光束方向沿二个维度自由可调的流体微透镜的制作方法

文档序号:10079600阅读:512来源:国知局
光束方向沿二个维度自由可调的流体微透镜的制作方法
【技术领域】
[0001] 本实用新型涉及集成型光学器件,尤其是一种集成型的聚焦光线方向可调谐微透 镜。
【背景技术】
[0002] 光束的整形技术包括了对光束的聚焦、准直、偏转、分束、耦合等调控,通常调控光 学介质的折射率分布就可以方便地实现对入射光束的聚焦、准直、偏转、分束等控制。近年 来快速发展的微流控光学技术为我们提供了光束整形的新方法,其原理是通过控制流体流 动来实现对光线微观尺度的控制(Mao X,Lin SS, Lapsley MI, Shi J, Juluri BK,Tunable liquid gradient refractive index (L-GRIN) lens with two degrees of freedom, Lab. Chip.,9(2009) =2050-2058,具有2个自由度调节能力的可调谐液体渐变折射率透镜,片 上实验室,9 (2009) :2050-2058 ;Yang Y, Liu AQ, Chin LK, Zhang XM, Tsai DP, Lin CL, Lu C,ffang GP1Zheludev NI, Optofluidic waveguide as a transformation optics device for lightwave bending and manipulation,Nat. Commun.,3 (2012) : 651-657,用于光波弯 曲和控制的基于光流控波导的转换光学器件,自然-通信,3 (2012) :651-657)。鉴于此,微 流控技术和系统可以被引入光束方向沿一个或多个维度自由可调的流体微透镜的设计和 制作中。首先利用一种折射率较高的流体在折射率较低的流体中的扩散和对流,形成一种 可调控折射率分布的流体光波导,然后通过动态调控流体光波导的折射率分布来调谐光波 在出射端的偏转与聚焦,得到一个或多个维度光束偏转与聚焦的效果。
[0003] 目前尚无光束方向沿一个或多个维度自由可调的透镜结构,光束方向的调节需要 通过外置的精密机械结构来实现,因此结构十分复杂、尺寸大,而且也无法实现光束方向的 连续动态可调。难以满足光电检测领域和光传感领域的迫切需求。为满足应用领域的迫切 需求,本实用新型提出一种结合了集成型和可调谐功能的新型光束方向可调的微透镜,即 基于流体光波导的光束方向沿二个维度自由可调的流体微透镜。

【发明内容】

[0004] 为了克服已有微透镜的需要外置精密机械结构来实现透镜光束方向调谐、结构复 杂、尺寸庞大、制作困难、调控灵活性差、集成度低的不足,本实用新型提供一种可动态调 谐、集成度高、结构简单、制作方便、成本低廉的光束方向沿二个维度自由可调的流体微透 镜。
[0005] 本实用新型解决其技术问题所采用的技术方案是:
[0006] -种光束方向沿二个维度自由可调的流体微透镜,包括流体光波导、入射激光器、 光束接收面,所述流体光波导上开有用于承载微流体的流道,所述流道包括一个芯层流体 入口、上下左右四个包层流体入口、流体微腔和上下两个流体出口,左右两个包层流体入口 以微腔的中心轴线对称设置,上下两个包层流体入口和上下两个流体出口均以微腔的中心 轴线对称设置,所述芯层流体入口、四个包层流体入口均与所述流体微腔的入口侧连通,所 述流体微腔的出口侧与两个流体出口连接,所述入射激光器和光束接收面同轴布置,所述 入射激光器和光束接收面的轴线与流体流动方向平行且方向一致沿微腔的中心轴线方向, 所述芯层流体入口和包层流体入口内安装用以调节流体速度的流速调节设备,所述流速调 节设备控制芯层流体和包层流体流速以便实现光束方向沿二个维度自由可调的效果;
[0007] 所述芯层流体和包层流体彼此之间只存在扩散和对流运动,包层流体环绕着芯层 流体,所述芯层流体和包层流体是具有不同折射率的两种流体,所述芯层流体和包层流体 在流体微腔中流动共同构成流体光波导。
[0008] 进一步,所述流速调节设备为注入流体的蠕动栗。
[0009] 再进一步,所述包层流体折射率高于所述芯层流体折射率。
[0010] 本实用新型的技术构思为:利用构成流体光波导的芯层和包层两种流体的扩散和 对流过程动态调控波导折射率,影响两种流体扩散与对流过程并进而影响流体光波导折射 率分布的主要因素包括芯层和包层流体的流速以及不同折射率微流体的选择。在有限长的 微沟道中如果流体流速比较低,则扩散效应明显,此时无论是微腔的横截面方向还是沿着 流体流动方向都要考虑扩散效应对浓度梯度的影响,而芯层流体在包层流体中的扩散正是 渐变折射率流体光波导能够实现的理论基础。进一步地,与以往基于微流控光学技术的渐 变折射率透镜不同,让一侧包层的流速大于另一侧,形成折射率较高的芯层区域的偏移分 布,并以此来进行光束的偏转与聚焦。因此,通过控制芯层流体和包层流体的流速和流体种 类不仅可以有效控制流体扩散浓度以及折射率的空间分布,还可以控制光波的偏转与聚焦 效果。
[0011] 本实用新型的有益效果主要表现在:1、基于微流控光学技术的光束整形方法,以 两种流体之间的对流和扩散过程形成流体光波导结构,通过控制芯层和包层流体的流速以 及流体种类,可以得到灵活多变的折射率分布,实现聚焦方向可调谐微透镜,且偏转的角度 和焦距可实时调节;2、通过实用新型基于流体光波导的光束方向可调谐微透镜,可以构建 一种兼具集成性和可调谐功能的新型光束方向沿二个维度自由可调的流体微透镜;3、光束 传播方向沿着微透镜的中心轴液体流动方向,有效保证了渐变折射率分布对微透镜光束方 向的可调性;4、与传统的光束方向调控方法相比,具有不需要外置机械机构,单个微透镜即 可实现光束方向动态调节的优点,且具有集成度高、结构简单、制作方便、成本低廉等优点。
【附图说明】
[0012] 图1是本实用新型基于流体光波导的光束方向沿二个维度自由可调的流体微透 镜的示意图。
[0013] 图2是本实用新型基于流体光波导的光束方向沿二个维度自由可调的流体微透 镜中流体光波导承载微流体的空腔示意图。
[0014] 图3是增加左侧包层液体流速实现中心折射率往右偏移的折射率分布图。
[0015] 图4是增加下侧包层液体流速实现中心折射率上方偏移的折射率分布图。
[0016] 图5是同时增加左侧和下侧包层液体流速实现中心折射率往右上方偏移的折射 率分布图。
[0017] 图6是当一侧包层流速从Ifr增加到9fr过程中,折射率分布中心的偏移量的变 化。
[
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1