导电键合材料、其制造方法以及电子装置的制造方法

文档序号:3078008阅读:195来源:国知局
导电键合材料、其制造方法以及电子装置的制造方法
【专利摘要】本发明公开了一种导电键合材料、其制造方法以及电子装置的制造方法,该导电键合材料包括焊料成分,该焊料成分包括:具有至少一个孔隙的第一金属的金属发泡体,当金属发泡体在高于第一金属的熔点的温度下被加热时,孔隙吸收熔化的第一金属;以及第二金属,其熔点低于第一金属的熔点。
【专利说明】导电键合材料、其制造方法以及电子装置的制造方法
【技术领域】
[0001]本文讨论的实施例涉及一种导电键合(bonding)材料、使用导电键合材料制造的电子部件以及包括电子部件的电子装置。
【背景技术】
[0002]包括电路板上的电子元件(例如片式元件或半导体元件)的电子部件有时被安装在诸如母板或系统板的大电路板(在下文中,也称为印刷电路板)上。使用焊膏作为导电键合材料将电子部件的元件(例如片式元件)安装在电路板上。这种安装称为第一安装。第一安装可以通过回流加热(第一回流)来执行。在首先以此方式将元件(例如片式元件)安装在电路板上之后,有时用密封树脂来密封电子部件除电极和一些元件之外的部分。这种用密封树脂密封的电子部件有时称为“树脂模块元件”。
[0003]在电子装置中,使用焊膏作为导电键合材料将这种电子部件安装在印刷电路板上。此安装称为第二安装。第二安装可以通过回流加热(第二回流)来执行。
[0004]对树脂模块元件的第二回流加热会再熔化树脂模块元件中的导电键合材料。再熔化的导电键合材料可以流过电子部件中的狭缝,而引起电极之间短路。该狭缝可以通过由第二回流加热中熔化的导电键合材料的体积膨胀以及所造成的应力引起的密封树脂的破裂或密封树脂从元件(片式元件)的脱落来形成。
[0005]因此,正在研究减小由第二回流加热中导电键合材料的再熔化引起的体积膨胀以及所造成的应力。例如,提出了一种包含发泡焊料的合成物,该发泡焊料包含用于IC与外部结构之间的键合的第一材料。发泡焊料的形式可从蜂窝状发泡形式和网状发泡形式中选择,发泡焊料能够缓解发泡焊料与发泡焊料所键合至的基板之间的热应力(包括冲击和动态负载)。该合成物不被用来安装树脂模块元件。发泡焊料旨在缓解热应力,并期望即使在第二回流加热之后(在第二安装之后)也能保持空心结构。
[0006]因此,需要一种能够通过第一回流加热首先在电路板上安装元件(例如片式元件或半导体元件)且减小由第二回流加热中导电键合材料的再熔化引起的体积膨胀和所造成的应力的导电键合材料。
[0007]以下是参考文献。
[0008][文献I]日本特许专利公开第2009-515711号。

【发明内容】

[0009]根据本发明的一个方案,一种导电键合材料包括焊料成分,包括:第一金属的金属发泡体,具有至少一个孔隙,当金属发泡体在高于第一金属的熔点的温度下被加热时,该孔隙吸收熔化的第一金属;以及第二金属,具有低于第一金属的熔点的熔点。
[0010]本发明的目的和优点将通过权利要求书中特别指出的元件和组合来实现和获得。
[0011]应理解到前述的一般说明和下面的详细说明都是示例性和解释性的,而不用于限制如权利要求所要求保护的本发明。【专利附图】

【附图说明】
[0012]图1A为具有通过第二回流加热形成的间隙的电子部件的示意性剖视图;
[0013]图1B为电子部件的示意性剖视图,在该电子部件中熔化的导电键合材料进入间隙而使电极之间短路;
[0014]图2A为能够减小由于包含第一金属微粒和第二金属微粒的导电键合材料的再熔化引起的体积膨胀和所造成的应力的原理的说明图(初始状态)。第一金属微粒能够通过第二回流加热被再熔化;
[0015]图2B为能够减小由于包含第一金属微粒和第二金属微粒的导电键合材料的再熔化引起的体积膨胀和所造成的应力的原理的说明图(第一回流加热状态)。第一金属微粒能够通过第二回流加热被再熔化;
[0016]图2C为能够减小由于包含第一金属微粒和第二金属微粒的导电键合材料的再熔化引起的体积膨胀和所造成的应力的原理的说明图(第二回流加热状态)。第一金属微粒通过第二回流加热被再熔化;
[0017]图3A为能够减小由于包含涂敷微粒(coated particle)的导电键合材料的再熔化引起的体积膨胀和所造成的应力的原理的说明图(初始状态)。涂敷微粒的每一个包括在第一金属微粒的表面上的第二金属层。第一金属微粒能够通过第二回流加热被再熔化;
[0018]图3B为能够减小由于包含涂敷微粒的导电键合材料的再熔化引起的体积膨胀和所造成的应力的原理的说明图(第一回流加热状态)。涂敷微粒的每一个包括在第一金属微粒的表面上的第二金属层。第一金属微粒能够通过第二回流加热被再熔化;
[0019]图3C为能够减小由于包含涂敷微粒的导电键合材料的再熔化引起的体积膨胀和所造成的应力的原理的说明图(第二回流加热状态)。涂敷微粒的每一个包括在第一金属微粒的表面上的第二金属层。第一金属微粒通过第二回流加热被再熔化;
[0020]图4A为具有孔隙的第一金属粉末的照片;
[0021 ] 图4B为图4A的片段放大照片;
[0022]图4C为雾化处理(atomizing treatment)之后的第一金属微粒的照片;
[0023]图5为根据一个实施例的电子部件的制造方法以及根据一个实施例的电子装置的制造方法的流程图;
[0024]图6A为示出根据一个实施例的电子部件的制造方法以及根据一个实施例的电子装置的制造方法的示意性俯视图;
[0025]图6B为示出根据一个实施例的电子部件的制造方法以及根据一个实施例的电子装置的制造方法的示意性俯视图;
[0026]图6C为示出根据一个实施例的电子部件的制造方法以及根据一个实施例的电子装置的制造方法的示意性俯视图;
[0027]图6D为示出根据一个实施例的电子部件的制造方法以及根据一个实施例的电子装置的制造方法的示意性俯视图;
[0028]图6E为示出根据一个实施例的电子部件的制造方法以及根据一个实施例的电子装置的制造方法的示意性俯视图;
[0029]图6F为示出根据一个实施例的电子部件的制造方法以及根据一个实施例的电子装置的制造方法的示意性俯视图;
[0030]图6G为示出根据一个实施例的电子部件的制造方法以及根据一个实施例的电子装置的制造方法的示意性俯视图;
[0031]图7A为示出根据一个实施例的电子部件的制造方法以及根据一个实施例的电子装置的制造方法的示意性剖视图;
[0032]图7B为示出根据一个实施例的电子部件的制造方法以及根据一个实施例的电子装置的制造方法的示意性剖视图;
[0033]图7C为示出根据一个实施例的电子部件的制造方法以及根据一个实施例的电子装置的制造方法的示意性剖视图;
[0034]图7D为示出根据一个实施例的电子部件的制造方法以及根据一个实施例的电子装置的制造方法的示意性剖视图;
[0035]图7E为示出根据一个实施例的电子部件的制造方法以及根据一个实施例的电子装置的制造方法的示意性剖视图;
[0036]图7F为示出根据一个实施例的电子部件的制造方法以及根据一个实施例的电子装置的制造方法的示意性剖视图;
[0037]图7G为示出根据一个实施例的电子部件的制造方法以及根据一个实施例的电子装置的制造方法的示意性剖视图;
[0038]图8A为表示在实例I中第二安装之后在电子部件中焊料熔化的发生率的评估结果的照片;
[0039]图8B为图8A的片段放大照片;
[0040]图9A为表示在比较实例I中第二安装之后在电子部件中焊料熔化的发生率的评估结果的照片;
[0041 ] 图9B为图9A的片段放大照片;
[0042]图10为具有通过发泡熔化方法制造的孔隙的第一金属微粒的照片;以及
[0043]图11为在这些实例中制造的导电键合材料的测量结果的表格。
【具体实施方式】
[0044]导电键合材料
[0045]根据一个实施例的导电键合材料包含焊料成分(solder component),并可选择地包含焊剂成分和其它成分。
[0046]<焊料成分>
[0047]焊料成分包含第一金属体和第二金属。
[0048]焊料成分优选包含第一金属的微粒(在下文中,也称为“第一金属微粒”)和第二金属的微粒(在下文中,也称为“第二金属微粒”)。可替代地,焊料成分优选包含涂敷微粒,该涂敷微粒是涂覆有第二金属的第一金属微粒。
[0049]〈〈第一金属主体y>
[0050]第一金属体由第一金属制成,并具有用于吸收在加热到高于第一金属熔点的温度时熔化的第一金属的至少一个孔隙。第一金属主体的形状、尺寸、结构以及材料没有被特别限制,并且可以被适当选择用于各种目的。第一金属体可以具有微粒形状。例如,第一金属体是球状、球形或椭圆形。第一金属体可以具有单层结构或多层结构。
[0051 ] 第一金属体的材料优选是Sn-B1-X合金和Sn-Cu-X合金之一,其中X是Ag、N1、Zn、Pd或In。在这些当中,从可焊性方面来说,尤其优选Sn-B1-Ag合金和Sn-Cu-Ag合金。
[0052]Sn-B1-Ag合金可以是Sn-58.0B1-1.0Ag合金,其中Sn是主要成分,Bi构成以质量计的大约58.0%,以及Ag构成以质量计的大约1.0%。
[0053]Sn-Cu-Ag合金可以是Sn_0.5Cu_3.0合金,其中Sn是主要成分,Cu构成以质量计的大约0.5%,以及Ag构成以质量计的大约3.0%。
[0054]第一金属微粒的体积平均(volume-average)微粒尺寸优选处于0.5 μ m至50 μ m的范围,更为优选处于10 μ m至40 μ m的范围。当体积平均微粒尺寸小于0.5 μ m时,难以制造具有小直径的第一金属微粒,并且第一金属微粒难以构成焊料成分的以质量计的大约30%,可能导致导电键合材料对于电路板适用性差。
[0055]体积平均微粒尺寸可以通过激光衍射散射法利用微粒尺寸分布分析仪来确定。
[0056]第一金属的熔点优选是150° C或更大且230° C或更小,更为优选处于160° C至220° C的范围。大于230° C的熔点导致第二回流加热温度的提高,这会使导电键合材料再熔化。
[0057]熔点可以通过差示扫描量热法(DSC)来测量。
[0058]-孔隙-
[0059]在加热到高于第一金属的熔点的温度时,孔隙吸收熔化的第一金属。
[0060]孔隙指的是第一金属微粒内的未用空间(vacant space)。孔隙的形状、尺寸以及结构没有被特别限制,并且可以被适当选择各种目的。孔隙可以具有多孔形状、网状形状、蜂窝状形状或空心形状。由第一金属包围的两个或多个孔隙可以彼此相通或也可不相通。
[0061]孔隙存在于第一金属微粒内,并且在第一金属微粒的表面上没有开口。孔隙的内部优选处于减压(reduced pressure)或真空,以减小由第二回流加热中导电键合材料的再熔化引起的体积膨胀以及所造成的应力。
[0062]孔隙的存在可以通过对利用光学显微镜或扫描电子显微镜拍摄的第一金属微粒的截面的照片进行图象分析而被检测到。
[0063]孔隙可以具有使得能够缓解由于第二回流加热中导电键合材料的热膨胀引起的应力的任何体积。因此,孔隙的体积可以被适当确定用于各种目的,并且孔隙的体积优选为第一金属微粒的按体积计的5%至按体积计的30%,更为优选按体积计的10%至按体积计的20%。小于按体积计的5%的孔隙体积会导致由第二回流加热中导电键合材料的再熔化引起的体积膨胀和所造成的应力减小得不充分。大于按体积计的30%的孔隙体积会因过高的孔隙的体积百分比而导致第一金属微粒的强度低。
[0064]孔隙体积可以如下所述来加以确定。首先,在熔化之前测量第一金属微粒的体积。在熔化之后同样测量第一金属微粒的体积。能够使用以下公式从所测量的体积中计算第一金属微粒的孔隙体积。
[0065]孔隙体积(μ m3)=熔化之前的第一金属微粒的体积-熔化之后的第一金属微粒的体积
[0066]第一金属微粒没有被特别限制,并且可以被适当制造或者可以是工业品。下文将描述与用于制造导电键合材料的方法有关的用于制造第一金属微粒的方法。[0067]<第二金属>
[0068]第二金属具有比第一金属低的熔点。第二金属的形状、结构、以及材料没有被特别限制,并且可以被适当选择用于各种目的。第二金属可以具有微粒形状。例如,第二金属是球状、球形或椭圆形。第二金属可以具有单层结构或多层结构。
[0069]第二金属可以是Sn-Bi合金或Sn-B1-Y合金,其中Y是Ag、N1、Zn、Pd或In。
[0070]Sn-Bi合金可以是Sn_58.0Bi合金,其中Sn是主要成分,并且Bi构成以质量计的大约 58.0%。Sn-B1-Y 合金可以是 Sn-B1-Ag 合金。Sn-B1-Ag 合金可以是 Sn_57.0B1-1.0Ag合金,其中Sn是主要成分,Bi构成以质量计的大约57.0%,以及Ag构成以质量计的大约1.0%。
[0071]第二金属微粒的体积平均微粒尺寸优选为10 μ m或更大,更为优选处于ΙΟμπι至60 μ m的范围,还更为优选处于10 μ m至40 μ m的范围。
[0072]体积平均微粒尺寸可以通过激光衍射散射法利用微粒尺寸分布分析仪来确定。
[0073]第二金属的熔点低于第一金属的熔点,并优选小于150° C,更为优选处于80° C至140° C的范围。150° C或更大的熔点导致降低第一金属与第二金属之间的熔点差,使得低温键合困难。
[0074]熔点可以通过差示扫描量热法(DSC)来测量。
[0075]第二金属微粒可以被适当制造或者可以是工业品。用于制造第二金属微粒的方法可以是雾化(atomizing)方法。根据雾化方法,熔化的第二金属经由喷嘴被喷射,通过与喷雾介质(气体或液体)的高速碰撞而被散射开来,并且合成液滴被冷却并凝结成微粒。
[0076]焊料成分优选包含第一金属微粒和第二金属微粒的混合物。
[0077]第一金属微粒(A)与第二金属微粒(B)的质量比(A:B)优选处于20:80至50:50的范围,更优选处于30:70至50:50的范围。
[0078]当第一金属微粒构成小于以质量计的20%时,这会导致孔隙体积低以及导致不能充分缓解由第二回流加热中焊料成分的热膨胀引起的应力。当第一金属微粒构成大于以质量计的50%时,这会导致低焊接强度。
[0079]焊料成分可以包含涂敷微粒,该涂敷微粒是涂覆有第二金属的具有至少一个孔隙的第一金属微粒。这是优选的,这是因为导电键合材料由涂敷微粒单独构成。
[0080]涂敷微粒可以被适当制造或者可以是工业品。
[0081]涂敷微粒中具有至少一个孔隙的第一金属微粒可以与第一金属微粒和第二金属微粒的混合物中的第一金属微粒相同。
[0082]第一金属微粒的平均微粒尺寸优选为40 μ m或更小,更为优选处于20 μ m至40 μ m
的范围。
[0083]第二金属的层的平均厚度优选为5μπι或更大,更为优选处于5μπι至20μπι的范围。小于5μπι的平均厚度导致第二金属的量降低,可能使在150° C或更低温度的低温键合困难。
[0084]覆盖第一金属微粒的每一个的第二金属的层可以通过无电解镀(electro lessplating)来形成。导电键合材料的焊料成分含量没有被特别限制,并且可以被适当选择用于各种目的。焊料成分含量优选在以质量计的50%至以质量计的95%的范围内,更为优选在以质量计的70%至以质量计的90%的范围内。[0085]<焊剂成分>
[0086]焊剂成分没有被特别限制,并且可以被适当选择用于各种目的。焊剂成分优选为环氧焊剂材料和松香焊剂材料的至少一种。在这些当中,尤其优选环氧焊剂材料,这是因为硬化的环氧树脂能够提高导电键合材料的键合强度。
[0087]-环氧焊剂材料-
[0088]环氧焊剂材料包含环氧树脂、羧酸、溶剂以及可选成分。
[0089]环氧树脂没有被特别限制,并且可以被适当选择用于各种目的。环氧树脂的实例包括热固性环氧树脂(例如双酚A型环氧树脂、双酚F型环氧树脂)、酚醛环氧树脂及其改性环氧树脂。这些环氧树脂可以单独或以组合的形式使用。
[0090]羧酸没有被特别限制,并且可以被适当选择用于各种目的。羧酸的实例包括饱和脂肪族二羧酸(aliphatic dicarboxylic acids)、不饱和脂肪族二羧酸、脂环族二羧酸(alicyclic dicarboxylic acids)、包含氨基的羧酸、包含轻基的羧酸、杂环二羧酸(heterocyclic dicarboxylic acids)及其混合物。更具体地,羧酸可以是琥拍酸、戊二酸、己二酸、壬二酸、十二烷二酸、衣康酸、中康酸(mesaconic acid)、环丁烷二羧酸(cyclobutanedicarboxylic acid)、L-谷氨酸(L-glutamic acid)、朽1 樣酸、苹果酸(malic acid)、巯基丙酸、硫代二丁酸(thiodibutyric acid)或二硫醇二轻基乙酸(dithioglycolic acid)。
[0091]溶剂的实例包括醇类(例如甲醇、乙醇以及丙醇)、乙二醇溶剂、二乙二醇单己醚(diethylene glycol monohexyl ether)以及辛二酉享(octanediol)。
[0092]可选成分的实例包括添加剂,例如触变剂、螯合剂、表面活性剂以及抗氧化剂。
[0093]环氧焊剂材料没有被特别限制,并且可以适当合成或者可以是工业品。
[0094]-松香焊剂材料-
[0095]松香焊剂材料包含松香树脂、催化剂、溶剂以及可选成分。
[0096]松香树脂可以主要由天然松香树脂或改性松香树脂构成。改性松香树脂的实例包括聚合松香、氢化松香、酚醛树脂改性松香以及马来酸改性松香。
[0097]催化剂可以是任何能够减少金属上的氧化物、硫化物、氢氧化物、氯化物、硫酸盐和/或碳酸盐的成分以清洁金属,并且可以被适当选择各种目的。例如,催化剂是二乙胺盐
酸盐或二乙胺草酸盐。
[0098]溶剂的实例包括乙二醇溶剂、二乙二醇单己醚以及辛二醇。
[0099]可选成分的实例包括触变剂、螯合剂、表面活性剂以及抗氧化剂。
[0100]松香焊剂材料没有被特别限制,并且可以被适当合成或者可以是工业品。
[0101]导电键合材料的焊剂成分含量没有被特别限制,并且可以被适当选择用于各种目的。焊剂成分含量优选在以质量计的8%至以质量计的14%的范围内。
[0102]〈其它成分〉
[0103]除金属成分和焊剂成分之外,导电键合材料可以包含可选成分。可选成分的实例包括金属吸附剂、分散剂以及抗氧化剂。
[0104]金属吸附剂没有被特别限制,并且可以被适当选择用于各种目的。金属吸附剂的实例包括咪唑、苯并咪唑、烷基苯并咪唑、苯并三唑以及巯基苯并噻唑。
[0105]根据一个实施例的导电键合材料可以通过印刷而被施加到电子部件(其包括待利用密封树脂进行密封的元件(例如片式元件或半导体元件))中的电路板上的电极焊盘。对施加到电路板上的电极焊盘的导电键合材料的第一回流加热允许电极焊盘连接至元件(例如片式元件或半导体元件)的电极。然后用密封树脂来密封电路板上的元件(例如片式元件或半导体元件)。
[0106]由此密封的电子部件然后被安装在大电路板(例如母板或系统板)上。电子部件的端子通过导电键合材料的第二回流加热连接至电路板的引线端子。第二回流加热可以再熔化电子部件的导电键合材料。再熔化的导电键合材料可以进入电子部件中的间隙,而引起电极之间短路。
[0107]下文将参考图1A和图1B描述包含不具有孔隙的第一金属微粒的已知导电键合材料的使用。
[0108]如图1A所示,电子部件100包括:电路板I ;电极焊盘2,位于电路板I上;导电键合材料3 ;元件(例如,片式元件)5,经由导电键合材料3连接至电路板I ;元件5的电极4 ;以及密封树脂6,用于密封元件5。当电子部件100通过第二回流加热连接至大电路板(例如母板或系统板)时,由导电键合材料3的再熔化引起的体积膨胀和所造成的应力可以使密封树脂6变形,从而造成在密封树脂6中的裂纹或元件5与密封树脂6之间的狭窄间隙7。如图1B所示,再熔化的导电键合材料3会因毛细管现象而进入间隙7,以电连接元件5的电极4或者相邻元件5的电极4,从而造成短路(在下文中,也称为“闪光(flash)现象”)。
[0109]根据一个实施例的导电键合材料能够通过使用具有至少一个孔隙的第一金属微粒和第二金属微粒的组合或涂敷微粒(其为涂覆有第二金属的具有至少一个孔隙的第一金属微粒)作为焊料成分来减少闪光现象。
[0110]在焊料成分包含具有至少一个孔隙的第一金属微粒和第二金属微粒的组合(混合物)的情况下,如图2A所示,例如通过印刷仅被施加到电路板上的电极焊盘的导电键合材料包含具有孔隙13的第一金属微粒11和第二金属微粒12 (其具有比第一金属低的熔点)的混合物(初始状态)。如图2B所示,第一回流加热熔化了第二金属微粒12,并且第一金属微粒11被熔化的第二金属12’所包围(第一回流加热状态)。如图2C所示,第二回流加热熔化了第一金属微粒11。熔化的第一金属进入处于减压或真空的孔隙13,并填充第一金属微粒的孔隙13。这减小了第一金属微粒的体积,并减小了施加到包围体积减小的第一金属微粒的熔化的第二金属12’的向外应力,从而减少闪光现象。第一金属微粒11的孔隙13在第二回流加热之后不存在了。
[0111]在焊料成分包含涂敷微粒(其为涂覆有第二金属的具有至少一个孔隙的第一金属微粒)的情况下,如图3A所示,例如通过印刷仅被施加到电路板上的电极焊盘的导电键合材料包含涂敷微粒10 (其为覆盖有第二金属层14的具有孔隙13的第一金属微粒11)(初始状态)。如图3B所示,第一回流加热熔化了第一金属微粒11上的第二金属层14,并且具有处于减压或真空的孔隙13的第一金属微粒11被熔化的第二金属14’所包围(第一回流加热状态)。如图3C所示,第二回流加热熔化了第一金属微粒11。熔化的第一金属进入处于减压或真空的孔隙13,并填充第一金属微粒的孔隙13。这减小了第一金属微粒的体积,并减小了施加到包围体积减小的第一金属微粒的熔化的第二金属14’的向外应力,从而减少闪光现象。第一金属微粒11的孔隙13在第二回流加热之后不存在了。
[0112]根据一个实施例的导电键合材料能够通过使用具有至少一个孔隙的第一金属微粒和第二金属微粒的组合或涂敷微粒(其为涂覆有第二金属的具有至少一个孔隙的第一金属微粒)作为焊料成分来减小由第二回流加热中导电键合材料的熔化引起的体积膨胀和所造成的应力,并减小闪光现象。因此,导电键合材料能够广泛用于各种领域,并适用于下文描述的实施例中使用的用于制造导电键合材料的方法、根据一个实施例的电子部件、根据一个实施例的电子装置、用于使用导电键合材料制造电子部件的方法以及使用导电键合材料制造电子装置的方法。
[0113]〈用于制造导电键合材料的方法〉
[0114]在这里讨论的实施例中使用的用于制造导电键合材料的方法包括制造第一金属微粒的过程、组合过程以及可选过程。
[0115]〈〈制造第一金属微粒的过程》
[0116]根据第一实施例的制造第一金属微粒的过程包括:熔化第一金属;在真空下使熔化的第一金属发泡以形成孔隙;冷却第一金属以形成具有孔隙的第一金属体;在真空下切割第一金属体;以及对第一金属体执行滚光流化床过程以形成第一金属微粒。
[0117]根据第二实施例的制造第一金属微粒的过程包括:通过电镀方法形成第一金属体;活化(activate)第一金属体的表面;氧化所活化的第一金属体;以及反复研磨(pulverize)所氧化的第一金属体,以形成具有至少一个孔隙的第一金属微粒。
[0118]在第二实施例中,通过电镀方法形成的第一金属体的表面被活化,活化的第一金属体被氧化,以及氧化的第一金属体被研磨两次或多次,优选两次到10次。
[0119]在第一实施例中,第一金属微粒可以通过下文描述的发泡熔化方法来制造。
[0120]首先,在高于第一金属的熔点的温度下熔化第一金属。若需要,添加增稠剂(例如Ca)以增加熔化的第一金属的粘度。然后将熔化的第一金属与发泡剂(例如TiH2)混合。冷却该混合物以制造发泡材料(foam)。将该发泡材料切割成大约50 μ m的尺寸。通过滚光流化床过程将切割的发泡材料制成球形。因此,具有至少一个孔隙的第一金属微粒得以制造(参见图10)。发泡剂可以是气体。
[0121 ] 在第二实施例中,第一金属微粒可以通过以下方法来制造。
[0122]首先,通过电镀方法形成具有ΙΟμπι的体积平均微粒尺寸的第一金属粉末。然后氧化第一金属粉末。在真空喷射式研磨机(mill)中将氧化的第一金属粉末研磨成处于
3μ m至4 μ m范围的体积平均微粒尺寸。
[0123]然后在还原性气氛(reducing atmosphere)(例如氢气气氛)中活化第一金属粉末的表面。具有活化表面的第一金属粉末凝结成处于10 μ m至20 μ m范围的体积平均微粒尺寸。然后氧化凝结的第一金属粉末。在真空喷射式粉碎机中将氧化的第一金属粉末研磨成处于5 μ m至6 μ m范围的体积平均微粒尺寸。然后在还原性气氛(例如氢气气氛)中活化第一金属粉末的表面。具有活化表面的第一金属粉末凝结成处于10 μ m至20 μ m范围的体积平均微粒尺寸。然后再次氧化第一金属粉末。在真空喷射式粉碎机中将氧化的第一金属粉末研磨成处于5 μ m至6 μ m范围的体积平均微粒尺寸。可以重复进行这些处理,以形成多孔第一金属粉末(参见图4A和图4B)。
[0124]将第一金属粉末供应到配备有用于经由熔化喷嘴(melting nozzle)供给粉末的预处理单元的雾化器。在减压(reduced pressure)下熔化并密封第一金属粉末的表面,并且使第一金属粉末的体积平均微粒尺寸均匀。因此,第一金属微粒得以制造(参见图4C)。然后用分类器来收集具有目标体积平均微粒尺寸的第一金属微粒。因此,具有至少一个孔隙的第一金属微粒得以制造。
[0125]〈〈组合过程》
[0126]组合过程包括将第一金属微粒与熔点低于第一金属微粒的熔点的第二金属组合在一起。
[0127]组合方法包括第一金属微粒和第二金属微粒的组合(混合物)或涂敷微粒(其为涂覆有第二金属的第一金属微粒)。
[0128]在第一金属微粒和第二金属微粒的组合(混合物)的情况下,第一金属微粒(A)与第二金属微粒(B)的质量比(A:B)优选处于20:80至50:50的范围,更优选处于30:70至50:50的范围。
[0129]在涂敷微粒(其为涂覆有第二金属的第一金属微粒)的情况下,第二金属层优选具有5 μ m或更大的平均厚度,更优选处于5μηι至20μηι的范围。用于形成第二金属层的方法可以是无电锻法。
[0130]〈可选过程〉
[0131]可选过程没有被特别限制,并且可以被适当选择用于各种目的。例如,可选过程是混合过程。
[0132]在混合过程中,焊料成分、焊剂成分以及可选成分被混合以制备导电键合材料。
[0133]混合过程中的混合没有被特别限制,并且可以被适当选择用于各种目的。例如,在非氧化性气氛中利用混合器或搅拌器进行混合。
[0134]电子部件
[0135]根据一个实施例的电子部件包括电路板、元件、密封树脂、端子以及可选元件。
[0136]电路板包括电极焊盘。元件包括多个电极。使用根据一个实施例的导电键合材料将元件的多个电极连接至电路板的电极焊盘。
[0137]〈电路板〉
[0138]电路板的形状、结构以及尺寸没有被特别限制,并且可以被适当选择用于各种目的。例如,电路板是金属板(plate)。电路板可以具有单层结构或多层结构。电路板的尺寸可以取决于电子部件的尺寸。
[0139]电路板的基板没有被特别限制,并且可以被适当选择用于各种目的。基板的实例包括无机基板(例如玻璃基板、石英基板、硅基板以及覆盖有SiO2膜的硅基板)和聚合物基板(例如环氧基板、苯酹基板、聚对苯二甲酸乙二醇酯(poly (ethylene terephthalate))基板、聚碳酸酯基板、聚苯乙烯基板、以及聚甲基丙烯酸甲酯(poly(methyl methacrylate))基板)。这些基板可以单独或以组合的形式使用。在这些当中,优选玻璃基板、石英基板、硅基板、覆盖有SiO2膜的硅基板,并且尤其优选硅基板和覆盖有SiO2膜的硅基板。
[0140]基板可以被适当合成或者可以是工业品。
[0141]基板的平均厚度没有被特别限制,并且可以被适当选择用于各种目的。基板的平均厚度优选为100 μ m或更大,更为优选500 μ m或更大。
[0142]电路板的尺寸没有被特别限制,并且可以被适当选择用于各种目的。电路板优选长度处于IOmm至200mm的范围,宽度处于IOmm至200mm的范围,以及厚度处于0.5mm至5mm的范围。[0143]用于该元件的电路板的安装面的形状没有被特别限制,并且可以被适当选择用于各种目的。例如,安装面是正方形、矩形或圆形。
[0144]电路板优选为在基板上具有多个电极的布线图案的布线电路板。
[0145]布线电路板没有被特别限制,并且可以被适当选择用于各种目的。例如,布线电路板是单层电路板(单层印刷布线板)或多层电路板(多层印刷布线板)。
[0146]金属层例如通过电镀或层压形成在电路板的电极上。
[0147]金属层可以由Cu、Ag、Au、N1、Sn、Al、T1、Pd或Si制成,优选由Cu> Ag或Au制成。
[0148]当导电键合材料被施加到电路板上的电极时,为了改善导电键合材料与电路板上的电极之间的连接,优选涂覆电路板上的电极的表面。表面涂层没有被特别限制,并且可以被适当选择用于各种目的。例如,表面涂层是焊剂涂层、预焊剂涂层、金属镀层或焊锡。
[0149]〈元件〉
[0150]该元件是具有多个电极的任何元件,并且可以被适当选择用于各种目的。例如,该元件是片式元件或半导体元件。
[0151]该元件被安装在电路板上。片式元件没有被特别限制,并且可以被适当选择用于各种目的。片式元件的实例包括电容和电阻。这些片式元件可以单独使用或以组合的形式使用。
[0152]半导体元件没有被特别限制,并且可以被适当选择用于各种目的。半导体元件的实例包括集成电路、大规模集成电路、晶体管、闸流晶体管以及二极管。这些半导体元件可以单独或以组合的形式使用。
[0153]元件的尺寸没有被特别限制,并且可以被适当选择各种目的。例如,该元件是 1608 类型(1.6mm X 0.8mm X 0.8mm)、1005 类型(1_Χ0.5mm X 0.5mm)或 0603 类型(0.BmmX0.3mmX0.3mm)。
[0154]通常,多种类型的元件被安装在电路板上。所有的元件不一定通过焊接来连接。至少部分元件可以通过焊接来连接,部分元件可以经由引线框来连接。
[0155]〈〈导电键合材料的施加》
[0156]用于将导电键合材料施加到电路板的电极或电子部件的端子的方法没有被特别限制,并且可以被适当选择用于各种目的,假定能够以期望厚度或期望重量施加导电键合材料。例如,用于施加导电键合材料的方法是丝网印刷方法、转移印刷方法、分送排放(dispense discharge)方法或喷墨法。
[0157]-丝网印刷方法_
[0158]丝网印刷方法可以利用具有模版(mask)的印刷机来进行。
[0159]具有模版的印刷机包括:用于固定电路板或电子部件的单元;用于将模版与电路板的电极或电子部件的端子对准的单元;用于下述功能的单元:用于对着电路板或电子部件压制模版,并使用刮板(squeegee)经由模版的开口将根据一个实施例的导电键合材料施加到位于模版下的电路板的电极或电子部件的端子;以及可选单元。
[0160]模版没有被特别限制,并且可以被适当选择用于各种目的。例如,模版是网孔模版(mesh mask)或金属模版。在这些当中,尤其优选金属模版,这是因为金属模版符合多种多样的微粒尺寸并易于清洁。
[0161 ] _转移印刷-[0162]根据转移印刷方法,使用具有特定空隙的刮板从根据一个实施例的导电键合材料中形成具有特定厚度的平坦涂覆膜,该平坦涂覆膜被转移到压模(stamper)并被压印在电路板的电极或电子部件的端子上,以将特定量的导电键合材料施加到电路板的电极或电子部件的端子。转移印刷机可以用于转移印刷。
[0163]这种转移印刷机可以包括:敷料器(applicator),用于形成平坦涂覆膜;固定单元,用于固定电路板;转移和压印单元,用于三维地驱动压模、转移平坦涂覆膜以及压印平坦涂覆膜;以及可选单元。
[0164]-分送排放方法_
[0165]根据分送排放方法,根据一个实施例的特定量的导电键合材料被排放到电路板的电极或电子部件的端子上。分送器可以用于分送排放方法。
[0166]这种分送器包括:喷射器(injector),用于将需要的排放压力施加到在注射器(syringe)中的导电键合材料,以经由注射器的尖端处的针头喷射特定量的导电键合材料;用于三维地驱动注射器以将注射器与电路板的电极或电子部件的端子对齐的单元;排放器,用于将期望量的导电键合材料排放到电路板的电极或电子部件的端子上;以及可选单
J Li ο
[0167]根据分送排放方法,排放位置和排放速率(discharge rate)能够使用程序来改变。因此,导电键合材料能够被施加到电路板或电子部件,该电路板或电子部件具有在水平部分差异或具有难以在其上压制模版的凹陷部分和凸起部分。
[0168]-喷墨法_
[0169]根据喷墨法,根据一个实施例`的导电键合材料经由喷墨装置的微细喷嘴被排放到电路板的电极或电子部件的端子上。电路板的电极或电子部件的端子上的导电键合材料被加热到用于键合的特定温度。
[0170]用于键合的装置没有被特别限制,并且可以被适当选择用于各种目的。例如,用于键合的装置是具有适合于焊接加热处理的熔炉或高温槽(high-temperature bath)的回流
>J-U ρ?α装直。
[0171]使用这种回流装置的热处理优选在100° C至300° C的温度范围进行10到120分钟。
[0172]〈密封树脂〉
[0173]密封树脂可以是任何能够密封元件的树脂,并且可以被适当选择用于各种目的。密封树脂的实例包括热固树脂,例如酹醒树脂、三聚氰胺树脂(melamine resin)、环氧树脂以及聚酯树脂。
[0174]用于密封元件的方法没有被特别限制,并且可以被适当选择用于各种目的。例如,用于密封元件的方法是用于使用热固树脂封装元件的铸封(potting)或使用热固树脂的传递模塑(transfer molding)。
[0175]仅元件可以利用密封树脂来密封,或者电路板的整个表面可以利用密封树脂来密封。
[0176]< 端子 >
[0177]电子部件具有多个端子。该多个端子可以是任何能够将电路板上的布线与外部基板连接的端子,并且可以被适当选择用于各种目的。例如,该多个端子是引线。[0178]该多个端子的形状没有被特别限制,并且可以被适当选择用于各种目的。例如,该多个端子具有导线形状。
[0179]这种引线的材料没有被特别限制,并且可以被适当选择用于各种目的。例如,这种引线的材料是金、银或铜。
[0180]电子装置
[0181]根据一个实施例的电子装置包括电子部件和可选组件。
[0182]电子部件可以是根据一个实施例的电子部件。通过使用根据一个实施例的导电键合材料将电子部件的端子焊接至电子装置而将电子部件安装在电子装置上。
[0183]电子装置没有被特别限制,并且可以被适当选择用于各种目的。电子装置的实例包括处理器(例如个人计算机和服务器)、通信装置(例如移动电话和收音机)、办公设备(例如印刷机和复印机)、视听设备(例如电视机和音频系统)以及家用电器(例如空调和冰箱)。
[0184]图5为根据一个实施例的电子部件的制造方法以及根据一个实施例的电子装置的制造方法的流程图。
[0185]<用于使用导电键合材料制造电子部件的方法>
[0186]一种用于使用根据一个实施例的导电键合材料制造电子装置的方法包括:制造第一金属微粒的过程;组合过程;基板制备过程;印刷作为导电键合材料的焊膏的过程;片式元件安装过程;第一回流加热过程;引线安装和塑形(shaping)过程;树脂密封过程;以及可选过程。
[0187]制造第一金属微粒的过程、组合过程以及可选过程与用于制造导电键合材料的方法中的相同,并且不再对其进行进一步描述。
[0188]-基板制备过程_
[0189]基板制备过程包括具有电极焊盘的电路板的制备。
[0190]-印刷焊膏的过程-
[0191]印刷焊膏的过程包括在电路板上印刷作为根据一个实施例的导电键合材料的焊膏,以将导电键合材料施加到电路板的电极焊盘。印刷方法没有被特别限制,并且可以被适当选择用于各种目的。例如,印刷方法是丝网印刷。
[0192]-片式元件安装过程_
[0193]片式元件安装过程包括在电路板的电极焊盘上安装元件(例如片式元件)。
[0194]-第一回流加热过程-
[0195]第一回流加热过程包括进行第一回流加热以在电路板上焊接元件(例如片式元件)。第一回流加热优选在160° C的峰值温度下进行10分钟。
[0196]-引线安装和塑形过程_
[0197]弓I线安装和塑形过程包括安装并对弓I线进行塑形。
[0198]-树脂密封过程_
[0199]树脂密封过程包括利用密封树脂进行密封。密封树脂可以是任何能够密封元件的树脂,并且可以被适当选择用于各种目的。密封树脂的实例包括热固树脂,例如酚醛树脂、三聚氰胺树脂、环氧树脂以及聚酯树脂。
[0200]经由用于制造电子部件的方法的这些过程,元件被安装在电路板上(第一安装),以制造电子部件。[0201]<用于使用导电键合材料制造电子装置的方法>
[0202]一种用于使用根据一个实施例的导电键合材料制造电子装置的方法包括:制造第一金属微粒的过程;组合过程;印刷电路板制备过程;印刷焊膏的过程;安装电子部件的过程;第二回流加热过程;以及可选过程。
[0203]制造第一金属微粒的过程、组合过程以及可选过程与用于制造导电键合材料的方法中的相同,并且不再对其进行进一步描述。
[0204]-印刷电路板制备过程_
[0205]印刷电路板制备过程包括对具有引线端子的印刷电路板的制备。
[0206]-印刷焊膏的过程-
[0207]印刷焊膏的过程包括通过丝网印刷在印刷电路板上施加作为导电键合材料的焊膏,从而将导电键合材料施加到引线端子。
[0208]-安装电子部件的过程-
[0209]安装电子部件的过程包括在印刷电路板的引线端子上放置电子部件的引线。
[0210]-第二回流加热过程-
[0211]第二回流加热过程包括第二回流加热。电子部件被焊接至印刷电路板(第二安装)。第二回流加热优选在235° C的峰值温度下进行5分钟。
[0212]经由用于制造电子装置的方法的这些过程,电子部件被安装在印刷电路板上(第二安装),以制造电子装置。
[0213]图6A至图6G为示出根据一个实施例的电子部件的制造方法以及根据一个实施例的电子装置的制造方法的示意性俯视图。图7A至图7G为示出根据一个实施例的电子部件的制造方法以及根据一个实施例的电子装置的制造方法的示意性剖视图。
[0214]参照图6A至图6G以及图7A至图7G,下文将描述根据一个实施例的电子部件的制造方法以及根据一个实施例的电子装置的制造方法。
[0215]首先,如图6A和图7A所示,制备具有电极焊盘21的电路板20。
[0216]如图6B和图7B所示,在电路板20上印刷作为根据一个实施例的导电键合材料22的焊膏,以将导电键合材料22施加到部分电极焊盘21。印刷方法没有被特别限制,并且可以被适当选择用于各种目的。例如,印刷方法是丝网印刷。
[0217]如图6C和图7C所示,多个元件23被放置在导电键合材料22 (其被放置在部分电极焊盘21上)上。
[0218]如图6D和图7D所示,通过第一回流加热来焊接元件23。第一回流加热优选在160° C的峰值温度下进行10分钟。
[0219]如图6E和图7E所示,如果需要的话,安装另一个元件23a,并且安装引线24且如果需要的话对其进行塑形。
[0220]如图6F和图7F所示,利用密封树脂25进行密封,从而完成元件23的安装(第一安装)。因此,根据本实施例的电子部件得以制造。
[0221]密封树脂可以是任何能够密封元件的树脂,并且可以被适当选择用于各种目的。密封树脂的实例包括热固树脂,例如酚醛树脂、三聚氰胺树脂、环氧树脂以及聚酯树脂。
[0222]如图6G和图7G所示,制备具有引线端子27的印刷电路板26。焊膏通过丝网印刷被施加到印刷电路板26,以将导电键合材料28施加到引线端子27。将电子部件的引线24放置在印刷电路板26的引线端子27上。电子部件通过第二回流加热被焊接至印刷电路板26 (第二安装)。第二回流加热优选在235° C的峰值温度下进行5分钟。因此,根据本实施例的电子装置得以制造。
[0223]实例
[0224]虽然将在以下实例中进一步描述这里讨论的实施例,但是这些实施例不限于这些实例。
[0225]在以下实例和比较实例中,如下所述测量第一金属微粒和第二金属微粒的体积平均微粒尺寸、涂敷微粒的第二金属层的平均厚度以及第一金属微粒和第二金属微粒的熔点。
[0226]<用于测量第一金属微粒和第二金属微粒的体积平均微粒尺寸的方法>
[0227]从利用激光散射衍射微粒尺寸分布分析仪(CILAS1090,由Cilas制造的)测量的对象总体(population)的微粒尺寸分布中计算金属微粒的体积平均微粒尺寸。
[0228]<用于测量涂敷微粒的第二金属层的平均厚度的方法>
[0229]第二金属层的平均厚度通过X射线荧光分析方法(荧光X射线电镀厚度测量装置,由Alex公司制造)来测量。
[0230]<用于测量第一金属微粒和第二金属微粒的熔点的方法>
[0231]以在25° C至250° C温度范围内的0.5° C/S的温度梯度,利用差示扫描量热仪(DSC) (DSC6200,由精工电子有限公司制造)来测量金属微粒的熔点。
[0232]制造实例I
[0233]-具有孔隙的第一金属微粒的制造-
[0234]具有至少一个孔隙的第一金属微粒也即Sn-3.0Ag-0.5Cu合金微粒通过以下方法来制造。
[0235]首先,通过电镀方法形成具有10 μ m体积平均微粒尺寸的Sn-3.0Ag-0.5Cu合金粉末。氧化Sn-3.0Ag-0.5Cu合金粉末。在真空喷射式研磨机(mill)中将氧化的Sn-3.0Ag-0.5Cu合金粉末研磨成处于3 μ m至4 μ m范围的体积平均微粒尺寸。
[0236]在氢气气氛中活化Sn-3.0Ag-0.5Cu合金粉末的表面。具有活化表面的Sn-3.0Ag-0.5Cu合金粉末凝结成处于10 μ m至20 μ m范围的体积平均微粒尺寸。然后氧化所凝结的Sn-3.0Ag-0.5Cu合金粉末。然后在真空喷射式研磨机中将氧化的Sn-3.0Ag-0.5Cu合金粉末研磨成处于5 μ m至6 μ m范围的体积平均微粒尺寸。在氢气气氛中活化研磨的Sn-3.0Ag-0.5Cu合金粉末的表面。具有活化表面的Sn_3.0Ag-0.5Cu合金粉末凝结成处于10 μ m至20 μ m范围的体积平均微粒尺寸。然后氧化凝结的Sn_3.0Ag-0.5Cu合金粉末。然后在真空喷射式研磨机中将氧化的Sn-3.0Ag-0.5Cu合金粉末研磨成处于5 μ m至6 μ m范围的体积平均微粒尺寸,以制造多孔Sn_3.0Ag-0.5Cu合金粉末(参见图4A和图4B)。
[0237]将Sn-3.0Ag-0.5Cu合金粉末供应到具有用于经由熔化喷嘴供给粉末的预处理单兀的雾化器。在减压下熔化并密封第一金属粉末的表面,并且使Sn-3.0Ag-0.5Cu合金粉末的体积平均微粒尺寸均匀。因此,Sn-3.0Ag-0.5Cu合金微粒得以制造(参见图4C)。然后用分类器收集具有目标体积平均微粒尺寸的Sn-3.0Ag-0.5Cu合金微粒。因此,具有至少一个孔隙的Sn-3.0Ag-0.5Cu合金微粒(具有217° C的熔点、40 μ m的体积平均微粒尺寸以及20 μ m的孔隙直径)得以制造。
[0238]制造实例2
[0239]-不具有孔隙的Sn-3.0Ag-0.5Cu合金微粒的制造-
[0240]熔化的Sn-3.0Ag-0.5Cu合金通过雾化(atomizing)法形成微粒。冷却并收集Sn-3.0Ag-0.5Cu合金微粒。经由筛选机(sifter)将Sn_3.0Ag-0.5Cu合金微粒分类成期望的微粒尺寸范围。因此,根据制造实例2的Sn-3.0Ag-0.5Cu合金微粒(具有217° C的熔点和40 μ m的体积平均微粒尺寸)得以制造。
[0241]制造实例3 [0242]-第二金属微粒的制造-
[0243]熔化的Sn-57.0B1-1.0Ag合金通过雾化方法形成微粒。冷却并收集Sn-57.0B1-1.0Ag合金微粒。经由筛选机将Sn_57.0B1-1.0Ag合金微粒分类成期望的微粒尺寸范围。因此,Sn-57.0B1-1.0Ag合金微粒(具有139° C的熔点和40 μ m的体积平均微粒尺寸)被制造为第二金属微粒。
[0244]制造实例4
[0245]-涂敷微粒的制造-
[0246]具有至少一个孔隙的Sn-3Ag_0.5Cu合金微粒(具有217° C的熔点、30 μ m的体积平均微粒尺寸以及20 μ m的孔隙直径)以与制造实例I相同的方式被制造为第一金属微粒。
[0247]将具有至少一个孔隙的Sn-3Ag-0.5Cu合金微粒浸没在包含Sn_57.0B1-1.0Ag合金的无电镀溶液的电镀槽中。形成具有IOym厚度的Sn-57.0B1-1.0Ag合金电镀膜,并且洗涤并干燥涂敷微粒。因此,根据制造实例4的涂敷微粒得以制造。
[0248]实例I
[0249]在非氧化性气氛中混合以下成分,以制备作为导电键合材料的焊膏。
[0250]<焊剂成分:以质量计的10%>
[0251 ] 聚合松香(松木树脂):以质量计的48%
[0252]二苯胍HBr (催化剂):以质量计的2%
[0253]氢化蓖麻油(触变剂):以质量计的5%
[0254]二溴己烷(脂肪族化合物):以质量计的5%
[0255]α -松油醇(a -terpineol)(溶剂):以质量计的40%
[0256]<焊料成分:以质量计的90%>
[0257]?第一金属微粒:以质量计的50%?
[0258]使用在制造实例I中制造的具有至少一个孔隙的第一金属微粒。
[0259]第一金属微粒的构成:Sn_3.0Ag-0.5Cu (以质量计的%)
[0260]体积平均微粒尺寸:40 μ m
[0261]平均体积:33510.32 μ m3
[0262]熔点:217。C
[0263]孔隙的定义:第一金属微粒中不具有第一金属的部分(体积)
[0264]孔隙体积:按体积计的12.5% (孔隙直径20 μ m,第一金属微粒直径40 μ m)
[0265](4188.79020 μ m3/33510.32 μ m3) X 100=按体积计的 12.5%
[0266]热膨胀系数:23.4ppm/° C[0267]250 C 时的体积膨胀:505.18 μ m3
[0268]《第二金属微粒:以质量计的50%》
[0269]使用在制造实例3中制造的第二金属微粒。
[0270]第二金属微粒的构成:Sn_57.0B1-1.0Ag (以质量计的%)
[0271 ] 体积平均微粒尺寸:40 μ m
[0272]平均体积:33510.32 μ m3
[0273]熔点:139°C
[0274]热膨胀系数:15.0ppm/° C
[0275]250°C 时的体积膨胀:327.78 μ m3
[0276]如下所述测量由此制备的导电键合材料中孔隙的真空度和孔隙体积。如下所述评估焊料熔化的发生率(occurrence)和电气可靠性。图11列出结果。
[0277]<用于测量孔隙体积的方法>
[0278]首先,计算熔化之前的焊料成分(第一金属微粒和第二金属微粒)的体积。测量熔化之后的焊料成分(第一金属微粒和第二金属微粒)的体积。使用以下公式从这些体积中计算孔隙体积。孔隙体积是10次测量的平均值。
[0279]孔隙体积(μ m3)=熔化之前的焊料成分的体积-熔化之后的焊料成分的体积
[0280]<用于测量孔隙的真空度的方法>
[0281]在处于KT7Torr的真空中熔化焊料成分(第一金属微粒和第二金属微粒)。测量焊料成分(第一金属微粒和第二金属微粒)的熔化之前和之后的摩尔数。使用状态方程计算摩尔数(孔隙中的摩尔数)的增加。然后计算孔隙的真空度。孔隙的真空度是10次测量的平均值。
[0282]孔隙的真空度(Torr) =760Torr/ (孔隙中的摩尔数/大气压下的摩尔数)
[0283]<由第二回流加热中焊料成分的热膨胀引起的理论增加体积的计算〉
[0284]由第二回流加热中的热膨胀引起的具有至少一个孔隙的第一金属微粒(具有40 μ m的直径)的增加长度δ L能够使用以下公式来计算。
[0285]常温(25° C)时的第一金属微粒的直径X热膨胀系数X从常温增加的温度=第二回流加热中的第一金属微粒的直径
[0286]第一金属微粒的热膨胀系数是25ppm/° C,第二回流加热温度是260° C的峰值温度(常温:25° C)。
[0287]由热膨胀引起的第一金属微粒的增加长度δ L=40μmX (25Χ10_6)Χ (260-25)=0.235 μ m。
[0288]由第二回流加热中的热膨胀引起的具有至少一个孔隙的第一金属微粒的增加体积δV能够使用以下公式来计算。
[0289]热膨胀之后的第一金属微粒的体积(直径40 μ m+0.235 μ m=40.235 μ m)-热膨胀之前的第一金属微粒的体积(直径40 μ m)
[0290]由热膨胀引起的第一金属微粒的增加体积δ V=34104.42 μ m3-33510.32 μ m3=594.1 μ m3
[0291]由热膨胀引起的焊料成分的增加体积δ V=594.1 Um3X2 (第一金属微粒+第二金属微粒)=1188.2 μ m3[0292]<具有孔隙的第一金属微粒中孔隙的理论真空度的计算>
[0293]假设液体具有弯曲表面时,使用以下拉普拉斯方程式能够从压力差中计算使熔化的第一金属的表面面积最小化的力。
[0294]?拉普拉斯方程式>>
[0295]压力差δΡ=Ρ (空气)- P (液体)
[0296]其中P (空气)基本为零。
[0297]熔化的第一金属的内聚力(cohesive force)在250° C时是50000Pa。
[0298]确定使压力小于或等于在250° C时熔化的第一金属的内聚力(50000Pa)的孔隙
的真空度。
[0299]如果第一金属微粒具有20μπι的孔隙直径,则孔隙体积是4188.79 μ m3=4.18879X 10-12 升。
[0300]760Torr (大气压)的真空度下的摩尔数是4.18879 X 10-12升/22.4升。
[0301]使用这些值,通过处于250° C的第一金属的内聚力是50000Pa或更小时的摩尔数,根据波义耳查尔斯定律(Boyle-Charles)计算真空度(Torr)。
[0302]?波义耳查尔斯定律>>
[0303]P (50000Pa) = (n/V) RT (523K)
[0304]与在250 ° C时50000Pa的第一金属的内聚力平衡的孔隙的真空度是195.88Torr0
[0305]<用于评估焊料熔化的发生率的方法(闪光现象)>
[0306]铜图案(焊盘尺寸:长度0.3mmX宽度0.3臟,焊盘之间的距离(间距):0.2mm)形成在电路板(长度IlOmmX宽度IlOmmX厚度1.0mm)上。
[0307]使用金属丝网和金属刮板(metal squeegee)将导电键合材料丝网印刷在电路板上。将片式元件(0603类型片式元件(长度0.6mmX宽度0.3mmX厚度0.3mm),Sn电极)放置在丝网印刷的导电键合材料上。片式元件在160° C的峰值温度下在非氧化性气氛中(小于IOOppm的氧气浓度)经受第一回流加热10分钟,用于在电路板上进行第一安装。
[0308]在电路板被洗涤之后,密封树脂(环氧粘合剂)被施加到电路板,该密封树脂在150° C下被固化一个小时,并24小时承受高温和高湿度(85° C和85%RH),因此制造电子部件。
[0309]电子部件在235° C的峰值温度下经受第二回流加热5分钟(第二安装)。
[0310]在第二回流加热之后,目视检查电子部件。在片式元件之间以及片式元件内具有焊料熔化的芯片的数量。确定400个片式元件的发生率(%)。图8A和图8B为实例I中评估的第二安装之后的电子部件的照片。如图8A和图SB描述的,在实例I中没有发生焊料熔化。[0311]〈用于评估电气可靠性的方法〉
[0312]以与用于评估焊料熔化的发生率的方法相同的方式,电子部件在235° C的峰值温度下经受第二回流加热5分钟(第二安装)。在第二安装之后,电子部件的焊接部分的电阻用电阻计(由Fluke公司制造的77MULHMETER)来测量。电子部件的电气可靠性根据以下标准来评估。
[0313][评估标准][0314]良好(圆圈):电阻没有增加
[0315]中等(三角形):电阻增加
[0316]差(十字形):开路故障(open fault)
[0317]实例2
[0318]除在制造实例4中制造的涂敷微粒被用作焊料成分之外,根据实例2的导电键合材料以与实例I相同的方式来制造。
[0319]以与实例I相同的方式测量导电键合材料的孔隙体积和孔隙的真空度。以与实例I相同的方式评估焊料熔化的发生率和电气可靠性。图11列出结果。
[0320]实例3
[0321]除通过改变在制造实例I中第一金属微粒的制造条件来制造第一金属微粒之外,根据实例3的导电键合材料以与实例I相同的方式来制造。第一金属微粒具有在图11中列出的孔隙体积和孔隙的真空度。
[0322]以与实例I相同的方式测量导电键合材料的孔隙体积和孔隙的真空度。以与实例I相同的方式评估焊料熔化的发生率和电气可靠性。图11列出结果。
[0323]实例4
[0324]除通过改变制造实例I中第一金属微粒的制造条件来制造第一金属微粒之外,根据实例4的导电键合材料以与实例I相同的方式来制造。第一金属微粒具有在图11中列出的孔隙体积和孔隙的真空度。
[0325]以与实例I相同的方式测量导电键合材料的孔隙体积和孔隙的真空度。以与实例I相同的方式评估焊料熔化的发生率和电气可靠性。图11列出结果。
[0326]比较实例I
[0327]除了使用以下焊料成分之外,根据比较实例I的导电键合材料以与实例I相同的方式来制造。
[0328]<焊料成分:以质量计的90%>
[0329]在制造实例2中制造的不具有孔隙的Sn-3Ag_0.5Cu合金微粒(具有218° C的熔点和40 μ m的体积平均微粒尺寸):以质量计的50%
[0330]在制造实例3中制造的作为第二金属微粒的Sn-57.0B1-1.0Ag合金微粒(具有139° C的熔点和40 μ m的体积平均微粒尺寸):以质量计的50%
[0331]以与实例I相同的方式测量导电键合材料的孔隙体积和孔隙的真空度。以与实例I相同的方式评估焊料熔化的发生率和电气可靠性。图11列出结果。图9A和图9B为在比较实例I中评估的第二安装之后的电子部件的照片。图9A和图9B表示在比较实例I中发生的焊料熔化。
[0332]在图11中,实例I中的孔隙体积为4112.31 μ m3,该孔隙体积大于由第二回流加热中焊料成分的热膨胀引起的理论增加体积(1188.2μπι3)。实例I中的孔隙的真空度为85.23Torr,该真空度低于孔隙的理论真空度(195.88Torr)。因此,在实例I中,第一金属微粒的孔隙能够充分减小第二回流加热中的体积膨胀和所造成的应力,并且焊料熔化的发生
率为0%。
[0333]实例2中的孔隙体积为4091.56 μ m3,该孔隙体积大于由第二回流加热中焊料成分的热膨胀引起的理论增加体积(1188.2 μ m3)。实例2中孔隙的真空度为65.65Torr,该真空度低于孔隙的理论真空度(195.88Torr)。因此,在实例2中,第一金属微粒的孔隙能够充分减小第二回流加热中的体积膨胀和所造成的应力,并且焊料熔化的发生率为0%。
[0334]实例3中的孔隙体积为4132.14 μ m3,该孔隙体积大于由第二回流加热中焊料成分的热膨胀引起的理论增加体积(1188.2 μ m3)。实例3中孔隙的真空度为420.31Torr,该真空度高于孔隙的理论真空度(195.88Torr)。因此,在实例3中,虽然第一金属微粒的孔隙能够减小第二回流加热中的体积膨胀和所造成的应力,但是孔隙的高真空度会导致对熔化的第一金属的吸收不良,并且焊料熔化的发生率为10.5%。这导致电阻增加。[0335]实例4中的孔隙体积为1212.34 μ m3,该孔隙体积大于由第二回流加热中焊料成分的热膨胀引起的理论增加体积(1188.2 μ m3)。实例4中孔隙的真空度为68.97Torr,该真空度低于孔隙的理论真空度(195.88Torr)0因此,在实例4中,第一金属微粒的孔隙不能充分减小第二回流加热中的体积膨胀和所造成的应力,焊料熔化的发生为23.75%。这导致电阻增加。
[0336]在比较实例I中,不具有孔隙的第一金属微粒不能够减小第二回流加热中的体积膨胀和所造成的应力,焊料熔化的发生率为38.75%。这导致开路故障的发生以及非常低的电气可靠性。
[0337]实例5
[0338]〈电子部件和电子装置的制造〉
[0339]使用实例I中制造的导电键合材料来制造如下所述的电子部件和电子装置。
[0340]?电子部件的制造>>
[0341]首先,铜图案(焊盘尺寸:长度0.3mmX宽度0.3mm,焊盘之间的距离(间距):
0.2mm)形成在电路板(长度IlOmmX宽度IlOmmX厚度1.0mm)上。使用金属丝网和金属刮板将实例I中制造的导电键合材料丝网印刷在电路板上。金属丝网具有100%的焊盘开口和150μηι的厚度。片式兀件(0603片式兀件、Sn电极)被放置在印刷导电键合材料上。片式元件在160° C的峰值温度下在非氧化性气氛中(小于IOOppm的氧气浓度)经受第一回流加热10分钟,用于在电路板上进行第一安装。
[0342]在电路板被洗涤之后,密封树脂(环氧粘合剂)被施加到电路板,该密封树脂在150° C下被固化一个小时,并24小时承受高温和高湿度(85° C和85%RH),从而制造电子部件。不连接引线。
[0343]?电子装置的制造>>
[0344]导电键合材料作为焊膏被丝网印刷在具有引线端子的电路板上,以将导电键合材料施加到引线端子。电子部件的引线被放置在电路板的引线端子上。电子部件通过在235° C的峰值温度下第二回流加热5分钟而被焊接至电路板。因此,电子装置得以制造。
[0345]? 评估 >>
[0346]以与实例I相同的方式评估电子装置的焊料熔化的发生率和电气可靠性。焊料熔化的发生率为0%,并且观察到电阻没有增加。因此,电子装置具有高的电气可靠性。
[0347]本文引用的所有实例和条件语言都倾向于教育目的以帮助读者理解本发明和由发明人改进现有技术所贡献的概念,并解释为不限制于具体引用的这些示例和条件,说明书中这些示例的组织也不涉及显示本发明的优劣。尽管已经详细描述了本发明的实施例,但应理解在不背离本发明的精神和范围的情况下可作出各种变化、替换以及更改。
【权利要求】
1.一种导电键合材料,包括: 焊料成分,所述焊料成分包括: 第一金属的金属发泡体,具有至少一个孔隙,当所述金属发泡体在高于所述第一金属的熔点的温度下被加热时,所述孔隙吸收熔化的第一金属;以及第二金属,具有低于所述第一金属的熔点的熔点。
2.根据权利要求1所述的导电键合材料,其中, 所述焊料成分包含所述金属发泡体的微粒和所述第二金属的微粒,或者所述焊料成分包含涂敷微粒,所述涂敷微粒为涂覆有所述第二金属的所述金属发泡体的微粒。
3.根据权利要求2所述的导电键合材料,其中, 所述第一金属的微粒(A)与所述第二金属的微粒(B)的质量比(A:B)处于20:80至50:50的范围。
4.根据权利要求1所述的导电键合材料,其中, 所述第一金属具有150° C或更大且230° C或更小的熔点,以及所述第二金属具有小于150° C的熔点。
5.根据权利要求1所述的导电键合材料,其中, 所述第一金属的所述金属发泡体是Sn-B1-X合金微粒和Sn-Cu-X合金微粒其中之一,X从Ag、N1、Zn、Pd以及In构成的组里选择。
6.根据权利要求1所述的导电键合材料,其中, 所述第二金属是Sn-Bi合金和Sn-B1-Y合金其中之一,Y从Ag、N1、Zn、Pd以及In构成的组里选择。
7.根据权利要求1所述的导电键合材料,其中, 所述焊料成分构成所述导电键合材料的以质量计的50%或更多且以质量计的95%或更少。
8.根据权利要求1所述的导电键合材料,还包括:由环氧焊剂材料和松香焊剂材料的至少一个制成的焊剂成分。
9.根据权利要求8所述的导电键合材料,其中,所述焊剂成分构成所述导电键合材料的以质量计的5%或更多且以质量计的50%或更少。
10.一种导电键合材料的制造方法,包括: 熔化第一金属; 在真空下使所熔化的第一金属发泡以形成孔隙; 冷却所熔化的第一金属以形成金属发泡体; 在真空下切割所述金属发泡体; 对所切割的金属发泡体执行滚光流化床过程以形成第一金属微粒;以及 将所述第一金属微粒与熔点低于所述第一金属微粒的熔点的第二金属组合在一起。
11.根据权利要求10所述的导电键合材料的制造方法,其中, 所述导电键合材料包含焊料成分,所述焊料成分包含所述第一金属微粒和所述第二金属的微粒,或者所述焊料成分包含涂敷微粒,所述涂敷微粒为涂覆有所述第二金属的所述第一金属微粒。
12.根据权利要求10所述的导电键合材料的制造方法,其中,所述第一金属具有150° C或更大且230° C或更小的熔点,以及所述第二金属具有小于150° C的熔点。
13.根据权利要求10所述的导电键合材料的制造方法,其中, 所述第一金属是Sn-B1-X合金微粒和Sn-Cu-X合金微粒其中之一,X从Ag、N1、Zn、Pd以及In构成的组里选择。
14.根据权利要求10所述的导电键合材料的制造方法,其中, 所述第二金属是Sn-Bi合金和Sn-B1-Y合金其中之一,Y从Ag、N1、Zn、Pd以及In构成的组里选择。
15.根据权利要求11所述的导电键合材料的制造方法,其中, 所述焊料成分构成所述导电键合材料的以质量计的50%或更多且以质量计的95%或更少。
16.—种导电键合材料的制造方法,包括: 通过电镀法形成第一金属体; 活化所述第一金属体的表面; 氧化所活化的第一金属体,并反复研磨所氧化的第一金属体以形成具有至少一个孔隙的第一金属微粒;以及 将所述第一金属微粒与熔点低于所述第一金属微粒的熔点的第二金属组合在一起。
17.一种电子装置的制造方法,包括: 将导电键合材料施加到电路板的电极焊盘; 在所述电路板的所述电极焊盘之上安装元件; 进行第一回流加热以加热所述元件与所述电路板; 安装并塑形引线至所述元件; 利用密封树脂密封所述元件; 将焊膏施加到印刷电路板的引线端子; 将树脂密封的所述元件安装在所述印刷电路板之上,从而将所述引线放置在所述引线端子上;以及 进行第二回流加热以加热所述元件与所述印刷电路板,其中, 所述导电键合材料包括: 具有至少一个孔隙的第一金属的金属发泡体,当所述金属发泡体在高于所述第一金属的熔点的温度被加热时,所述孔隙吸收熔化的第一金属;以及第二金属,具有低于所述第一金属的熔点的熔点。
18.根据权利要求17所述的电子装置的制造方法,其中, 所述第一回流加热在160° C的峰值温度下进行10分钟。
19.根据权利要求18所述的电子装置的制造方法,其中, 所述第二回流加热在235° C的峰值温度下进行5分钟。
【文档编号】B23K35/26GK103447713SQ201310125016
【公开日】2013年12月18日 申请日期:2013年4月11日 优先权日:2012年5月28日
【发明者】北岛雅之, 山上高丰, 久保田崇, 石川邦子 申请人:富士通株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1