一种金属掺杂非晶碳薄膜材料、其制备方法与应用与流程

文档序号:21651553发布日期:2020-07-29 03:05阅读:309来源:国知局
一种金属掺杂非晶碳薄膜材料、其制备方法与应用与流程

本发明属于红外热敏材料以及红外吸收材料技术领域,尤其涉及一种具有红外热敏性以及红外吸收性的金属掺杂非晶碳薄膜材料、其制备方法与应用。



背景技术:

红外焦平面探测器用于探测、识别和分析物体红外信息,在军事、工业、交通、安防监控、气相、医学等各行业具有广泛的应用。红外焦平面探测器可分为制冷型红外焦平面探测器和非制冷红外焦平面探测器,其中非制冷红外焦平面探测器无需制冷装置,能够工作在室温状态下,具有体积小、质量轻、功耗小、寿命长、成本低、启动快等优点。

非制冷红外焦平面探测器以微机电技术(mems)制备的热传感器为基础,大致可分为热电堆/热电偶、热释电、光机械、微测辐射热计等几种类型,其中微测辐射热计的技术发展较快。非制冷微测辐射热计红外焦平面探测器可分成微测辐射热计、读出电路、真空封装三大技术模块,其中微测辐射热计是整个系统的关键。

微测辐射热计的基本工作原理是通过红外光学系统将目标物体的热辐射聚焦到探测器焦平面阵列上,各个微桥的红外吸收层吸收红外能量后温度发生变化,不同微桥接收到不同能量的热辐射,其自身的温度变化不同,从而引起各微桥的红外热敏层电阻值发生相应变化。这种变化经由探测器内部的读出电路转换成电信号输出,经过探测器外部的信号采集和数据处理电路最终得到反映目标物体的温度分布情况的可视化电子图像。因此,对于非制冷型微测辐射热计,其最重要的组成部分为红外热敏层,即红外热敏感薄膜层,该薄膜层能够吸收目标物体发射出的红外辐射能量,使自身温度升高,从而引起电阻变化,并通过读出电路检测出电阻的变化值。

红外热敏材料需要具备高的电阻温度系数(tcr),目前采用较多的红外热敏材料有氧化钒(vox)、非晶硅(a-si)等。氧化钒的tcr值高达-2%/k~-3%/k,使它成为红外热敏材料的首选,但是由于钒存在很多价态,制成的vox经暴露或置于光照下时矾的价态会改变而失去探测作用。非晶硅的温度稳定性优于vox,tcr值与氧化钒大致相同,但是由于其常温电阻率较高,导致了较高的1/f噪声,降低了器件的探测灵敏度。另外,目前为了提高红外吸收效果,通常还需要在氧化钒或非晶硅表面再生长一层红外吸收材料,容易导致不同薄膜之间制备方法及工艺的不兼容。



技术实现要素:

针对上述技术现状,本发明旨在提供一种新型的红外热敏材料,具有较高的电阻温度系数与较低的电阻率,可用于非制冷型微测辐射热计红外焦平面探测器中,有利于降低噪声,提高探测灵敏度。

为了实现上述技术目的,本发明人经过大量实验探索后发现一种金属掺杂非晶碳薄膜材料,不仅具有较高的电阻温度系数与较低的电阻率,而且具有良好的红外吸收率,其薄膜电阻温度系数高达1.5%/k~3.5%/k,并且电阻率为2~4×10-3ω·cm,同时,该薄膜厚度为纳米级时对2.5um~25um波长范围内的红外光的吸收率高达35%~65%,尤其是当厚度小于或者等于100纳米时对2.5um~25um波长范围内的红外光的吸收率高达35%~65%,因此可以作为红外热敏材料,也可作为红外吸收材料,在非制冷型微测辐射热计红外焦平面探测器中该薄膜材料可以兼作红外热敏层与红外吸收层,从而不仅可以简化非制冷型微测辐射热计红外焦平面探测器结构,而且可以简化制备工艺,并且可以避免红外热敏层与红外吸收层制备工艺间的不匹配性。另外,本发明的金属掺杂非晶碳薄膜材料具有良好的化学惰性,还可以增强非制冷型微测辐射热计红外焦平面探测器的测试稳定性。

本发明所述的金属掺杂非晶碳薄膜材料是在非晶碳结构中掺杂金属元素形成;所述非晶碳由石墨相sp2和金刚石相sp3组成;

所述金属元素包括钛、铬、钨中的一种或者几种;

所述金属元素的质量百分比含量为7%~15%,即,所述金属掺杂非晶碳薄膜材料中金属元素质量占7%~15%;

并且,所述金属元素固溶于非晶碳结构,或者/和以金属碳化物纳米晶镶嵌于非晶碳结构。

作为优选,所述非晶碳中sp2相的含量为50%~55%。

本发明还提供了一种制备该金属掺杂非晶碳薄膜材料的方法,采用双靶复合磁控溅射,靶材分别为石墨靶与金属靶,将衬底置于真空腔体中进行磁控溅射沉积。

作为优选,石墨靶与金属靶的溅射电流比为3:1~6:1。

作为优选,沉积过程中衬底施加脉冲负偏压-50v~-100v。

作为优选,沉积过程中衬底在真空腔体中进行公自转。

当本发明的金属掺杂非晶碳薄膜材料用于非制冷型微测辐射热计红外焦平面探测器时,非制冷型微测辐射热计红外焦平面探测器包括硅衬底,位于硅衬底上的微桥结构,微桥结构表面采用本发明的金属掺杂非晶碳薄膜材料作为红外吸收层,同时作为红外热敏层。

作为优选,所述的金属掺杂非晶碳薄膜的厚度为30~80nm。

作为一种实现方式,该非制冷型微测辐射热计红外焦平面探测器的制备方法包括以下步骤:

(1)采用mems技术在硅衬底表面生长微桥结构;

(2)将步骤(1)得到的具有微桥结构的硅衬底置于真空腔体中,采用双靶复合磁控溅射,靶材分别为石墨靶与金属靶,在微桥结构表面进行磁控溅射沉积。

作为优选,所述步骤(2)中,首先采用ar离子辉光刻蚀或ar离子束刻蚀对微桥结构表面进行清洗,然后在微桥结构表面进行磁控溅射沉积。

附图说明

图1是本发明实施例1制得的薄膜的tem图像及选区电子衍射。

图2是本发明实施例1与实施例2制得的薄膜的红外吸收曲线。

图3是本发明实施例2制得的薄膜的tem图像及选区电子衍射。

具体实施方式

下面结合实施例与附图对本发明作进一步详细描述,需要指出的是,以下所述实施例旨在便于对本发明的理解,而对其不起任何限定作用。

实施例1:

非制冷型微测辐射热计红外焦平面探测器的制备如下:

(1)采用mems技术在硅衬底表面生长微桥结构;

(2)将步骤(1)得到的具有微桥结构的硅衬底固定于真空腔体中,向腔体中通入ar,控制腔体气压为1.3pa,向具有微桥结构的硅衬底施加-300v脉冲偏压,进行ar离子辉光刻蚀5min;

(3)采用双靶复合直流磁控溅射,靶材为石墨靶与金属靶,设置石墨靶电流为3a,钛靶电流为1a,对具有微桥结构的硅衬底施加脉冲负偏压-50v,进行双靶复合磁控溅射,沉积薄膜80nm,沉积过程中衬底在真空腔体中进行公自转。

上述制得的薄膜的tem图像和对应的选取电子衍射如图1所示,显示tic纳米晶镶嵌于非晶碳膜结构。

采用eds能谱测量得到上述制得的薄膜中ti的原子百分比为14.7%。

对上述制得的薄膜进行xps测试,通过对c1s精细谱的拟合分析得到该薄膜中sp2的含量为52.6%。

采用四探针测量上述制得的薄膜的电阻率为2.1×10-3ω·cm。

采用综合物理性能测试系统测量上述制得的薄膜的电阻温度系数(tcr),其值为1.56%/k。

采用傅里叶变换红外光谱仪测试上述制得的薄膜的红外透过率及反射率,通过计算得到红外光的吸收率曲线如图2所示,显示红外光的吸收率为42%~64%。

上述制得的薄膜在非制冷型微测辐射热计红外焦平面探测器中兼作红外热敏层与红外吸收层。

实施例2:

非制冷型微测辐射热计红外焦平面探测器的制备如下:

(1)采用mems技术在硅衬底表面生长微桥结构;

(2)将步骤(1)得到的具有微桥结构的硅衬底固定于真空腔体中,向腔体中通入ar,控制腔体气压为1.3pa,向具有微桥结构的硅衬底施加-300v脉冲偏压,进行ar离子辉光刻蚀5min;

(3)采用双靶复合直流磁控溅射,靶材为石墨靶与金属铬靶,设置石墨靶电流为3a,铬靶电流为0.5a,对具有微桥结构的硅衬底施加脉冲负偏压-100v,进行双靶复合磁控溅射,沉积薄膜30nm,沉积过程中衬底在真空腔体中进行公自转。

上述制得的薄膜的tem图像和对应的选取电子衍射如图3所示,显示该薄膜中铬固溶于非晶碳膜结构。

采用eds能谱测量得到上述制得的薄膜中cr的原子百分比为7.4%。

对上述制得的薄膜进行xps测试,通过对c1s精细谱的拟合分析得到该薄膜中sp2的含量为54.7%。

采用四探针测量上述制得的薄膜的电阻率为3.96×10-3ω·cm。

采用综合物理性能测试系统测量上述制得的薄膜的电阻温度系数(tcr),其值为3.48%/k。

采用傅里叶变换红外光谱仪测试上述制得的薄膜的红外透过率及反射率,通过计算得到红外光的吸收率曲线如图2所示,显示红外光的吸收率为36%~60%。

上述制得的薄膜在非制冷型微测辐射热计红外焦平面探测器中兼作红外热敏层与红外吸收层。

实施例3:

非制冷型微测辐射热计红外焦平面探测器的制备如下:

(1)采用mems技术在硅衬底表面生长微桥结构;

(2)将步骤(1)得到的具有微桥结构的硅衬底固定于真空腔体中,向腔体中通入ar,控制腔体气压为1.3pa,向具有微桥结构的硅衬底施加-300v脉冲偏压,进行ar离子辉光刻蚀5min;

(3)采用双靶复合直流磁控溅射,靶材为石墨靶与金属钨靶,设置石墨靶电流为3a,钨靶电流为0.7a,对具有微桥结构的硅衬底衬底施加脉冲负偏压-80v,进行双靶复合磁控溅射,沉积薄膜50nm,沉积过程中衬底在真空腔体中进行公自转。

上述制得的薄膜的tem图像和对应的选取电子衍射显示该薄膜中wc纳米晶镶嵌于非晶碳膜结构中。

采用eds能谱测量得到上述制得的薄膜中w的原子百分比为8.6%。

对上述制得的薄膜进行xps测试,通过对c1s精细谱的拟合分析得到该薄膜中sp2的含量为50.2%。

采用四探针测量上述制得的薄膜的电阻率为3.2×10-3ω·cm。

采用综合物理性能测试系统测量上述制得的薄膜的电阻温度系数(tcr),其值为2.83%/k。

采用傅里叶变换红外光谱仪测试上述制得的薄膜的红外透过率及反射率,通过计算得到红外光的吸收率为38%~61%。

上述制得的薄膜在非制冷型微测辐射热计红外焦平面探测器中兼作红外热敏层与红外吸收层。

以上所述的实施例对本发明的技术方案进行了详细说明,应理解的是以上所述仅为本发明的具体实施例,并不用于限制本发明,凡在本发明的原则范围内所做的任何修改、补充或类似方式替代等,均应包含在本发明的保护范围之内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1