直流工作的介质层组分渐变薄膜场发射阴极的制作方法

文档序号:2838144阅读:521来源:国知局
专利名称:直流工作的介质层组分渐变薄膜场发射阴极的制作方法
技术领域
本发明属于真空电子发射型平板显示技术领域,特别涉及一种直流驱动方式工作的平面型场发射阴极的结构。
MIM阴极的工作原理如下在上下电极之间加正电压,产生高电场。在强电场的作用下,下电极中的电子靠隧道效应发射到介质层中,并在介质层中经历电场加速和散射作用,最终获得一定的能量,能量大的电子能够穿透很薄的金属上电极(小于10纳米),克服金属表面势垒,发射到真空中。
现有MIM结构中,比较成功的是日本日立公司研制的一种,其介质层采用的是阳极氧化制备的三氧化二铝。这种阴极发射电流可以满足高亮度平板显示的需要,同时发射电流的均匀性也比较好。这种阴极的最大问题是介质层厚度只有10纳米左右,因此单位面积的电容很大,冲放电时间常数也大,使得它只能用于小面积显示器件,其对角尺寸一般小于5英寸。在单一的氧化铝作介质层的MIM结构阴极中,驱动电场高达1伏特/纳米以上。增加介质层厚度可以减小极间电容,但当该层厚度达到200纳米时,驱动电压将高达200伏特以上,导致驱动电路成本提高,而且工作可靠性大大降低。
本发明是通过如下技术方案实现的一种直流工作的介质层组分渐变薄膜场发射阴极,包括玻璃基板、下电极、介质层和上电极,其特征在于所述的介质层由一种从高电子亲和势材料逐步变化到低电子亲和势材料的组分渐变介质构成的。
所述的组分渐变介质层从下到上是由高电子亲和势的金属氧化物逐步过渡到低电子亲和势的金属氧化物。
所述的组分渐变介质层从下到上是由高电子亲和势的金属硫化物逐步过渡到低电子亲和势的金属硫化物。
所述的组分渐变介质层是从镁含量低的氧化锌镁逐步过渡到镁含量高的氧化锌镁。
所述的组分渐变介质层是从镁含量低的硫化锌镁逐步过渡到镁含量高的硫化锌镁。
本发明的组分渐变介质层一般可以用直流或射频溅射的方法制备,其厚度可以控制在10纳米到1000纳米之间。对于大面积显示器件,厚度较大,以期得到较小的单位面积电容。
由于靠近下电极处介质层的电子亲和势较高,电子容易注入到其中,最小驱动电场可以小于0.1伏特/纳米,因此即使介质层厚度达到200纳米,所需要的驱动电压也不会超过50伏特。该器件单位面积电容小,驱动电压适中,因此适于大面积显示器件。可以采用简单的溅射工艺制备各层薄膜,适用于大批量生产。
图2为本发明结构原理示意图。
本结构中,当上下电极之间加正电压时,电子从下电极2注入到介质层3中,在其中得到加速,随后到达上电极4。穿过厚度较小的上电极4后,克服表面势垒发射到真空中。
实施例1下电极用100纳米厚的金属鉬薄膜,介质层从氧化锌经氧化锌镁(ZnxMg1-xO)过渡到氧化镁,镁组分从零渐变过渡到100%,介质层厚度为450纳米。上电极用6纳米厚的金膜。在小于100伏特的驱动电压下,得到大于0.5mA/cm2的发射电流。
实施例2下电极用100纳米厚的金属镍薄膜,介质层从氧化锌过渡到锌镁摩尔比为1∶2的氧化锌镁,介质层厚度为150纳米。上电极用6纳米厚的金膜。在小于25伏特的驱动电压下,得到大于1mA/cm2的发射电流。
实施例3下电极用100纳米厚的金属鉬薄膜,介质层从锌镁摩尔比5∶1的氧化锌镁过渡到氧化镁,介质层厚度为10纳米。上电极用6纳米厚的金膜。在小于6伏特的驱动电压下,得到大于5mA/cm2的发射电流。
实施例4下电极用100纳米厚的金属鉬薄膜,介质层从锌镁摩尔比5∶1的氧化锌镁过渡到锌镁摩尔比为1∶2的氧化锌镁,介质层厚度为100纳米。上电极用6纳米厚的金膜。在小于25伏特的驱动电压下,得到大于1mA/cm2的发射电流。
实施例5下电极用100纳米厚的金属鉬薄膜,介质层从硫化锌经硫化锌镁过渡到硫化镁,镁组分从零渐变过渡到100%,介质层厚度为150纳米。上电极用6纳米厚的金膜。在小于35伏特的驱动电压下,得到大于2mA/cm2的发射电流。
实施例6下电极用100纳米厚的金属鉬薄膜,介质层从硫化锌过渡到锌镁摩尔比为1∶2的硫化锌镁,介质层厚度为15纳米。上电极用6纳米厚的金膜。在小于5伏特的驱动电压下,得到大于5mA/cm2的发射电流。
实施例7下电极用100纳米厚的金属鉬薄膜,介质层从锌镁摩尔比5∶1的硫化锌镁过渡到硫化镁,介质层厚度为200纳米。上电极用6纳米厚的金膜。在小于50伏特的驱动电压下,得到大于2mA/cm2的发射电流。
实施例8下电极用100纳米厚的金属鉬薄膜,介质层从锌镁摩尔比5∶1的硫化锌镁过渡到锌镁摩尔比为1∶2的硫化锌镁,介质层厚度为600纳米。上电极用6纳米厚的金膜。在小于125伏特的驱动电压下,得到大于0.5mA/cm2的发射电流。
权利要求
1.一种直流工作的介质层组分渐变薄膜场发射阴极,包括玻璃基板、下电极、介质层和上电极,其特征在于所述的介质层由一种从高电子亲和势材料逐步变化到低电子亲和势材料的组分渐变介质构成的。
2.根据权利要求1所述的直流工作的介质层组分渐变薄膜场发射阴极,其特征在于所述的组分渐变介质层从下到上是由高电子亲和势的金属氧化物逐步过渡到低电子亲和势的金属氧化物。
3.根据权利要求1所述的直流工作的介质层组分渐变薄膜场发射阴极,其特征在于所述的组分渐变介质层从下到上是由高电子亲和势的金属硫化物逐步过渡到低电子亲和势的金属硫化物。
4.根据权利要求2所述的直流工作的介质层组分渐变薄膜场发射阴极,其特征在于所述的组分渐变介质层是从镁含量低的氧化锌镁逐步过渡到镁含量高的氧化锌镁。
5.根据权利要求3所述的直流工作的介质层组分渐变薄膜场发射阴极,其特征在于所述的组分渐变介质层是从镁含量低的硫化锌镁逐步过渡到镁含量高的硫化锌镁。
全文摘要
直流工作的介质层组分渐变薄膜场发射阴极,涉及一种直流驱动方式工作的平面型场发射阴极的结构设计。本发明由玻璃基板、下电极、介质层和上电极组成,所述的介质层是由低电子亲和势材料逐步变化到高电子亲和势材料的组分渐变介质构成的。本发明适于直流驱动方式工作,与现有技术相比,具有单位面积电容小,适于大面积平板显示器件中的电子发射阴极,同时具有制备技术简单、适于大批量生产的特点。
文档编号H01J1/30GK1417828SQ0214886
公开日2003年5月14日 申请日期2002年11月22日 优先权日2002年11月22日
发明者李德杰, 万媛, 卜东生 申请人:清华大学, 上海广电电子股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1