一种脉冲功率电容器用反铁电陶瓷粉体及其制备方法与流程

文档序号:11823806阅读:355来源:国知局
一种脉冲功率电容器用反铁电陶瓷粉体及其制备方法与流程

本发明涉及功能陶瓷材料领域,特别是一种脉冲功率电容器用反铁电陶瓷粉体及其制备方法。



背景技术:

反铁电(AFE)陶瓷材料具有低介质损耗,低矫顽强,低剩余极化,高能量密度,高能量利用率,放电速率快等特性。其相邻的偶极矩反向平行排列,宏观并不表现出自发极化,但在外电场作用下会发生反铁电(AFE)-铁电(FE)相变,电场消失时,铁电体恢复为反铁电体,该过程伴随着极大的应力变化和高密度电荷瞬间释放的现象。对相变后的铁电体,通过加热或者加压等方式可使其回复为反铁电体。因而反铁电体成为应用于高密度储能电容器的优秀侯选材料。

目前,研究最多的反铁电陶瓷材料主要是铅镧锆钛(PLZT)、铅镧锆锡钛(PLZST)这二个系统。由于PLZST在Ti含量较低的区域(Ti≤0.15)具有丰富的相结构:四方反铁电相(AFET)、正交反铁电相(AFEO)和三方铁电相(FER),以及丰富的外场诱导相变特性,在制动器、大应变驱动器、热释电探测器、储能器件等方面都有着潜在的应用前景。而且,PLZST的反铁电相区较宽,可以在较宽的范围内通过调节Zr:Sn:Ti比,获得不同的储能特性。但由于目前获得PLZST反铁电陶瓷的抗电强度有限(~10kV/mm),所以储能密度都比较低(≤2.0J/cm3)(参见CN104672799A“一种高储能密度锆钛锡酸铅反铁电陶瓷及其制备方法”);另一方面,这类反铁电陶瓷材料在用于制备脉冲功率电容器时,其烧结温度均须在1260℃以上,为与高温烧结相匹配,必须采用贵金属钯作内电极,导制脉冲功率电容器制造成本直线上升,产品价格昂贵,对于推广脉冲功率电容器的应用极为不利。



技术实现要素:

本发明的目的是克服现有反铁电陶瓷材料在制备脉冲功率电容器时储能密度较低、烧结温度较高等方面的性能缺陷,并提供一种储能密度高、可以中温烧结、实现采用低钯做内电极进行低成本制造脉冲功率电容器的脉冲功率电容器用反铁电陶瓷粉体及其制备方法。

本发明的目的通过以下技术方案来实现:一种脉冲功率电容器用反铁电陶瓷粉体,所述的反铁电陶瓷粉体的组成化学式为:(Pb0.94La0.06)(Zr1-x-ySnyTix)O3,其中,0.06≤x≤0.12,0.3≤y≤0.6;添加的降温剂为Pb-B-Si玻璃粉,所述的降温剂组成为Pb:B:Si=(50~80):(5~20):(15~30)wt%,添加量为0.375~1.0wt%。

所述的脉冲功率电容器用反铁电陶瓷粉体的制备方法,它包括以下步骤:

S1、组分为(Pb0.94La0.06)(Zr1-x-y SnyTix)O3陶瓷烧块料的合成,根据(Pb0.94La0.06)(Zr1-x-y SnyTix)O3中x和y的取值分别计算原料组成物PbO粉体、ZrO2粉体、TiO2粉体、SnO2粉体和La2O3粉体的重量;采用湿法球磨按照原料:球磨介质:去离子水=1:5:1的重量比混合4~6h,使PbO粉体、ZrO2粉体、TiO2粉体、SnO2粉体和La2O3粉体混合均匀,以作为原料粉体;将所述的原料粉体进行烘干处理,以将原料粉体上的水分除掉;向烘干后的原料粉体中加入8%的去离子水并经40目筛处理,处理后送入加热炉内,并以4℃/min的升温速度升至850~880℃,保温2~3h后合成组分为(Pb0.94La0.06)(Zr1-x-ySnyTix)O3陶瓷烧块料,其中,0.06≤x≤0.12,0.3≤y≤0.6;

S2、降温剂Pb-B-Si玻璃粉的制备,分别称取PbO粉体、B2O3粉体和SiO2粉体;采用湿法球磨按照PbO粉体、B2O3粉体和SiO2粉体的总重量:球磨介质:去离子水=1:5:1的重量比混合5~6h,使PbO粉体、B2O3粉体和SiO2粉体混合均匀;将粉体上的水分烘干,烘干后将粉体送入加热炉内经850~900℃煅烧,煅烧后经淬火制得玻璃块;将玻璃块顺次经湿法球磨、烘干处理,从而实现了降温剂Pb-B-Si玻璃粉的制备;

S3、反铁电陶瓷粉体的制备,先将步骤S1中制得的陶瓷烧块料经40目筛处理,过筛后向陶瓷烧块料内添加0.375~1.0wt%的降温剂Pb-B-Si玻璃粉,再用立式振动磨球磨陶瓷烧块料和降温剂Pb-B-Si玻璃粉48~50h,球磨后经320目筛处理以得到陶瓷浆料,然后将陶瓷浆料顺次经烘干、100目筛处理,最终制得反铁电陶瓷粉体。

所述的脉冲功率电容器用反铁电陶瓷粉体的制备方法,所述的球磨介质为锆球。

本发明具有以下优点:(1)通过本发明制备的反铁电陶瓷材料室温下在阀值场强(≥70kV/cm)下发生AFE-FE相变,导致极化强度突然变大,撤去电场后剩余极化强度接近零,从而具有较大的储能密度,储能密度高达4.2~7.1J/cm3。(2)本反铁电陶瓷材料可以在1080~1120℃烧结成瓷,从而匹配低钯(钯/银=30:70)内电极,大幅降低脉冲电容器制造成本。(3)本反铁电陶瓷材料具有高绝缘电阻(≥1012Ω)、低介质损耗(≤0.34%)、高抗电强度(27~43kV/mm)、高储能密度(4.2~7.1J/cm3)和高能量利用率≥90%,且该陶瓷在一定的温度范围(-55~125℃)其反铁电相能够稳定存在,容量随温度的变化幅度在-15%~+60%以内,这对于研制低成本、高储能密度的脉冲功率电容器具有非常重要的意义。

附图说明

图1为由本发明实施例1~3制备的(Pb0.94La0.06)(Zr1-x-ySnyTix)O3陶瓷材料所制备的测试样品陶瓷坯体排粘曲线;

图2为本发明实施例1制备的Pb0.94La0.06(Zr0.59Sn0.30Ti0.11)O3陶瓷室温下的电滞回线,横坐标E为电场强度,单位为kV/cm,纵坐标P为极化强度,单位为μC/cm2

图3为本发明实施例1制备的Pb0.94La0.06(Zr0.59Sn0.30Ti0.11)O3陶瓷材料储能密度计算,图中阴影部分所围面积为有效储能密度;

图4为本发明实施例2制备的Pb0.94La0.06(Zr0.49Sn0.42Ti0.09)O3陶瓷室温下的电滞回线,横坐标E为电场强度,单位为kV/cm,纵坐标P为极化强度,单位为μC/cm2

图5为本发明实施例2制备的Pb0.94La0.06(Zr0.49Sn0.42Ti0.09)O3陶瓷材料储能密度计算,图中阴影部分所围面积为有效储能密度;

图6为本发明实施例3制备的Pb0.94La0.06(Zr0.39Sn0.55Ti0.06)O3陶瓷室温下的电滞回线,横坐标E为电场强度,单位为kV/cm,纵坐标P为极化强度,单位为μC/cm2

图7为本发明实施例3制备的Pb0.94La0.06(Zr0.39Sn0.55Ti0.06)O3陶瓷材料储能密度计算,图中阴影部分所围面积为有效储能密度;

图8为本发明实施例1~3制备的(Pb0.94La0.06)(Zr1-x-ySnyTix)O3陶瓷材料温度特性的测量结果,曲线1表示实施例中1Pb0.94La0.06(Zr0.59Sn0.30Ti0.11)O3陶瓷容量随温度的变化关系,曲线2表示实施例2中Pb0.94La0.06(Zr0.49Sn0.42Ti0.09)O3陶瓷容量随温度的变化关系,曲线3表示实施例3中Pb0.94La0.06(Zr0.39Sn0.55Ti0.06)O3陶瓷容量随温度的变化关系;

图9为实施例1~3测试样品在室温下的损耗角正切值、绝缘电阻、抗电强度等的测量结果。

具体实施方式

下面结合附图对本发明做进一步的描述,本发明的保护范围不局限于以下所述:

实施例1:一种脉冲功率电容器用反铁电陶瓷粉体,所述的反铁电陶瓷粉体的组成化学式为:Pb0.94La0.06(Zr0.59Sn0.30Ti0.11)O3,其中x=0.11,y=0.30;添加的降温剂为Pb-B-Si玻璃粉,所述的降温剂组成为Pb:B:Si=65:15:20wt%,添加量为0.375wt%。

所述的脉冲功率电容器用反铁电陶瓷粉体的制备方法,它包括以下步骤:

S1、组分为Pb0.94La0.06(Zr0.59Sn0.30Ti0.11)O3陶瓷烧块料的合成,根据(Pb0.94La0.06)(Zr1-x-ySnyTix)O3中x和y的取值分别计算原料组成物PbO粉体、ZrO2粉体、TiO2粉体、SnO2粉体和La2O3粉体的重量,其中PbO粉体6059.4g、ZrO2粉体2099.6g、TiO2粉体253.8g、SnO2粉体1304.8g和La2O3粉体282.3g;采用湿法球磨按照原料:球磨介质:去离子水=1:5:1的重量比混合5h,使PbO粉体、ZrO2粉体、TiO2粉体、SnO2粉体和La2O3粉体混合均匀,以作为原料粉体;将所述的原料粉体进行烘干处理,以将原料粉体上的水分除掉;向烘干后的原料粉体中加入8%的去离子水并经40目筛处理,其目的在于:原料粉体中适量的水分会在后续工艺煅烧中被排出,从而形成大量的气体通道,有利于热量传导进粉体内部,保证粉体内外受热均匀;处理后送入加热炉内,并以4℃/min的升温速度升至850℃,保温2h后合成组分为Pb0.94La0.06(Zr0.59Sn0.30Ti0.11)O3陶瓷烧块料;所述的球磨介质为锆球;

S2、降温剂Pb-B-Si玻璃粉的制备,分别称取PbO粉体、B2O3粉体和SiO2粉体;采用湿法球磨按照PbO粉体、B2O3粉体和SiO2粉体的总重量:球磨介质:去离子水=1:5:1的重量比混合5h,使PbO粉体、B2O3粉体和SiO2粉体混合均匀;将粉体上的水分烘干,烘干后将粉体送入加热炉内经850℃煅烧,煅烧后经淬火制得玻璃块;将玻璃块顺次经湿法球磨、烘干处理,从而实现了降温剂Pb-B-Si玻璃粉的制备;所述的球磨介质为锆球;

S3、反铁电陶瓷粉体的制备,先将步骤S1中制得的陶瓷烧块料经40目筛处理,过筛后向陶瓷烧块料内添加0.375wt%的降温剂Pb-B-Si玻璃粉,再用立式振动磨球磨陶瓷烧块料和降温剂Pb-B-Si玻璃粉48h,球磨后经320目筛处理以得到陶瓷浆料,然后将陶瓷浆料顺次经烘干、100目筛处理,最终制得反铁电陶瓷粉体;

S4、按MLCC制备工艺流程制备测试样品,测试样品生坯包括浆料配制、流延、印叠、层压、切块等工序,生坯样品尺寸为4045,内电极采用钯/银=30:70,标准电极图形,一层有效层,有效层生坯厚度40μm,其中,浆料配制质量比为粉体:酒精:甲笨:粘合剂=200:32:23:12;

S5、将上述步骤得到的陶瓷坯体按图1的排粘曲线排粘,为了防止铅组分在烧结的过程中挥发,将陶瓷坯体放入氧化铝坩埚中,盖上磨口盖子,以4℃/min的升温速度升至1100℃,保温3h,随炉冷却后得到测试样品熟坯;

S6、将烧结好的测试样品熟坯经倒角,清洗,烘干,涂端,再烘干,随后以2℃/min的升温速度升至810℃,保温0.5h烧银得到测试样品;

S7、对本实施例的测试样品进行室温下的损耗角正切值、绝缘电阻、抗电强度的测量,测量结果如图9所示;

S8、对本实施例的测试样品进行室温下的电滞回线的测量,测量结果如图2所示;

S9、对本实施例的测试样品所用反铁电陶瓷材料进行了室温下的储能密度计算,结果如图3所示,其中横坐标E为电场强度,纵坐标P为极化强度。由图3可以看出该陶瓷为典型的AFE相,当电场低于70kV/cm时,电滞回线接近线性,当电场强度达到阀值场强70kV/cm时偶极子开始翻转,极化强度突然增大,反铁电-铁电相变电场EAFE-FE=70kV/cm,当电场为270kV/cm时,极化强度基本饱和到达最大值32.5μC/cm2,撤去电场后偶极子翻转回初始状态,剩余极化强度接近0μC/cm2,电滞回线回到原点;图中阴影部分所围面积为有效储能密度,一个方格代表1.0J/cm3,计算结果显示该材料储能密度为4.2J/cm3,能量利用率为94.9%。

S10、对本实施例的测试样品进行温度特性的测量,测量结果如图8中曲线1。

实施例2:一种脉冲功率电容器用反铁电陶瓷粉体,所述的反铁电陶瓷粉体的组成化学式为:Pb0.94La0.06(Zr0.49Sn0.42Ti0.09)O3,其中,x=0.09,y=0.42;添加的降温剂为Pb-B-Si玻璃粉,所述的降温剂组成为Pb:B:Si=70:15:15wt%,添加量为0.656wt%。

所述的脉冲功率电容器用反铁电陶瓷粉体的制备方法,它包括以下步骤:

S1、组分为Pb0.94La0.06(Zr0.49Sn0.42Ti0.09)O3陶瓷烧块料的合成,根据(Pb0.94La0.06)(Zr1-x-y SnyTix)O3中x和y的取值分别计算原料组成物PbO粉体、ZrO2粉体、TiO2粉体、SnO2粉体和La2O3粉体的重量,其中PbO粉体5987.6g、ZrO2粉体1723.1g、TiO2粉体205.2g、SnO2粉体1805.1g和La2O3粉体278.9g;采用湿法球磨按照原料:球磨介质:去离子水=1:5:1的重量比混合6h,使PbO粉体、ZrO2粉体、TiO2粉体、SnO2粉体和La2O3粉体混合均匀,以作为原料粉体;将所述的原料粉体进行烘干处理,以将原料粉体上的水分除掉;向烘干后的原料粉体中加入8%的去离子水并经40目筛处理,处理后送入加热炉内,并以4℃/min的升温速度升至870℃,保温3h后合成组分为Pb0.94La0.06(Zr0.49Sn0.42Ti0.09)O3陶瓷烧块料;所述的球磨介质为锆球;

S2、降温剂Pb-B-Si玻璃粉的制备,分别称取PbO粉体、B2O3粉体和SiO2粉体;采用湿法球磨按照PbO粉体、B2O3粉体和SiO2粉体的总重量:球磨介质:去离子水=1:5:1的重量比混合5.5h,使PbO粉体、B2O3粉体和SiO2粉体混合均匀;将粉体上的水分烘干,烘干后将粉体送入加热炉内经870℃煅烧,煅烧后经淬火制得玻璃块;将玻璃块顺次经湿法球磨、烘干处理,从而实现了降温剂Pb-B-Si玻璃粉的制备;所述的球磨介质为锆球;

S3、反铁电陶瓷粉体的制备,先将步骤S1中制得的陶瓷烧块料经40目筛处理,过筛后向陶瓷烧块料内添加0.656wt%的降温剂Pb-B-Si玻璃粉,再用立式振动磨球磨陶瓷烧块料和降温剂Pb-B-Si玻璃粉48h,球磨后经320目筛处理以得到陶瓷浆料,然后将陶瓷浆料顺次经烘干、100目筛处理,最终制得反铁电陶瓷粉体。

S4、制备与实施例1中相同的测试样品,损耗角正切值、绝缘电阻、抗电强度的测量结果如图9所示,电滞回线测量结果如图4所示,储能密度计算如图5,温度特性如图8中曲线2所示。

实施例3:一种脉冲功率电容器用反铁电陶瓷粉体,所述的反铁电陶瓷粉体的组成化学式为:Pb0.94La0.06(Zr0.39Sn0.55Ti0.06)O3,其中x=0.06,y=0.55;添加的降温剂为Pb-B-Si玻璃粉,所述的降温剂组成为Pb:B:Si=80:20:30wt%,添加量为1.0wt%。

所述的脉冲功率电容器用反铁电陶瓷粉体的制备方法,它包括以下步骤:

S1、组分为Pb0.94La0.06(Zr0.39Sn0.55Ti0.06)O3陶瓷烧块料的合成,根据(Pb0.94La0.06)(Zr1-x-y SnyTix)O3中x和y的取值分别计算原料组成物PbO粉体、ZrO2粉体、TiO2粉体、SnO2粉体和La2O3粉体的重量,其中PbO粉体5905.7g、ZrO2粉体1352.7g、TiO2粉体134.9g、SnO2粉体2331.5g和La2O3粉体275.1g;采用湿法球磨按照原料:球磨介质:去离子水=1:5:1的重量比混合6h,使PbO粉体、ZrO2粉体、TiO2粉体、SnO2粉体和La2O3粉体混合均匀,以作为原料粉体;将所述的原料粉体进行烘干处理,以将原料粉体上的水分除掉;向烘干后的原料粉体中加入8%的去离子水并经40目筛处理,处理后送入加热炉内,并以4℃/min的升温速度升至880℃,保温3h后合成组分为Pb0.94La0.06(Zr0.39Sn0.55Ti0.06)O3陶瓷烧块料;所述的球磨介质为锆球;

S2、降温剂Pb-B-Si玻璃粉的制备,分别称取PbO粉体、B2O3粉体和SiO2粉体;采用湿法球磨按照PbO粉体、B2O3粉体和SiO2粉体的总重量:球磨介质:去离子水=1:5:1的重量比混合6h,使PbO粉体、B2O3粉体和SiO2粉体混合均匀;将粉体上的水分烘干,烘干后将粉体送入加热炉内经900℃煅烧,煅烧后经淬火制得玻璃块;将玻璃块顺次经湿法球磨、烘干处理,从而实现了降温剂Pb-B-Si玻璃粉的制备;所述的球磨介质为锆球;

S3、反铁电陶瓷粉体的制备,先将步骤S1中制得的陶瓷烧块料经40目筛处理,过筛后向陶瓷烧块料内添加1.0wt%的降温剂Pb-B-Si玻璃粉,再用立式振动磨球磨陶瓷烧块料和降温剂Pb-B-Si玻璃粉50h,球磨后经320目筛处理以得到陶瓷浆料,然后将陶瓷浆料顺次经烘干、100目筛处理,最终制得反铁电陶瓷粉体。

S4、制备与实施例1中相同的测试样品,损耗角正切值、绝缘电阻、抗电强度的测量结果如图9所示,电滞回线测量结果如图4所示,储能密度计算如图5,温度特性如图8中曲线3所示。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1