一种高强度高硬度陶瓷材料及其生产工艺的制作方法

文档序号:15656038发布日期:2018-10-12 23:53阅读:312来源:国知局

本发明属于陶瓷材料技术领域,特别涉及一种高强度高硬度陶瓷材料及其生产工艺。



背景技术:

金属陶瓷是由tic、tin等硬质相以及钴镍等粘结相组成的,因其具有较高的硬度、耐磨性、红硬性以及优良的化学稳定性和低的摩擦系数而受到国内外普遍关注,金属陶瓷已在日本等国家的切削刀具中得到广泛应用。金属陶瓷中粘结相主要用于改善陶瓷的韧性,但切削过程的高温下金属粘结相软化严重,使金属陶瓷性能降低。为进一步提高金属陶瓷材料的性能和延长其使用寿命,在此方面的研究和应用也日益增多。金属间化合物中原子的长程有序排列以及金属键与共价键共存的特征使其同时兼有金属的塑性和陶瓷的高温强度从而成为一种比较有潜力的高温材料,将其用作金属陶瓷的粘结相将提高金属陶瓷性能。但是一直以来硬质相、增强相、粘结相均匀分散都存在问题,影响了产品的使用寿命。

但就使用性能来讲,ti(c,n)基陶瓷尚存在强度和韧性不足的弱点,这一弱点不仅影响其使用寿命,而且也使它的使用范围受到限制。因此如何提高ti(c,n)基金属陶瓷的强韧性就成为材料工作者所关注的问题。而ti(c,n)基金属陶瓷的耐磨性和韧性之间相互矛盾,而非均匀结构材料可以两者兼顾,使材料的成分和显微组织结构呈阶梯分布,在表层形成硬质相富集区,而在组织内部形成粘结相富集区。用物理涂层或化学涂层的方法在基体材料表面生成耐磨涂层是常用方法之一,但此类方法制备材料的表面与基体之间在成分和微观结构等都存在明显界面,两者的热膨胀系数亦存在区别,因此表面硬化层容易产生裂纹,甚至脱落。另外,在刀具的具体使用过程中切削表面附近由于存在大量的摩擦热量,会导致刀具表面与芯部内部热量传导速率不一致,在长期运行的时候会使得内外温差不断增大,考虑到本身ti(c,n)基金属陶瓷硬质相结构是典型的芯-环结构,即分为内核、内环与外环三部分,因此温度差会引起本身就结构分成的陶瓷材料更容易发生因为热应力引起的热断裂。



技术实现要素:

因此现需提供一种长寿命、高强度、高硬度、导热能力强的用于刀具的高强度高硬度陶瓷材料。为实现上述目的,本发明一方面需要控制陶瓷材料的成分,另一方面需要严格控制陶瓷材料的生产工艺。

技术方案如下:

一种高强度高硬度陶瓷材料,其成分重量百分比为:硬质相为tic+tin、增强相为cr3c2、wc、hfc、tac、la2o3中的至少2种,粘结相为co、mn、ni、fe、al中的至少2种。

一种高强度高硬度陶瓷材料,其成分重量百分比为:tic50-52、tin13-14、cr3c21-2、wc7-8、hfc5-6、tac3-4、la2o31-2、co5-6、mn3-4、ni5-6、fe4-5,余量为al和不可避免的杂质,tic/tin比例为3.6-4。

进一步:一种高强度高硬度陶瓷材料,其成分重量百分比为:tic50、tin13、cr3c21、wc7、hfc5、tac3、la2o31、co5、mn3、ni5、fe4,余量为al和不可避免的杂质,tic/tin比例为3.85。

进一步:一种高强度高硬度陶瓷材料,其成分重量百分比为:tic50.5、tin13.5、cr3c21.5、wc7.5、hfc5、tac3、la2o31、co5、mn3、ni5、fe4,余量为al和不可避免的杂质,tic/tin比例为3.74。

进一步:一种高强度高硬度陶瓷材料,其成分重量百分比为:tic51、tin14、cr3c21、wc7、hfc5、tac3、la2o31、co5、mn3、ni5、fe4,余量为al和不可避免的杂质,tic/tin比例为3.64。

如上所述高强度高硬度陶瓷材料具体的制备步骤如下:

(1)成分配料:依目标成分进行配料,其中的tic、tin尺寸为300-800纳米,其中的cr3c2、wc、hfc、tac、la2o3尺寸为1-3微米,其中的co、mn、ni、fe、al以co-mn-ni-fe-al五元高熵合金粉末的形式加入,尺寸是10-20微米,co-mn-ni-fe-al五元高熵合金粉末的生产首先是选取纯度均≥99.9%的原料进行熔炼并除杂得到纯净度高的合金溶液,之后进行雾化制粉,雾化制粉的具体工艺参数为:液流速率为10kg/min~15kg/min,雾化介质为氮气,雾化气流压力为10mpa~15mpa,雾化快速冷凝装置的雾化喷嘴直径为5mm~6mm;雾化结束后待粉末完全冷却,在氮气保护气氛中筛分,得到粒径在10-20微米的co-mn-ni-fe-al五元高熵合金粉末;

(2)球磨:将步骤(1)准备的原料放入真空球磨罐中,以步骤(1)准备原料重量的30-40%称取无水乙醇和以步骤(1)准备原料重量的10-20%称取石蜡混合作为介质,球料比10∶1,为避免粉末在球磨过程中被氧化,以氩气作为保护气体,球磨48h,经真空干燥、过筛;

(3)成型:将步骤(2)得到的陶瓷粉末装入模具中,采用双向压机进行模压成型,两端加压,两次加压,第一次加压状态是以30-40℃/min的加热速率加热到800℃、并在20mpa下保持2-3小时,第二次加压状态是以20-30℃/min的加热速率加热到在1200℃、并在20mpa下保持2-3小时,此阶段完成脱蜡步骤,成型后对压坯进行修整,检验外观质量;

(4)真空热压烧结:将步骤(3)得到的压坯装入真空热压烧结炉中,烧结温度为1550℃、烧结压力为30mpa下保持1小时,在最终烧结即将完成前20min充入氩气,直至烧结完成,即得金属陶瓷样品;经检测,最终陶瓷材料硬度为hra94-100,抗弯强度为2400-2600mpa,断裂韧性为12-13mpa·m1/2,导热系数为95-105w/(m·k),线膨胀系数为2.8×10-6/℃-3.8×10-6/℃。

进一步:步骤(2)球磨:将步骤(1)准备的原料放入真空球磨罐中,以步骤(1)准备原料重量的35%称取无水乙醇和以步骤(1)准备原料重量的15%称取石蜡混合作为介质,球料比10∶1,为避免粉末在球磨过程中被氧化,以氩气作为保护气体,球磨48h,经真空干燥、过筛。

进一步:步骤(3)成型:将步骤(2)得到的陶瓷粉末装入模具中,采用双向压机进行模压成型,两端加压,两次加压,第一次加压状态是以35℃/min的加热速率加热到800℃、并在20mpa下保持2.5小时,第二次加压状态是以25℃/min的加热速率加热到在1200℃、并在20mpa下保持2.5小时,此阶段完成脱蜡步骤,成型后对压坯进行修整,检验外观质量。

接着,说明本发明的化学成分的限定理由。此处,关于成分的%意味着质量%。

tic、tin是金属陶瓷材料的重要的基础硬质相,它们都属于面心立方结构,可以与多种过渡金属碳化物形成固溶体。tic、tin的配比对最终金属陶瓷的性能由很大的影响。相比于常见的金属陶瓷材料较宽的tic、tin物料比例,本发明经过大量实验发现了当tic/tin比例为3.6-4在本发明这类体系中具有很好的长寿命、高强度、高硬度、导热能力。因此tic50-52%、tin13-14%、tic/tin比例为3.6-4。

cr3c2、wc、hfc、tac这类高熔点的碳化物对金属陶瓷材料也有重要影响。wc添加量对ti(c,n)基金属陶瓷维氏硬度的影响和其对抗弯强度的影响一样,随wc添加量的增加,ti(c,n)基金属陶瓷的维氏硬度亦先增加后减小。这主要是由于wc能增强硬质相的润湿性,细化晶粒,降低孔隙率,从而提高金属陶瓷的硬度。但当wc添加量超过8%时,固溶体中wc的溶解度接近饱和,使得硬质相晶粒变大,环形相变厚,再加上wc的硬度本来就比tic小,因此,ti(c,n)基基金属的硬度急剧降低。因此wc7-8%。

由于cr与w是同一族元素,它们的碳化物能够很好地固溶于tic、tin,cr3c2含量过多时,金属陶瓷材料的断口上晶粒拔出留下的韧窝较多,组织紧密、抗弯强度最高;而其断裂韧性则刚好相反,因此在综合衡量整体的抗弯强度、断裂韧性后确定合适的cr3c2是1-2%。

hfc、tac的晶体结构是面心立方结构,熔点高接近(4000℃)、硬度高,hf、ta与c、n的结合力较强,可形成热稳定性高的化合物,因此,添加hfc、tac可提高ti(c,n)基金属陶瓷刀具的高温切削性能。同样其含量也并非是越多越好,经过试验确定了hfc5-6%、tac3-4%。

co在常温下表现为密排六方结构或混合面心立方结构。co表现出更好的强韧性能,可以有效阻挡裂纹,减少晶界断裂,提高材料的延展性。因此,本发明co作为粘结相的金属陶瓷具备比其他粘结相金属陶瓷更优异的强韧性。金属ni因优异的韧性及良好的界面匹配度,是一般ti(c,n)基金属陶瓷的主要粘结相材料;co的韧性优于ni,可以显著润湿硬质相与粘结相界面,ni含量较多时,ti(c,n)基金属陶瓷的强韧性会有所提高。ti(c,n)基金属陶瓷的粘结相通常是是ni-mn、ni-co,从资源与生产成本角度考虑,尝试采用容易获得的cr、fe、al、cu、ti、稀土等部分或全部代替ni-mn、ni-co。高熵合金是目前材料领域非常受关注的一个方向,其具备高硬度、高强度、耐高温氧化、耐腐蚀等优异特点,基于高熵合金的这些优点,本发明首先通过熔炼制备高熵合金,随后进行雾化制粉,制得的粉度均匀,偏析非常少,外形良好,便于烧结,具有很好的高硬度、高强度、高导热效果。在本发明中co5-6%、mn3-4%、ni5-6%、fe4-5%、al1-5%。

球磨工艺、成型工艺、烧结工艺都对ti(c,n)基金属陶瓷的性能具有重要的影响。本发明通过在多个阶段进行保温保压,确保了ti(c,n)基金属陶瓷具有高致密状态,进而确保了其具有高标准的综合力学性能。

烧结温度对烧结体晶粒大小的影响通过实验发现,ti(c,n)基金属陶瓷的晶粒随着烧结温度的升高而长大。本发明通过加入微细的la2o3作为抑制剂,能够良好抑制晶粒的长大。一般来说,在较低的温度下烧结时,加入少量的抑制剂就可以抑制ti(c,n)基金属陶瓷晶粒的长大;随着烧结温度的升高,ti(c,n)基金属陶瓷晶粒有长大趋势,即使添加烧结晶粒抑制剂也无法抑制晶粒的不连续长大,但在烧结温度为1550℃、烧结压力为30mpa下保持1小时烧结,可获得细小的ti(c,n)基金属陶瓷晶粒。

一般来说,随着烧结温度的升高,烧结体的密度会增加,这是由于随着温度的升高,烧结体中的液相含量增加,有利于物质的扩散迁移。随着烧结温度的升高,烧结体的密度不是增大,而是逐渐变小。通过对烧结后的试样进行失重试验,发现高温烧结下的烧结体失重总是大于低温烧结下的烧结体的失重,所以,造成烧结体密度随着烧结温度的升高而下降的原因就是少量的粘结相的蒸发。烧结时间决定了粘结相是否能够充分渗入颗粒之间的缝隙,通过对烧结体密度的分析可知,烧结温度为1550℃、烧结压力为30mpa下保持1小时烧结足以使ti(c,n)基金属陶瓷完全致密化。

与现有技术相比,本发明技术效果包括:

1、本发明通过精确控制产品成分、生产工艺,保证ti(c,n)基金属陶瓷在力学性能的均匀性,在具有高强度、高韧性、耐磨、高硬度的同时还具有高导热系数、低线膨胀系数,提高了使用寿命。

2、本发明中,通过对粘结相合金元素的精确控制,相比较于常见的金属陶瓷材料大比例的合金元素,节约了工艺成本,提高了产品竞争力。

3、本发明通过合理的化学成分设计结合特定的生产工艺,最终陶瓷材料硬度为hra94-100,抗弯强度为2400-2600mpa,断裂韧性为12-13mpa·m1/2,导热系数为95-105w/(m·k),线膨胀系数为2.8×10-6/℃-3.8×10-6/℃。

具体实施方式

下面参考示例实施方式对本发明技术方案作详细说明。然而,示例实施方式能够以多种形式实施,且不应被理解为限于在此阐述的实施方式;相反,提供这些实施方式使得本发明更全面和完整,并将示例实施方式的构思全面地传达给本领域的技术人员。

实施例1

一种高强度高硬度陶瓷材料,其成分重量百分比为:tic50-52、tin13-14、cr3c21-2、wc7-8、hfc5-6、tac3-4、la2o31-2、co5-6、mn3-4、ni5-6、fe4-5,余量为al和不可避免的杂质,tic/tin比例为3.6-4;具体的制备步骤如下:

(1)成分配料:依目标成分进行配料,其中的tic、tin尺寸为300-800纳米,其中的cr3c2、wc、hfc、tac、la2o3尺寸为1-3微米,其中的co、mn、ni、fe、al以co-mn-ni-fe-al五元高熵合金粉末的形式加入,尺寸是10-20微米,co-mn-ni-fe-al五元高熵合金粉末的生产首先是选取纯度均≥99.9%的原料进行熔炼并除杂得到纯净度高的合金溶液,之后进行雾化制粉,雾化制粉的具体工艺参数为:液流速率为10kg/min~15kg/min,雾化介质为氮气,雾化气流压力为10mpa~15mpa,雾化快速冷凝装置的雾化喷嘴直径为5mm~6mm;雾化结束后待粉末完全冷却,在氮气保护气氛中筛分,得到粒径在10-20微米的co-mn-ni-fe-al五元高熵合金粉末;

(2)球磨:将步骤(1)准备的原料放入真空球磨罐中,以步骤(1)准备原料重量的30-40%称取无水乙醇和以步骤(1)准备原料重量的10-20%称取石蜡混合作为介质,球料比10∶1,为避免粉末在球磨过程中被氧化,以氩气作为保护气体,球磨48h,经真空干燥、过筛;

(3)成型:将步骤(2)得到的陶瓷粉末装入模具中,采用双向压机进行模压成型,两端加压,两次加压,第一次加压状态是以30-40℃/min的加热速率加热到800℃、并在20mpa下保持2-3小时,第二次加压状态是以20-30℃/min的加热速率加热到在1200℃、并在20mpa下保持2-3小时,此阶段完成脱蜡步骤,成型后对压坯进行修整,检验外观质量;

(4)真空热压烧结:将步骤(3)得到的压坯装入真空热压烧结炉中,烧结温度为1550℃、烧结压力为30mpa下保持1小时,在最终烧结即将完成前20min充入氩气,直至烧结完成,即得金属陶瓷样品;

经检测,最终陶瓷材料硬度为hra94-100,抗弯强度为2400-2600mpa,断裂韧性为12-13mpa·m1/2,导热系数为95-105w/(m·k),线膨胀系数为2.8×10-6/℃-3.8×10-6/℃。

对比例1

一种高强度高硬度陶瓷材料,其成分重量百分比为:tic40-42、tin23-24、cr3c21-2、wc7-8、hfc5-6、tac3-4、la2o31-2、co5-6、mn3-4、ni5-6、fe4-5,余量为al和不可避免的杂质;具体的制备步骤如下:

(1)成分配料:依目标成分进行配料,其中的tic、tin尺寸为300-800纳米,其中的cr3c2、wc、hfc、tac、la2o3尺寸为1-3微米,其中的co、mn、ni、fe、al以co-mn-ni-fe-al五元高熵合金粉末的形式加入,尺寸是10-20微米,co-mn-ni-fe-al五元高熵合金粉末的生产首先是选取纯度均≥99.9%的原料进行熔炼并除杂得到纯净度高的合金溶液,之后进行雾化制粉,雾化制粉的具体工艺参数为:液流速率为10kg/min~15kg/min,雾化介质为氮气,雾化气流压力为10mpa~15mpa,雾化快速冷凝装置的雾化喷嘴直径为5mm~6mm;雾化结束后待粉末完全冷却,在氮气保护气氛中筛分,得到粒径在10-20微米的co-mn-ni-fe-al五元高熵合金粉末;

(2)球磨:将步骤(1)准备的原料放入真空球磨罐中,以步骤(1)准备原料重量的30-40%称取无水乙醇和以步骤(1)准备原料重量的10-20%称取石蜡混合作为介质,球料比10∶1,为避免粉末在球磨过程中被氧化,以氩气作为保护气体,球磨48h,经真空干燥、过筛;

(3)成型:将步骤(2)得到的陶瓷粉末装入模具中,采用双向压机进行模压成型,两端加压,两次加压,第一次加压状态是以30-40℃/min的加热速率加热到800℃、并在20mpa下保持2-3小时,第二次加压状态是以20-30℃/min的加热速率加热到在1200℃、并在20mpa下保持2-3小时,此阶段完成脱蜡步骤,成型后对压坯进行修整,检验外观质量;

(4)真空热压烧结:将步骤(3)得到的压坯装入真空热压烧结炉中,烧结温度为1550℃、烧结压力为30mpa下保持1小时,在最终烧结即将完成前20min充入氩气,直至烧结完成,即得金属陶瓷样品;

经检测,最终陶瓷材料硬度为hra70-82,抗弯强度为1800-2000mpa,断裂韧性为7-8mpa·m1/2,导热系数为80-83w/(m·k),线膨胀系数为4×10-6/℃-5×10-6/℃。

对比例2

一种高强度高硬度陶瓷材料,其成分重量百分比为:tic50-52、tin13-14、wc8-10、hfc5-6、tac3-4、co5-6、mn3-4、ni5-6、fe4-5,余量为al和不可避免的杂质,tic/tin比例为3.6-4;具体的制备步骤如下:

(1)成分配料:依目标成分进行配料,其中的tic、tin尺寸为300-800纳米,其中的wc、hfc、tac尺寸为1-3微米,其中的co、mn、ni、fe、al以co-mn-ni-fe-al五元高熵合金粉末的形式加入,尺寸是10-20微米,co-mn-ni-fe-al五元高熵合金粉末的生产首先是选取纯度均≥99.9%的原料进行熔炼并除杂得到纯净度高的合金溶液,之后进行雾化制粉,雾化制粉的具体工艺参数为:液流速率为10kg/min~15kg/min,雾化介质为氮气,雾化气流压力为10mpa~15mpa,雾化快速冷凝装置的雾化喷嘴直径为5mm~6mm;雾化结束后待粉末完全冷却,在氮气保护气氛中筛分,得到粒径在10-20微米的co-mn-ni-fe-al五元高熵合金粉末;

(2)球磨:将步骤(1)准备的原料放入真空球磨罐中,以步骤(1)准备原料重量的30-40%称取无水乙醇和以步骤(1)准备原料重量的10-20%称取石蜡混合作为介质,球料比10∶1,为避免粉末在球磨过程中被氧化,以氩气作为保护气体,球磨48h,经真空干燥、过筛;

(3)成型:将步骤(2)得到的陶瓷粉末装入模具中,采用双向压机进行模压成型,两端加压,两次加压,第一次加压状态是以30-40℃/min的加热速率加热到800℃、并在20mpa下保持2-3小时,第二次加压状态是以20-30℃/min的加热速率加热到在1200℃、并在20mpa下保持2-3小时,此阶段完成脱蜡步骤,成型后对压坯进行修整,检验外观质量;

(4)真空热压烧结:将步骤(3)得到的压坯装入真空热压烧结炉中,烧结温度为1550℃、烧结压力为30mpa下保持1小时,在最终烧结即将完成前20min充入氩气,直至烧结完成,即得金属陶瓷样品;经检测,最终陶瓷材料硬度为hra75-80,抗弯强度为1700-2000mpa,断裂韧性为7-9mpa·m1/2,导热系数为82-86w/(m·k),线膨胀系数为4×10-6/℃-4.8×10-6/℃。

对比例3

一种高强度高硬度陶瓷材料,其成分重量百分比为:tic50、tin14、cr3c21-2、wc7-8、hfc5-6、tac3-4、la2o31-2、co1-2、mn2-3、ni2-3、fe4-5,余量为al和不可避免的杂质;具体的制备步骤如下:

(1)成分配料:依目标成分进行配料,其中的tic、tin尺寸为300-800纳米,其中的cr3c2、wc、hfc、tac、la2o3尺寸为1-3微米,其中的co、mn、ni、fe、al以co-mn-ni-fe-al五元高熵合金粉末的形式加入,尺寸是10-20微米,co-mn-ni-fe-al五元高熵合金粉末的生产首先是选取纯度均≥99.9%的原料进行熔炼并除杂得到纯净度高的合金溶液,之后进行雾化制粉,雾化制粉的具体工艺参数为:液流速率为10kg/min~15kg/min,雾化介质为氮气,雾化气流压力为10mpa~15mpa,雾化快速冷凝装置的雾化喷嘴直径为5mm~6mm;雾化结束后待粉末完全冷却,在氮气保护气氛中筛分,得到粒径在10-20微米的co-mn-ni-fe-al五元高熵合金粉末;

(2)球磨:将步骤(1)准备的原料放入真空球磨罐中,以步骤(1)准备原料重量的30-40%称取无水乙醇和以步骤(1)准备原料重量的10-20%称取石蜡混合作为介质,球料比10∶1,为避免粉末在球磨过程中被氧化,以氩气作为保护气体,球磨48h,经真空干燥、过筛;

(3)成型:将步骤(2)得到的陶瓷粉末装入模具中,采用双向压机进行模压成型,两端加压,两次加压,第一次加压状态是以30-40℃/min的加热速率加热到800℃、并在20mpa下保持2-3小时,第二次加压状态是以20-30℃/min的加热速率加热到在1200℃、并在20mpa下保持2-3小时,此阶段完成脱蜡步骤,成型后对压坯进行修整,检验外观质量;

(4)真空热压烧结:将步骤(3)得到的压坯装入真空热压烧结炉中,烧结温度为1550℃、烧结压力为30mpa下保持1小时,在最终烧结即将完成前20min充入氩气,直至烧结完成,即得金属陶瓷样品;

经检测,最终陶瓷材料硬度为hra84-88,抗弯强度为1900-2100mpa,断裂韧性为8-9mpa·m1/2,导热系数为80-87w/(m·k),线膨胀系数为3.8×10-6/℃-4.5×10-6/℃。

对比例4

一种高强度高硬度陶瓷材料,其成分重量百分比为:tic50、tin14、cr3c21-2、wc7-8、hfc5-6、tac3-4、la2o31-2、co5-6、mn3-4、ni5-6、fe4-5,余量为al和不可避免的杂质;具体的制备步骤如下:

(1)成分配料:依目标成分进行配料,其中的tic、tin尺寸为300-800纳米,其中的cr3c2、wc、hfc、tac、la2o3尺寸为1-3微米,其中的co、mn、ni、fe、al以co-mn-ni-fe-al五元高熵合金粉末的形式加入,尺寸是10-20微米,co-mn-ni-fe-al五元高熵合金粉末的生产首先是选取纯度均≥99.9%的原料进行熔炼并除杂得到纯净度高的合金溶液,之后进行雾化制粉,雾化制粉的具体工艺参数为:液流速率为10kg/min~15kg/min,雾化介质为氮气,雾化气流压力为10mpa~15mpa,雾化快速冷凝装置的雾化喷嘴直径为5mm~6mm;雾化结束后待粉末完全冷却,在氮气保护气氛中筛分,得到粒径在10-20微米的co-mn-ni-fe-al五元高熵合金粉末;

(2)球磨:将步骤(1)准备的原料放入真空球磨罐中,以步骤(1)准备原料重量的30-40%称取无水乙醇和以步骤(1)准备原料重量的10-20%称取石蜡混合作为介质,球料比10∶1,为避免粉末在球磨过程中被氧化,以氩气作为保护气体,球磨48h,经真空干燥、过筛;

(3)成型:将步骤(2)得到的陶瓷粉末装入模具中,采用双向压机进行模压成型,两端加压,两次加压,第一次加压状态是以30-40℃/min的加热速率加热到800℃、并在20mpa下保持2-3小时,第二次加压状态是以20-30℃/min的加热速率加热到在1200℃、并在20mpa下保持2-3小时,此阶段完成脱蜡步骤,成型后对压坯进行修整,检验外观质量;

(4)真空热压烧结:将步骤(3)得到的压坯装入真空热压烧结炉中,烧结温度为1550℃、烧结压力为30mpa下保持1小时,在最终烧结即将完成前20min充入氩气,直至烧结完成,即得金属陶瓷样品;经检测,最终陶瓷材料硬度为hra85-90,抗弯强度为1900-2200mpa,断裂韧性为10-11mpa·m1/2,导热系数为88-92w/(m·k),线膨胀系数为4×10-6/℃-4.4×10-6/℃。

对比例5

一种高强度高硬度陶瓷材料,其成分重量百分比为:tic50-52、tin13-14、cr3c21-2、wc7-8、hfc5-6、tac3-4、la2o31-2、co5-6、mn3-4、ni5-6、fe4-5,余量为al和不可避免的杂质,tic/tin比例为3.6-4;具体的制备步骤如下:

(1)成分配料:依目标成分进行配料,其中的tic、tin尺寸为300-800纳米,其中的cr3c2、wc、hfc、tac、la2o3尺寸为1-3微米,其中的co、mn、ni、fe、al以单质粉末的形式加入,尺寸是10-20微米;

(2)球磨:将步骤(1)准备的原料放入真空球磨罐中,以步骤(1)准备原料重量的30-40%称取无水乙醇和以步骤(1)准备原料重量的10-20%称取石蜡混合作为介质,球料比10∶1,为避免粉末在球磨过程中被氧化,以氩气作为保护气体,球磨48h,经真空干燥、过筛;

(3)成型:将步骤(2)得到的陶瓷粉末装入模具中,采用双向压机进行模压成型,两端加压,两次加压,加压状态是以20-30℃/min的加热速率加热到在1000℃、并在20mpa下保持2-3小时,此阶段完成脱蜡步骤,成型后对压坯进行修整,检验外观质量;

(4)真空热压烧结:将步骤(3)得到的压坯装入真空热压烧结炉中,烧结温度为1480℃、烧结压力为30mpa下保持1.3小时,在最终烧结即将完成前20min充入氩气,直至烧结完成,即得金属陶瓷样品;

经检测,最终陶瓷材料硬度为hra88-95,抗弯强度为2000-2300mpa,断裂韧性为10.5-11.8mpa·m1/2,导热系数为84-92w/(m·k),线膨胀系数为3.5×10-6/℃-4.5×10-6/℃。

本发明所用的术语是说明和示例性、而非限制性的术语。由于本发明能,够以多种形式具体实施而不脱离发明的精神或实质,所以应当理解,上述实施例不限于任何前述的细节,基于篇幅限制无法做到各个元素、各个工艺参数的单一变量试验,而应在权利要求所限定的精神和范围内广泛地解释,因此落入权利要求或其等效范围内的全部变化和改型都应为所附权利要求所涵盖。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1