多重2×2式光纤耦合器是以非串联式连接以允许光束的再循环及再组合,进而达到将不同偏光状态平均化,及对输出光束解除偏振光。
在本发明的另一实施例中,一再循环解偏光器是由单一光纤以自体耦接方式形成再循环回路以形成解偏光器。
在本发明的另一实施例中,一再循环解偏光器是由在一基板上的集成光学装置所形成。波导装置导引入射光束沿再循环路径行进以对入射光束解除偏振光。
本发明装置及方法的优点在于,采用了该解偏光器及解偏光的方法,可有效地解偏振光,并其使用成本低。
下面结合附图,详细描述本发明的实施例,其中

图1为本发明配置一再循环回路的自由空间再循环解偏光器的示意图;图2为本发明配置再循环部分的自由空间再循环解偏光器的示意图;图3为本发明单环光纤再循环解偏光器的示意图;图4为将三个图3所示单环光纤再循环解偏光器串接在一起的示意图;图5为本发明单环可调式光纤再循环解偏光器的示意图;图6为将三个图5所示单环可调式光纤再循环解偏光器串接在一起的示意图7为将三个图3所示单环光纤再循环解偏光器与两个图5所示单环可调式光纤再循环解偏光器串接在一起的示意图;图8为本发明多重分束器再组合光纤解偏光器的示意图;图9为本发明利用单根光纤回路形成再循环回路的单环式解偏光器的示意图;图10为本发明以一集成光学装置形成的再循环解偏光器示意图。
本发明提供一种对光束解偏振光的装置及方法。以下将配合数字来做说明,能使让读者对本发明全面了解。熟悉此项技术人员要了解本发明的实施可以忽略一些细节,如已知的元件、装置、制造步骤及类似元件就没有详细披露以免束缚本发明。再有,本发明说明书提到的所有专利、技术论文及其它的参考资料都做为本申请附件一并呈交。
图1为示出一自由空间解偏光器2的示意图。来自光源(图中未示)的光束入射至部分反射镜面4,该入射光束的一部分由该部分反射镜4反射,并形成输出光束6,沿着光线路径的箭头显示传输的方向,入射光束另一部分则穿过该部分反射镜面4而照射至一镜面8,穿透该部分反射镜面4而照射至该镜面8之光束称之为再循环光束,该镜面8将该再循环光束反射至一镜面10,由该镜面10反射的再循环光束穿过一双折射元件12及再由一镜面14反射,该双折射元件12可以由任何透明性材料形成,只要该材料在光束通过时可改变其SOP即可。在经由该镜面14反射后,再循环光束便回到部分折射镜面4,一如以往,照射至该部分折射镜面4的光束被分成两道光束,其中一道光束穿过部分反射镜面4并成为该解偏光器2输出光束6的一部分。该再循环光束的另一部分则由该部分反射镜面4反射而成为再循环光束的一部分。
利用这种方式,该解偏光器2入射光束的一部分会穿过该双折射元件12,该解偏光器的输出光束于是成为该入射光束与该再循环光束的组合,该再循环光束持续由该部分折射镜4进行分流,使得该再循环光束的部分持续地穿过该双折射元件12。每次光束穿过该双折射元件12时,该光束的SOP便改变,于是由许多不同SOP光束组合的输出光束,在与入射光束的SOP比较下,输出光束便不再有高的DOP。持续地加入具有不同SOP的再循环光束,该输出光束便具有低的DOP。
该部分反射镜面4可以选择允许该输入光束能量的一部分与该再循环光束一起加强。可成功的实施例包括50/50分流,其中入射光被分成具有相同强度的两道光束,也可以采取67/33分流,其中第一个数字表示进入再循环光线的光线百分比,第二个数字表示进入输出光束的光线百分比,低DOP是以67/33分流表示,其中抵达光束分束器的光线中,有67%是沿着再循环回路加强。
虽然图1揭露的实施例使用了四面镜面及一个双折射元件,其它的实施例可以具有数个双折射元件及不同的镜面排列,以任何数目允许入射光束部分经由穿过双折射媒介进行再循环及再组合的镜面与双折射元件排列都允许根据本发明对入射光束进行解除偏光。
图2为一自由空间解偏光器6的示意图,其中该再循环路径为一线性区段。来自光源(图中未示)的光束入射至双向镜面18,该镜面允许入射光穿过入射光束加强的方向,当穿过该双向镜面18后,该入射光束便穿过一可改变入射光束SOP的双折射元件20,在穿过该双折射元件20后,该入射光束便照射至一部分折射镜面22,该部分折射镜面22将入射光束分成两道光束。该入射光束的一部分穿过该部分折射镜面22,成为该解偏光器16输出光束的一部分。该入射光束的其它部分由该部分折射镜面22折回而成为再循环光束。该再循环光束于是重新行走该入射光束的路径,首先通过该双折射元件20,再照射至该双向镜面18,重新行走是指由该部分折射镜面22折回的再循环光束,重新回到了该双向镜面18的方向。该再循环光束不需按该光束的原来路径循环,在照射至该双向镜面18后,该再循环光束由双向镜面18折回,穿过该双折元件射20,再照射至该部分折射镜面22。在该解偏光器16中,介于该双向镜面18及该部分折射镜面22(包括该双折射元件20)为该解偏光器的再循环路径,因为该解偏光器的再循环路径遵循该入射光束的路径,而不是图1所示解偏光器2中的另一再循环回路,该再循环路径便可称为再循环部分。
进入解偏光器16内的偏振光入射光束会以下列方式来降低DOP,当入射光束沿着再循环部分通过该解偏光器16时,该入射光束的SOP会因为再循环部分内的双折射元件20而被改变,但DOP则保持不变,沿着再循环部分横移的再循环光束会因为该再循环部分的双折射率而使其SOP与入射光束的SOP不同。在再循环光束由该双向镜面18折回后,该入射光束则会经由双向镜面18加强,该再循环光束会由该双向镜面折回,继续形成降低DOP的光束,即在将具有不同SOP的光束组合之后。当组合光束照射至该部分折射镜面22,该反射光束便沿着再循环部分回射,由该双向镜面18反射,组合光束的DOP值比原入射光束要低,通过部分折射镜面22的组合光束部分,在持续地加入一再循环光束后,便具有低DOP。
虽然前述实施例的解偏光器的双折射元件与该解偏光器的镜面分离,但在其他的实施例中,可以使双折射元件成为该解偏光器的镜面或多重镜面的一部分。
虽然图2的实施例使用了分开的镜面群及分开的双折射元件,另一种构成这种解偏光器的方式是使用已经被栅格化(grating)的单一光纤,该光纤的一区段被区格或栅格化而制造出第一区格,该区格允许入射光束沿着光纤穿透,再沿着光纤朝着入射光束加强的方向形成第二区格化区段,当光束照射到该第二区格区段时,光束的一部分会被反射,但仍容许光束的一部分穿透,介于该第一区格及第二区格之间的光纤部分,起到双折射元件的作用,以改变沿着该光纤部分加强光束的SOP,该第一区格区段、第二区格区段及介于该各区格区段间的光纤部分形成了再循环部分。光纤的入射光束由第一区格区段穿透至第二区格区段,由第二区格区段反射回的入射光束沿着光纤回到第二区格区段,并在该处再次反射。当光线由第一区格区段折回时,该反射光束再次与沿着光纤行进的入射光束结合。该组合光束的一部分穿透该第二区格区段并形成该解偏光器的输出光束,一如过去,该组合光束的一部分由第二区格区段折回该第一区格区段,进而与该入射光束重复进行分流及再组合作业,具有不同SOP的光束组合会降低输出光束的DOP。
图3为由两个标准2×2光纤耦合器28构成的单环再循环解偏光器24的示意图,前述耦合器由Gould及AMP供应。一2×2光纤耦合器可以同时作用一标准Y耦合器29及一光束分束器31使用,由两个输入光纤进入光纤耦合器的光束由一标准光学耦合器组合以形成一组合光束,该组合光束然后沿着光纤耦合器内的光纤加强,并行进至光纤耦合器的光束分束器。该光束分束器将组合光束区分成两道光束。该两道光束从光纤耦合器的两输出光纤处离开。
在图3所示的解偏光器24的示意图中,来自光源(图中未示)的光束被导引至2×2光纤耦合器28的输入光纤26,该光源可以为任何耦合光源,例如一激光二极管。由该入射光束分出的两道光束中的一道光束经由输出光纤30离开该光纤耦合器28,以下将称该离开光束为输出光束。另一道光束则经由光纤34离开该光纤耦合器28并形成再循环回路32的一部分。该再循环回路32可以藉将光纤耦合器的一输出光纤与另一输入光纤耦接起来而形成。
于是进入解偏光器24的输入光纤26进入光纤耦合器28,并在该耦合器处将入射光束以光束分束器区分成两道光束。其中一道分流光束被送至输出光纤30行进,另一道分流光束被送至再循环回路32中行进。被送至再循环回路32(以下将称为再循环回路)的光束与光纤耦合器28内的入射光束重新组合。由该入射光束与再循环光束组合形成的光束再次由光纤耦合器中的分束器区分成两道光束,同样,其中一道光束被传送至输出光束30及另一道光束被传送至再循环回路32。于是来自于入射光束的光线被分流、再循环及与入射光束重新组合、再被分流、再循环、再与入射光束再组合及再次重复。
根据入射光束再循环及重新组合来考虑输出光束30的SOP效应时,会出现以下情形,通过光纤的光线会进行双折射,即SOP在光线沿着光纤行进时加强。因此,每次光线通过光纤时,SOP值便改变。图3所示的解偏光器,入射光束26最终SOP在光束通过光纤耦合器时改变,也在光束通过再循环回路及输出光束30的光纤时改变,当最初输出光束(再循环光束与输入光束未组合前的输出光束)的SOP与输入光束的SOP不同,但偏光程度(DOP)则相同,每一输入光束与输出光束都具有方向不同的相同DOP或SOP。当再循环光束32与输入光束26组合后,再循环光束光线的SOP因为光纤耦合器28及再循环回路32本身的双折射性而与入射光束的SOP不同。纵使双折射效应会因为环境因素变化而改变,再循环光束的SOP会继续因为入射光束的SOP而改变。
因此,由光纤耦合器内的入射光束与再循环光束所组成的组合光束,不会仅在一个方向产生偏振光,而是具有不同偏光状态的两道光束的组合。如以上所述,该组合光束是由光纤耦合器内的光束分束器28分流成两道光束,这道由入射光束及再循环光束组合形成的新输出光束,不单是其具有的SOP与入射光束不同,且因为与不同的SOP光束组合起来,因此也具有不同的DOP,因为新的输出光束将不再是在一个SOP方向偏光。同样地,因为将组合入射光束及再循环光束分流所形成的再循环光束也会比原来的入射光束具有更高的DOP。
当解偏光器内的光束持续地被分流时,以下的步骤则持续地进行,光束沿着再循环回路传送、与入射光束重新组合并入射到光束分束器。每一分流、再循环及重新组合的净结果是,输出光束为多数具有不同SOP及DOP光束的组合,而每一次的组合都降低输出光束的偏光程度。
如果再循环回路比入射光束的光线相干长度(coherence length)要长,该入射光束将不再与再循环光束相干。光源的相干长度为已知长度,且其与光谱长度的倒数成正比。当两道彼不相干的光束组合起来时,该二道光束彼此不会出现实质干涉。对于波长为1300nm的标准激光二极管及0.1nm的光谱长度,其相干长度约为1.67cm。因此,只要再循环回路比1.67cm长,组合入射光束及再循环光束所产生的干涉效应便可以忽略。当再循环数目的n接近无限大时,即当解偏光器连接到光源的时间超过几个纳秒(nanoseconds)时,假设没有内部或分流损失,光线的强度便接近入射光线的强度。
图4示出三个图3中串联的单环再循环解偏光器,使得第一解偏光器36的输出为第二解偏光器38的输入,并且使第二解偏光器38的输出为第三解偏光器40的输入,假设没有内部或分流损失,则输出光束42的强度等于入射光束的强度。因此,即将三个单环解偏光器串联起来时,输出光束的强度与入射光束的强度都相同。
在图1及图2的实施例中,包括图2解偏光器的光纤区格实施例,都可以像图4中一样串联在一起。
图5揭露出可调整式单环解偏光器44,其中在入射光纤48上设置了一个偏光控制器46。该偏光控制器46可以调整以控制输入光纤48内入射光束的偏振光。来自于输入光纤48及穿过偏振光控制器46的光线被入射至2×2光纤耦合器50。该光纤耦合器50将来自于输入光纤48的输入光束分成两道光束,且分别经由光纤52及54离开光纤耦合器50。光纤52供输出光束传送,并光纤54连接至偏振光控制器56。偏振光控制器56同时连接至光纤耦合器50的输入光纤58。利用这种方式,偏振光控制器56及光纤54和58便形成了可调整式单环解偏光器44的再循环回路60。在通过了再循环回路60后,经由光纤54离开光纤耦合器50的光线,利用光纤耦合器50而又与来自于光纤48的输入光束重新组合。
藉利用偏振光控制器46来调整入射光束的偏振光及偏振光控制器56的再循环光束的偏振光,该入射光束的DOP可以显著地降低到比图3单环解偏光器24所达得到的DOP水准,已发现图5所揭露的可调整式单环解偏光器44对光线的偏振光可达到1.15%。很明显,可调整单环解偏光器44可以经过调整而得到偏振光达99.8%的输出光束。因此,该可调整式单环解偏光器不单可以提供高度偏振光的光线,且可以调整到提供几乎完美的偏振光光线。这样使该可调整式单环再循环解偏光器在应用上具有很大的灵活性,在那些应用中,光线的DOP会需要改变或特别需要调整到一个特别的DOP。
图6揭露出三个图5串接在一起的可调整单环解偏光器。其中一可调整单环解偏光器的输出连接至另一可调整单环解偏光器的输入,每一可调整单环解偏光器64、66及68都以与图5所示可调整单环解偏光器44相同的方式来连接,其包括在输入光纤48及解偏光器44的再循环回路60之间插入偏振光控制器46及56。藉使用三个串联的可调整单环解偏光器,第三个可调整单环解偏光器的入射光束的偏振光程度可以降低至20dB。
可与解偏光器44一起使用的偏振光控制器有几种类型。其中的一偏振光控制器揭露在授予H.C.LeFevre的美国专利第4,389,090号,该案也做为附件一起提交。这种偏振光控制器使用了二片金属板来卷绕二圈光纤,进而感应出双折射性来改变并控制来自偏振光控制器的输出光线的偏振光,其它可能的偏振光控制器包括液晶偏振光控制器及集成光学偏振光控制器。
虽然图4及图6所揭露的多重单环解偏光器的实施例都可利用图3的单环解偏光器24或图5所示的可调整单环解偏光器44来构成,本发明的其它实施例则可将图3的解偏光器24及图5揭露的解偏光器44组合起来。此外,本发明的其它实施例还可以将多种或一种型式的单环解偏光器或两种型式的解偏光器以任何方式组成构成。图7揭露出其中的一可行实施例,该解偏光器70由三个图3的单环解偏光器72、74及76与二个图5的可调整单环解偏光器78及80组合起来。在图7揭露的实施例中,可调整单环解偏光器78及80在由左至右沿光束通过光纤的光纤加强的路径上,位于第三及第五位置。
虽然前述的多重单环解偏光器与单环解偏光器以串联方式连接,在本发明的其它实施例中也可以不同的结构来连接再循环解偏光器。
特别是,图8为一由四个2×2光纤耦合器84、86、88及90构成的多重分束器再组合解偏光器82。光线经由输入光纤92入射至光纤耦合器84,光纤耦合器84将输入光纤的光束分流成两道光束。离开光纤耦合器84的两道光束传送至光纤94及96。光纤94为输入光纤耦合器90,光纤96为输入光纤耦合器86。光纤耦合器86重新组合来自光纤108及96的光束,并再将组合光束分成两道光束,这两道光束经由光纤98及100离开光纤耦合器86。光纤98连接至光纤耦合器88的输入端。光纤100是解偏光器82的输出光纤,来自光纤耦合器86的输出光束98利用光纤耦合器88与光纤102的光束组合。光纤耦合器88将组合光纤98及102的组合光束分成两道光束,这两道光束经由光纤104及106离开光纤耦合器88。光纤104为输入光纤耦合器84,光纤106为输入光纤耦合器90。光纤耦合器90组合来自光纤94及106的光束并将该组合光束分成两道光束。这两道光束经由光纤102及108离开光纤耦合器90。光纤108连接至光纤耦合器86及光纤102连接至光纤耦合器88。光纤耦合器84将来自于光纤104及来自于输入光纤92的光束组合起来。光纤耦合器84于是将组合光束分流成由光纤94及96离开的两道光束。
经由输入光纤92进入解偏光器82内的偏振光光线在分流光束与再组合光束经由四个光纤耦合器84、86、88及90循环时,便与再循环光束重复地分流及再组合。利用这种方式,由再循环光束组合的输出光束100为所有组合光束的偏振光状态的加权平均。由于光线在光纤耦合器之间光纤上行进时的双折射性,组合光束的偏振光状态的加权平均结果便产生了DOP很低的输出光束。
虽然图8揭露了使用四个光纤耦合器的实施例,在其它的实施例中可使用更多或较少的光纤耦合器,只要其排列方式可让光线在通过解偏光器时可重复地被分流,且可沿着具有不同双折射效应的不同光学路径上行进及将不同偏振光状态平均化,进而将输出光束偏振。此外,本发明的其它实施例可以使用偏振光控制器或单环解偏光器,并与多重光纤耦合器以非串联方式连接。图8揭露的实施例用于说明本发明的优越性。但这仍只不过是本发明的几个可能组合方案之一。
虽然图2至图8所揭露的实施例使用了标准狭窄频宽激光二极管,本发明则可视应用范围使用较宽频宽激光二极管。不论是使用宽频或窄频光源,本发明的灵活性连同其低成本及高可靠度,都使本发明比现有的光学解偏光器更为可靠耐用。
图2-图8揭露的实施例因为低成本及低内部损耗而使用了2×2光纤耦合器,本发明的其它实施例可以使用不同的光束分束器及耦合器来分流及再组合光束。其它的实施例可以使用3×3或4×4或更大的光纤耦合器,以容许可更大数目的再循环回路,虽然图3和图4的光纤耦合器配置了50/50光束分束器,但这只不过是一个范例,其它的实施例中可以使用具有不同分流比率的分束器。虽然图3和图4所揭露的再循环回路是将两个光纤分开来形成,但在其它的实施例中,该再循环回路也可以由单一光纤形成。
图9揭露的单环解偏光器120由一单件式光纤110绕成一圈以形成再循环回路112。输入至光纤110的光线形成入射光线,其沿着光纤加强并穿过再循环回路112至耦接点114,该耦接点114为自身连接处。沿着再循环回路112加强的光束被称为再循环光束。光束沿着光纤输出端116加强及形成解偏光器120的输出光束,其它的光束则沿着光纤110的再循环回路112加强。再循环回路的双折射性改变来自于输入光束的SOP的再组合光束的SOP。将再循环光束与输入光束在耦接点114处组合,便可以使该解偏光器120输出光束的DOP降低。
光纤110的自身连接可藉将光纤合并在一起来完成,一般是将一光纤的外涂层剥除,以容许光线在光纤载芯之间通过。为达到此一目的,可以使用包括加熟、抛光或化学合成这些制造工艺。
虽然本发明揭露的该实施例使用单模光纤,但本发明并不仅限于单模光纤,也可以使用其它型式的光纤来构成其它的实施例。此外,也可以在一解偏光器上使用多种不同类型的光纤。
此外,虽然本发明使用了成本低及容易买到的单模光纤,本发明其它的实施例可使用其它类型的光纤或其它的媒介来再循环及传送光束。
图10揭露出的解偏光器122做为集成光学晶片124方式来形成,有一些材料可以形成波导,例如LiNbO3或塑料。来自光源(图中未示)的光线被导向输入波导126及形成输入光束。该输入光束则沿着波导126至点128加强。在点128处,波导分流成输出波导130及一再循环波导132,该输入光束在抵达点128时被分成两道光束。其中之一分束流光束沿着输出波导130加强,形成解偏光器122的输出光束。另一道分流光束则沿着再循环波导132加强并形成该再循环光束。在再循环波导内设置有偏振光控制器126,并改变该再循环光束的SOP。再循环光束与输入光束在点134处组合。该组合的再循环光束及入射光束则在前往点128处加强,并如上述在该点处分流成两道光束。沿着该输出波导130加强的光束由入射光束及再循光束的组合形成。
利用这种方式,入射光束的一部分则沿着一再循环路径转向,且因为偏振光控制器136的作用,改变了光线的SOP。当再循环光束与入射光束组合时,组合光束的DOP小于入射光束的DOP。每次组合光束抵达点128时,组合光束的一部分便沿着再循环波导132转向。每次来自再循环波导132的光束与入射光束组合时,所得到的组合光束的DOP会因为光束在沿着再循环波导加强光束的SOP改变而降低。该解偏光器所获得的输出光束由不同SOP的光束组合而成,具有比入射光束更低的DOP。
除了使用美国专利第4,389,090号偏振光控制器136外,也可以使用电场型或音波型。在电场型或音波型偏振光控制器中,不论是电磁波或音波都可以用来改变偏振光控制器中媒介的折射率,于是便可以改变通过偏振光控制器光束的SOP。
虽然图10所揭露的实施例使用了形成在基板上的波导,其它的实施例也可以用蚀刻及沉积方法或其它工艺而在基层上形成波导。熟知集成光学技术的人员可以了解到,许多形成集成光学装置的材料与方法都可以用来形成本发明的集成光学解偏光器。在此情况下,图10所示的仅为一范例,不应做为限制本发明集成光学解偏光器的材料或方法。
虽然图10揭露的实施例仅有一个再循环回路,但在其它的实施例中可有多重再循环回路及多重偏振光控制器。在具有多重再循环回路的实施例中,该各回路可以设置在输入波导及输出波导的两侧,正如图10所示形成在一侧的回路。在另一可行的实施例中,多重回路也可以设置在输入及输出波导的同一侧。此外,图10揭露的解偏光器122可与成型在同一基板或不同基板上的其它解偏光器串连起来。
虽然在以上的实施例中,为了说明起见而假设忽略了分流损失及内部损失,诚如所有的光学系统及装置,本发明的解偏光器的实际损失取决于使用的材料及构成的方法及质量。
虽然本发明以较佳实施例来说明,可以理解,熟知此项技术人员在不脱离本发明精神与范围下可做出各种变化设计及改变,特别是,应当理解,本发明也不局限于光纤通讯和光学仪器。
权利要求
1.一种光学解偏光器,其特征在于,它包括一用于接收入射光的输入端;一分束器;一具有回路输出的再循环回路,其中所述入射光被所述分束器至少分成两道光束,且其中两道光束中至少一道光束被导向所述再循环回路;及将所述回路输出与所述入射光束组合的装置。
2.按权利要求1所述的解偏光器,其特征在于,用于将所述回路输出与所述入射光组合的装置为一分束器。
3.按权利要求1所述的解偏光器,其特征在于,一第一分束器输出所述再循环回路输入端的入射光束。
4.按权利要求2所述的解偏光器,其特征在于,所述第一分束器输出所述再循环回路输入端的入射光。
5.按权利要求1所述的解偏光器,其特征在于,所述解偏光器还包括连接至所述解偏光器输入端的偏光控制器。
7一种光学解偏光器,其特征在于,它包括一具有N个输入端及N个输出端的N×N光纤耦合器;及一再循环回路藉由连接至少一输入端与至少一输出端而形成。
8.按权利要求7所述的解偏光器,其特征在于,所述解偏光器还包括连接至所述解偏光器输入端的第一偏光控制器;及插入在所述再循环回路内的第二偏光控制器。
9.一种光学解偏光器,其特征在于,它包括数个N×N光纤耦合器,每一光纤耦合器具有N个输入端及N个输出端;及至少一再循环回路藉将至少一输入端连接到至少一输出端而形成。
10.按权利要求9所述的解偏光器,其特征在于,至少一所述再循环回路将一输出端连接至同一光纤耦合器的至少一输入端。
11.按权利要求9所述的解偏光器,其特征在于,所述解偏光器还包括至少一偏光控制器连接到至少一光纤耦合器的输入端;及至少一偏光控制器连接到至少一再循环回路。
12.按权利要求9所述的解偏光器,其特征在于,所述N=2。
13.一种用于为一光源解偏光的方法,其特征在于,它包括有以下的步骤将一入射光束分流成数道光束;至少将数道光束中的一道光束沿着一双折射路径再循环;及至少将一再循环光束与所述入射光束组合。
14.按权利要求13所述的方法,其特征在于,所述再循环光束在所述入射光束被分流成数道光束前组合。
15.按如权利要求13所述的方法,其特征在于,所述入射光束的偏振光是由一偏光控制器所控制。
16.按如权利要求13所述的方法,其特征在于,所述再循环光束的偏振光是由所述偏光控制器所控制。
17.一种光学解偏光器,其特征在于,它包括一具有输入端及输出端的光纤,其中所述光纤自身连接以在所述输入端及所述输出端之间形成一再循环回路。
18.一种在基板上形成为集成光学装置的光学解偏光器,其特征在于,它包括一输入端;一输出端;一再循环回路,其中进入所述输入端光束的一部分被导入所述再循环回路;一沿着所述再循环回路的偏光控制器以改变离开所述再循环回路光束的偏振光;及一用于将离开所述再循环回路的光束与进入所述输入端的光束组合的装置,其中至少所述组合光束的一部分被导引至所述输出端。
19.按权利要求18所述的解偏光器,其特征在于,来自于所述输入端及所述再循环回路的组合光束沿着所述再循环回路加强。
20.一种光学解偏光器,其特征在于,它包括一双折射元件;一双向镜面;及一部分反射镜面,其中所述双折射元件、所述双向镜面及所述部分反射镜面构成了一再循环部分。
21.一种由光纤一区段构成的光学解偏光器,其特征在于,它包括一第一区格区段;一第二区格区段;及一再循环部分。
22.按权利要求21所述的解偏光器,其特征在于,沿着光纤加强光束的一部分经由所述第一区格区段传送至第二区格区段;照射至所述第二区格区段光束的一部分被反射回所述第一区格区段,且照射至所述第二区格区段光束的一部分传送至所述第二区格区段;由所述第二区格区段反射至所述第一区格区段光束的一部分再次被反射回所述第二区格区段,且与穿过所述第一区格区段的光束组合;及穿过所述第二区格区段光束的一部分构成所述解偏光器输出光束。
全文摘要
一种光学解偏光器及将光束解偏光的方法,一入射光束被分流成两道光束,一道分流光束经一双折射媒介中进行再循环,并绕回与该入射光束重新组合,这可对不同偏光状态进行加权平均,解偏光状态因再循环光束于再循环路径的双折射所致,解偏光器由单模光纤光缆及单模光纤耦合器形成,每一光纤耦合器有成对光纤输入端及输出端,一输出端与一输入端连接以形成再循环回路,在输入光纤与再循环回路间设置偏光控制器以调整输出光束的偏光度。
文档编号G02B5/30GK1201153SQ9810779
公开日1998年12月9日 申请日期1998年5月4日 优先权日1997年5月1日
发明者沈培生 申请人:鸿海精密工业股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1