火花等离子体烧结的聚晶金刚石复合片的制作方法

文档序号:14039761阅读:326来源:国知局
火花等离子体烧结的聚晶金刚石复合片的制作方法

本公开涉及聚晶金刚石复合片(pdc),其包括通过火花等离子体烧结而键合到基材的聚晶金刚石。

发明背景

聚晶金刚石复合片(pdc)(特别是pdc刀具)经常用于钻地钻头(诸如固定刀具钻头)中。pdc包括在压机中在高压、高温(hthp)条件下形成的金刚石。在许多情况下,pdc包括在少至单个hthp压制周期中形成并键合到基材的聚晶金刚石。在本领域中有时称为催化材料或简称为“催化剂”的烧结助剂经常包括在压机中,以有助于既参与形成金刚石又可选地参与将金刚石键合到基材的金刚石与金刚石键合。

在使用过程中(例如,在钻井时),聚晶金刚石刀具变得非常热,并且由于包括金刚石与烧结助剂的热膨胀系数之间的不匹配(即,cte不匹配)的因素而使得金刚石中的残余烧结助剂可能导致问题,诸如过早损坏或磨损。为了避免或最小化这个问题,所有或大部分残余金刚石烧结助剂经常在使用之前诸如通过化学浸出过程、电化学过程或其他方法从聚晶金刚石中去除。不管去除金刚石烧结助剂的方法如何,已经从其去除至少一些残余烧结助剂的聚晶金刚石经常称为是浸出的。被充分浸出以避免在大气压下、在高达1200℃的温度下石墨化的聚晶金刚石经常称为是热稳定的。包含浸出的或热稳定的聚晶金刚石的pdc经常称为浸出的或热稳定的pdc,这反映出它们包括的聚晶金刚石的性质。

尽管在pdc中使用的聚晶金刚石通常在基材上形成,但是可以随后去除形成基材,例如以有助于浸出。即使pdc在原始基材上包含聚晶金刚石,聚晶金刚石与原始基材之间的键合也可能已例如通过浸出而减弱。因此,将聚晶金刚石附接到基材或者改善聚晶金刚石与基材的现有附接是令人感兴趣的。

附图简述

结合未按比例绘制的附图参考以下描述可以获得对本发明的实施方案和其优点的更完整和更充分的理解,在附图中相同的参考数字指示相同的特征,并且其中:

图1a是未浸出的聚晶金刚石的截面的示意图;

图1b是浸出的聚晶金刚石的截面的示意图,所述浸出的聚晶金刚石邻近基材但未共价键合到基材;

图1c是在通过火花等离子体烧结的共价键合之前在存在反应气体的情况下的邻近基材的浸出的聚晶金刚石的截面的示意图;

图1d是浸出的pdc刀具的截面的示意图,所述浸出的pdc刀具包括通过火花等离子体烧结共价键合的聚晶金刚石和基材;

图2是火花等离子体烧结组件的截面的示意图;

图3是包含图2的组件的火花等离子体烧结系统的示意图;

图4是通过火花等离子体烧结形成的pdc刀具的示意图;

图5是包含通过火花等离子体烧结形成的pcd刀具的固定刀具钻头的示意图。

具体实施方式

本公开涉及一种pdc元件(诸如pdc刀具),其包含通过火花等离子体烧结共价键合到基材的浸出的聚晶金刚石。用于火花等离子体烧结的等离子体包含碳化物结构形成的元素,所述元素共价键合到聚晶金刚石和基材中的碳化物颗粒,从而在其间形成共价键碳化物键合。

聚晶金刚石,特别是如果被浸出,更特别是如果被充分浸出以成为热稳定的,那么就包含在其中形成碳化物结构的孔隙。当聚晶金刚石中的孔隙邻近基材中的碳化物晶粒时,碳化物结构在孔隙内形成并共价键合到孔隙壁并且还共价键合到基材中的碳化物晶粒。在聚晶金刚石内,金刚石键合也可以在孔隙内形成。

图1a描绘未浸出的聚晶金刚石。呈催化剂形式的金刚石烧结助剂20位于金刚石晶粒10之间。在浸出之后,如图1b的完全浸出的聚晶金刚石30所示,存在金刚石烧结助剂20先前所位于的孔隙50。尽管图1b示出完全浸出的、热稳定的聚晶金刚石,但是具有孔隙的部分浸出的聚晶金刚石或未浸出的聚晶金刚石也可以用于本文公开的火花等离子体烧结过程。聚晶金刚石的浸出部分可以延伸到距聚晶金刚石表面的任何深度,或者甚至包括所有聚晶金刚石。与未浸出的聚晶金刚石中的体积的4%至8%相比,浸出的或热稳定的聚晶金刚石的浸出部分的体积的小于2%或小于1%由金刚石烧结助剂所占据。

在基材40中可以存在围绕碳化物晶粒60的孔隙70。可替代地,基材40可以缺少孔隙或者可以包含围绕碳化物晶粒60的其他材料。在任一种情况下,基材40可以是包含碳化物晶粒60和孔隙70位于其中的基质的胶结碳化物。

在火花等离子体烧结过程期间,如图1c所示,孔隙50和70填充有反应气体80。尽管所有孔隙50和70在图1c中都示出为被填充,但并非所有孔隙都必须被填充。在聚晶金刚石30、基材40或两者中的至少一部分孔隙(至少25%的孔隙、至少50%的孔隙、至少75%的孔隙或至少99%的孔隙)可以填充有反应气体。可替代地,在聚晶金刚石30与基材40之间的界面的500μm内的聚晶金刚石30中的至少95%的孔隙、至少90%的孔隙或至少75%的孔隙可以填充有反应气体。孔隙填充由在火花等离子体烧结之后在孔隙中形成金刚石键合或碳化物结构来证明。

尽管基材40在一些情况下可以到处具有孔隙,但是所述基材40在其他情况下也可能通常缺乏孔隙,在这种情况下,可以对基材40进行改性或制备以在其邻近聚晶金刚石30的表面附近,例如在邻近聚晶金刚石30的基材表面的500μm内引入孔隙70。制备或改性可以包括例如使用酸来溶解一部分基材。在胶结碳化物基材的情况下,酸通常在其溶解碳化物晶粒60之前溶解基质,从而留下曾经存在基质的孔隙。制备或改性还可以包括机械磨损,其可以未选择性地从胶结碳化物中去除基质。这些改性或制备通常在将基材40邻近聚晶金刚石30放置之前进行。

如果基材40通常缺少孔隙并且未被改性或制备成在其邻近聚晶金刚石的表面上形成孔隙,那么碳化物结构100将共价键合到可用的碳化物晶粒60,通常是在基材40的邻近聚晶金刚石30的表面处的碳化物晶粒。

最后,在图1d所示的火花等离子体烧结的pdc中,孔隙50填充有由反应气体80形成的金刚石键合物90和/或碳化物结构100。此外,基材40中的孔隙70填充有由反应气体80形成的碳化物结构100。在聚晶金刚石30与基材40之间的界面处的碳化物结构100可以共价键合到碳化物晶粒60和金刚石晶粒10。跨越所述界面的这些结构在将聚晶金刚石30共价键合到基材40中特别有用。

在图1d中,碳化物结构100被示出为可与碳化物晶粒60区分开,但是它们可能如此类似和/或可能如此完全地填充任何孔隙以至于它们无法区分开,特别是如果碳化物晶粒60和碳化物结构100由相同的材料形成时尤其如此。类似地,尽管金刚石键合物90被示出为可与金刚石晶粒10区分开,但是在一些情况下它们可能无法区分开。

此外,尽管图1d中的每个填充孔隙被示为未完全填充,但是在聚晶金刚石30和基材40中的一者或两者中每个填充孔隙可以是基本上填充的。此外,尽管图1d将一些孔隙示出为未填充,但是本公开包括其中金刚石键合物和/或碳化物结构填充聚晶金刚石30和/或基材40中的至少25%的孔隙、至少50%的孔隙、至少75%的孔隙或至少99%的孔隙的实施方案。

填充孔隙的更高百分比以及分别邻近基材40和聚晶金刚石30的填充孔隙50和70的更完全填充通常导致聚晶金刚石与基材之间的更强的共价键合,从而使得在pdc的使用过程中键合区不太可能发生损坏。这也可以导致更致密的pdc或具有更高冲击强度的pdc。

金刚石晶粒10可以具有适用于形成聚晶金刚石30的任何尺寸。它们的粒度可以在整个聚晶金刚石中或聚晶金刚石的不同区域中变化。例如,金刚石晶粒10可以在聚晶金刚石30与基材40之间的界面附近较大以便提供更多或更大的孔隙50,并且在聚晶金刚石30的工作表面附近较小以提供超越可用更大金刚石晶粒实现的性能的有益性能,诸如更高的耐磨性。

碳化物晶粒60可以包括任何碳化物,特别是碳化钨(wc)或者也能够形成如下所述的碳化物结构的另一种碳化物。除了碳化物晶粒60之外,基材40还可以包括诸如粘结剂和/或浸渗剂的一种或多种基质材料(未示出)。这些基质材料围绕碳化物晶粒60以形成胶结碳化物。具体地,粘结剂和/或浸渗剂可以是金属组合物(诸如金属或金属合金)。

反应气体80可以包括呈单独地或与氢气(h2)和/或烃类气体组合的气体形式的碳化物形成金属。碳化物形成金属可以包括锆(zr)、钛(ti)、硅(si)、钒(v)、铬(cr)、硼(b)、钨(w)、钽(ta)、锰(mn)、镍(ni)、钼(mo)、铪(hf)、铼(re)及其任何组合。气体形式可以包括金属盐(诸如氯化物)、或者包含金属而不是未反应元素的另一种化合物,因为金属化合物经常比未反应的元素金属更容易形成气体。烃类气体可以包括甲烷、丙酮、甲醇或其任何组合。

碳化物结构可以包括金属元素的过渡相,诸如碳化锆(zrc)、碳化钛(tic)、碳化硅(sic)、碳化钒(vc)、碳化铬(crc)、碳化硼(bc)、碳化钨(wc)、碳化钽(tac)、碳化锰(mnc)、碳化镍(nic)、碳化钼(moc)、碳化铪(hfc)、碳化铼(rec)及其任何组合。

在火花等离子体烧结之前,将聚晶金刚石30和基材40放置在火花等离子体烧结组件100(诸如图2的组件)中。所述组件包括密封烧结罐110,其包含聚晶金刚石30和基材40,其中反应气体80邻近聚晶金刚石30。密封烧结罐110包括端口120,反应气体80在密封烧结罐110被密封之前通过所述端口120进入密封烧结罐110。在将密封烧结罐110放置在图3的火花等离子体烧结组件200中之前,可以通过将罐110放置在真空中以去除内部空气、随后将反应气体80泵入真空室中来将反应气体80引入密封烧结罐110中。真空室可以不同于火花等离子体烧结组件200的室210,或者所述真空室可以是室210。可以用能够经受火花等离子体烧结过程的任何材料(诸如钎焊合金)来密封端口120。

密封烧结罐110通常由金属或金属合金或另一种导电材料形成。然而,也可以由非导电材料形成密封烧结罐,并且随后将其放置在诸如石墨套筒的导电套筒内。导电套筒或非导电套筒也可以与导电烧结罐110一起使用以提供机械加强。附接到烧结罐110或者围绕烧结罐110的全部或部分装配的这类套筒或其他部件可以被认为是烧结罐的一部分。

在火花等离子体烧结(有时也称为场辅助烧结技术或脉冲电流烧结)过程中,将烧结组件(诸如图2的组件100)放置在火花等离子体烧结系统(诸如图3的系统200)中。火花等离子体烧结系统200包括真空室210,其包含组件100以及导电板220和压机230的至少一部分。

压机230向烧结罐100施加压力。压力可以高达100mpa、高达80mpa或高达50mpa。在施加压力之前或之后,真空室210可以被抽空或用惰性气体填充。如果烧结罐100用反应气体80填充并密封在真空室210中,那么在施加相当大的压力之前,将室210抽空并用反应气体填充,随后密封端口120。可以在将室210再次抽空和/或用惰性气体填充之前或之后施加压力。

在准备好真空室210之后,在导电板220之间施加足以将反应气体80加热至孔隙50和70内的反应气体80形成等离子体的温度的电压和电流强度。例如,反应气体的温度可以是1500℃或更低、1200℃或更低、700℃或更低、300℃与1500℃之间、300℃与1200℃之间、或者300℃与700℃之间。温度可以低于1200℃或低于700℃以避免聚晶金刚石30中的金刚石的石墨化。

电压和电流强度由连续或脉冲的直流电流(dc)供应。电流经过组件100的导电部件,诸如密封烧结罐110以及(如果导电)聚晶金刚石30和/或基材40。电流密度可以是至少0.5x102a/cm2,或者至少102a/cm2。电流强度可以是至少600a、高达6000a、或者在600a与6000a之间。如果电流是脉冲的,那么每个脉冲可以持续在1毫秒与300毫秒之间。

经过的电流加热导电部件,从而引起反应气体80达到如上所述的在其形成等离子体的温度。由反应气体80形成的等离子体包含:反应性物质,诸如原子氢、质子、甲基、碳二聚体;以及金属离子,诸如钛离子(ti4+)、钒离子(v4+)及其任何组合。源自氢气或烃类气体的反应性物质形成金刚石键合物90。金属反应性物质形成碳化物结构100,其至少一部分共价键合到金刚石晶粒10和碳化物晶粒60两者。

因为火花等离子体烧结在直流电流经过时内部加热组件100,所以它比用于形成等离子体的外部加热方法更快。然而,组件100也可以由外部源预加热或共同加热。电压和电流强度可以仅需要被施加持续20分钟或更少、或者甚至持续10分钟或更少、或者5分钟或更少以形成火花等离子体烧结的pdc。在施加电压和电流强度时,组件100或其部件的温度增加速率可以为至少300℃/分钟,从而允许较短的烧结时间。这些较短的烧结时间避免或减少了聚晶金刚石的热降解。

如图4所示,包含共价键合的聚晶金刚石30和基材40的所得pdc可以呈刀具300的形式。尽管聚晶金刚石30与基材40之间的界面在图4中被示出为平面,但是所述界面可以具有任何形状并且甚至可以是非常不规则的。此外,尽管pdc刀具300在图4中被示出为平顶圆柱形,但是其还可以具有任何形状,诸如圆锥形或楔形。聚晶金刚石30和/或基材40可以符合外部形状特征。此外,尽管聚晶金刚石30和基材40被示出为在成分上大体均匀,但是它们可以具有基于位置而变化的成分。例如,聚晶金刚石30可以具有带有不同浸出水平或不同金刚石晶粒的区域(如上所述),其在不同的层中包括不同的粒度。基材40可以包括加强部件,并且可以具有不同的碳化物粒度。

如果pdc刀具300中的聚晶金刚石30在其附接到基材40之前是热稳定的,那么它可以在附接之后保持热稳定,或者与如果在附接过程中再次引入元素金属或金属合金时通常所经历的相比要经历小得多的热稳定性减少,因为碳化物结构不会负面影响热稳定性以至达到元素金属或金属合金负面影响热稳定性的程度。

此外,如果存在将聚晶金刚石30附接到基材40之后进一步浸出聚晶金刚石30的理由,那么可以执行这种附加浸出。尽管可以小心以避免溶解或破坏将聚晶金刚石30共价键合到基材40的碳化物结构,但是这些结构可以比元素金属或金属合金结构更耐溶解或损坏。

pdc刀具(诸如刀具300)可以合并到钻地钻头(诸如图5的固定刀具钻头400)中。固定刀具钻头400包含联接到钻头体420的多个刀具。所述刀具中的至少一个是如本文所述的火花等离子体烧结的pdc刀具300。如图5所示,多个刀具是本文所述的刀具300。固定刀具钻头400包括钻头主体420,所述钻头主体420具有从其延伸的多个刀片410。钻头体420可以由钢、钢合金、基质材料或者具有期望的强度、韧性和机械加工性的其他合适的钻头体材料形成。钻头体420也可以形成为具有期望的磨损性质和腐蚀性质。pdc刀具300可以安装在刀片410上或者否则安装在钻头400上,并且可以位于保径区域430中或者位于非保径区域中或者位于二者中。

当钻头体420相对于井筒底部旋转时,可以发生与钻头400相关联的钻井动作。设置在相关联刀片410上的至少一些pdc刀具300在钻井期间接触井下地层的相邻部分。这些刀具300被定向成使得聚晶金刚石接触地层。

除了pcd刀具中的火花等离子体烧结pdc之外的火花等离子体烧结pdc可以附接到钻头400或其他钻地钻头的其他位点。合适的附接位点包括排屑槽中的高磨损区(诸如喷嘴附近的区)或者阻尼或切削深度控制区域中的高磨损区。

本公开提供了实施方案a,所述实施方案a涉及一种通过胶结碳化物来使聚晶金刚石与基材共价键合的方法,所述方法通过以下步骤:通过将具有孔隙的邻近胶结碳化物基材的聚晶金刚石与包括彼此邻近的呈气体形式的碳化物形成金属的反应气体和包括烃类气体形式的反应气体放置在组件中;以及在导电板之间施加足以将反应气体加热至反应气体形成等离子体的1500℃或更低的温度的电压,所述等离子体在至少一部分pcd孔隙中形成碳化物结构,其中所述碳化物结构共价键合到胶结碳化物基材。

本公开还提供了实施方案b,所述实施方案b涉及一种pdc元件,所述pdc元件包括具有孔隙的邻近胶结碳化物基材的聚晶金刚石、以及在至少一部分孔隙中并且共价键合到胶结碳化物基材的碳化物结构。

本公开还涉及实施方案c,所述实施方案c涉及使用实施方案a的方法形成的任何pdc元件。

本公开还提供了实施方案d,并且所述实施方案d涉及一种固定刀具钻头,但是包括实施方案b或c的pdc元件。

此外,实施方案a、b、c和d可以结合以下附加元素使用,除非明确相互排斥,否则所述附加元素也可以相互组合,并且可以使用所述方法元素来获得装置,并且所述装置元件可以通过以下方法形成:i)聚晶金刚石可以包括浸出部分,其中少于2%的体积由金刚石烧结助剂占据;ii)呈气体形式的碳化物形成金属可以包括金属盐;iii)等离子体可以包括金属离子;iv)反应气体还可以包括烃类气体;v)等离子体可以包括原子氢、质子或其组合;vi)反应气体还可以包括烃类气体;vii)烃类气体可以包括甲烷、丙酮、甲醇或其任何组合;viii)等离子体可以包括甲基、碳二聚体或其组合;ix)温度可以是1200℃或更低;x)温度可以是700℃或更低;xi)电压和电流强度可以由连续直流电流或脉冲直流电流供应;xii)可以施加电压和电流强度持续20分钟或更短;xiii)在施加电压和电流强度时,烧结罐、聚晶金刚石、基材、反应气体或其任何组合可以具有最少300℃/分钟的温度增加速率;xiv)可以在聚晶金刚石的至少25%的孔隙中形成金刚石键合物、碳化物结构或二者;xv)pdc元件可以在其至少25%的孔隙中包括金刚石键合物、碳化物结构或两者;xvi)pdc元件可以是刀具;xvii)pdc元件可以是耐腐蚀元件。

虽然已详细描述本公开和其优点,但应理解,可以在不脱离如由所附权利要求书限定的本公开的精神和范围的情况下,在本文中进行各种改变、替代和更改。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1