本发明涉及一种由尖晶石质的多孔烧结体制成的不定形耐火物用颗粒。
背景技术:
在不定形耐火物的原料所使用的微粒(粉体)材料中,有时会使用各种陶瓷材料,但特别是考虑到耐热性、耐腐蚀性方面时,作为优选的一个方案,可以列举氧化铝-尖晶石质陶瓷。
例如,在日本特开2002-187782号公报中公开了氧化铝-尖晶石质不定形耐火物,通过使用纯度99.5%以上、更优选99.7%以上的氧化铝原料,使龟裂、剥离减轻,获得了高耐用性,并且,在尖晶石原料中使用氧化铝和氧化镁的总计成分为99.5%以上的原料,使龟裂、剥离减轻,获得了高耐用性。
可是,作为在1000℃以上高温区的导热率上升得到抑制、耐热性也优异的绝热材料的材料,关注了作为氧化铝-尖晶石质陶瓷的一个方案的氧化镁尖晶石的陶瓷多孔体。
在日本特开2012-229139号公报、日本特开2013-209278号公报和日本特开2015-000838号公报中记载着:具有规定的气孔径分布的尖晶石质陶瓷多孔体可抑制传导传热(conductiveheattransfer,传导性热传递)和辐射传热(radiantheattransfer,辐射热传递),由此可用作即使在1000℃以上的高温下耐热性也优异的绝热材料。
另外,日本特开2012-229139号公报、日本特开2013-209278号公报、日本特开2015-000838号公报、以及本发明的申请人于2014年7月29日申请了新的不定形耐火物的发明(日本特愿2014-153565号)。其目的在于提供一种以往所没有的不定形耐火物,该不定形耐火物有效利用了日本特开2012-229139号公报、日本特开2013-209278号公报和日本特开2015-000838号公报中记载的尖晶石质多孔体的优异的导热特性。
并且,本发明的申请人还关注到:通过将上述的不定形耐火物与现存的各种耐火物组合,有可能获得具有以往所没有的优异的热特性的结构体。另外,本发明人认为:不仅需要研究与各种耐火物组合以发挥上述的优异效果,对于不定形耐火物本身能够发挥优异的热特性的尖晶石质多孔体的优选方式也需要进行另外的研究。
技术实现要素:
本发明鉴于上述情况而提出,其目的在于:作为不定形耐火物原料所优选的微粒,提供一种由尖晶石质陶瓷制成的不定形耐火物用颗粒。
本发明的不定形耐火物用颗粒的特征在于:由以化学式mgal2o4表示的尖晶石质的多孔烧结体制成,在上述不定形耐火物用颗粒中的气孔径为10μm以下的气孔中,气孔径为0.01μm以上且不足0.8μm的气孔占10vol%(体积%)以上且50vol%以下,并且,具有如下的粒度分布:粒径不足45μm的颗粒为60vol%以下,粒径为45μm以上且不足100μm的颗粒为20vol%以上且60vol%以下,粒径为100μm以上且1000μm以下的颗粒为10vol%以上且50vol%以下。
通过具有所述的构成,上述不定形耐火物用颗粒可以对使用了该颗粒的不定形耐火物赋予优异的热特性。
根据本发明,通过将即使在高温区也可维持低导热率的原料、即上述不定形耐火物用颗粒的气孔径、粒度分布设定成最适用于各种不定形耐火物,所得的不定形耐火物具有即使在高温下使用时导热率也被抑制在低水平的优异效果。
具体实施方式
以下,对本发明进行详细说明。
本发明的不定形耐火物用颗粒由以化学式mgal2o4表示的尖晶石质的多孔烧结体制成,在该颗粒中的气孔径为10μm以下的气孔中,气孔径为0.01μm以上且不足0.8μm的气孔占10vol%以上且50vol%以下,并且,具有如下的粒度分布:粒径不足45μm的颗粒为60vol%以下,粒径为45μm以上且不足100μm的颗粒为20vol%以上且60vol%以下,粒径为100μm以上且1000μm以下的颗粒为10vol%以上且50vol%以下。
首先,本发明的不定形耐火物用颗粒由以化学式mgal2o4表示的尖晶石质的多孔烧结体的集合体制成。由于mgal2o4(氧化镁尖晶石)在高温下因颗粒生长、粒间结合而产生的气孔的形状、大小的变动小,可长期维持抑制导热率变动的效果,因此适合在高温下使用。需要说明的是,上述mgal2o4(氧化镁尖晶石)的化学组成和尖晶石质的结构例如可以通过粉末x射线衍射法进行测定和鉴定。
而且,该不定形耐火物用颗粒,在其气孔径为10μm以下的气孔中,气孔径为0.01μm以上且不足0.8μm的气孔占10vol%以上且50vol%以下。
气孔率和气孔容积比例可以由多孔烧结体颗粒的气孔径分布来求出,上述的气孔径分布根据jisr1655-2003“基于精细陶瓷的压汞法的成型体气孔径分布试验方法(ファインセラミックスの水銀圧入法による成形体気孔径分布試験方法)”来测定。
本发明中,由于在气孔径为10μm以下的气孔中,气孔径为0.01μm以上且不足0.8μm的所谓微小气孔占10vol%以上且50vol%以下,因此可以增加每单位体积的气孔数,不定形耐火物用颗粒的粒间的声子散射量增加,可获得抑制传导传热的效果。
当上述微小气孔所占的比例不足10vol%时,因每单位体积的气孔数少,所以每单位体积的粒间数变少,因此有时无法充分获得抑制传导传热的效果。另一方面,若上述微小气孔所占的比例超过50vol%,则适于抑制辐射传热的气孔径为0.8μm以上且10μm以下的气孔量相对变少,因此有时难以抑制辐射传热。
需要说明的是,在气孔径为10μm以下的气孔中,对气孔径为0.8μm以上且10μm以下的气孔所占的比例没有特别限定。其原因在于:通过依据jisr1655-2003“基于精细陶瓷的压汞法的成型体气孔径分布试验方法”进行的气孔径分布测定,难以测定气孔径不足0.01μm的气孔所占的比例,因此气孔径为0.8μm以上且10μm以下的气孔所占的比例由气孔径为0.01μm以上且不足0.8μm的微小气孔所占的比例唯一确定。
在本发明的不定形耐火物用颗粒中,可以包含40vol%以上且80vol%以下的气孔径为10μm以下的气孔。气孔径为10μm以下的气孔的含量不足40vol%时,上述微小气孔的绝对量也相对变少,有时无法充分获得传导传热的抑制效果。另一方面,当气孔径为10μm以下的气孔的含量超过80vol%时,气孔率过大,颗粒的强度显著降低,在成型时颗粒有可能被破坏。
对气孔径超过10μm的粗大气孔在全体气孔中所占的比例也没有特别限定。其原因在于:与一体成型体不同,使用了由微米级粒径的集合体构成的本发明的不定形耐火物用颗粒的各种不定形耐火物,在其各颗粒间存在空隙,不需要对粗大气孔严密地设定限制。但是,从形成不定形耐火物时的强度方面来看,气孔径超过10μm的粗大气孔在全体气孔中所占的比例优选为0%以上且30%以下。
这里,本发明的不定形耐火物用颗粒集合体的叩击松密度进一步优选为0.6g/cm3以上且1.0g/cm3以下。叩击松密度参照jisr1628-1997“精制陶瓷粉末的松密度测定方法(ファインセラミックス粉末のかさ密度測定方法)”来测定。
在填充有多数颗粒的状态下,通常颗粒间会存在多数空隙。通常,若大气孔所占的比例多,则难以抑制辐射传热,因此在本发明的实施中优选使相当于大气孔的空隙减少。
叩击松密度要尽量排除颗粒间的空隙后再进行测定。因此,通过根据叩击松密度来评价本发明的不定形耐火物用颗粒集合体的密度、并以适当的范围进行管理,可以在密度的最优化中还一并担保本发明的优异的绝热性。
具有上述气孔容积比例的本发明的不定形耐火物用颗粒的集合体的叩击松密度只要在0.6g/cm3以上且1.0g/cm3以下的范围,即可以在粗大气孔所占的比例少的状态下获得不定形耐火物。
当叩击松密度不足0.6g/cm3时,粗大空隙的存在比增加,因此发挥本发明的优异绝热性处于稍难的趋势。另外,当叩击松密度超过1.0g/cm3时,颗粒间的空隙变得过小,因此在对不定形耐火物进行施工时,在本发明的不定形耐火物用颗粒的填充、成型中会产生制约而不易操作,处于难以在维持发挥本发明的绝热性效果的同时获得能够作为后述的浇注耐火物、塑料耐火物或者捣打料(rammingmaterial)来施工的不定形耐火物的趋势。
本发明的不定形耐火物用颗粒具有如下的粒度分布:粒径不足45μm的颗粒为60vol%以下,粒径为45μm以上且不足100μm的颗粒为20vol%以上且60vol%以下,粒径为100μm以上且1000μm以下的颗粒为10vol%以上且50vol%以下。其中,以粒径不足45μm的颗粒、粒径为45μm以上且不足100μm的颗粒、和粒径为100μm以上且1000μm以下的颗粒的总计作为100vol%。
这里,粒径为x以上且不足y(x、y为任意的正数且x<y)是指,该颗粒无法通过jisz8801-1-2006“试验用筛-第1部:金属制网筛”中规定的筛孔为x的标准筛、并且可通过筛孔为y的标准筛。
通过兼具上述的气孔容积比例和上述的粒度分布范围,可有效获得导热率被抑制在低水平、并且密度小而量轻的不定形耐火物。换言之,若不将气孔容积比例和粒度分布设定在适当的范围,则无法获得这样的效果。
例如,仅使用粒径大致相同的mgal2o4时,难以获得本发明这样的气孔径分布。即,仅利用颗粒间的空隙难以使气孔径和气孔容积比例达到本发明的优选范围。
对本发明的不定形耐火物用颗粒的制备方法没有特别限定,可以采用公知的多孔烧结体的制备方法。气孔结构的形成、调整可以通过添加造孔材料、起泡剂等来进行。另外,粒径通过多孔烧结体的粉碎条件、筛分条件来调节。造孔材料例如可以列举丙烯酸树脂颗粒,起泡剂例如可以列举表面活性剂。并且,根据大粒径与小粒径的存在比例,可以调整作为不定形耐火物的气孔率。根据上述认知,通过适当变更制备条件,可以获得所期望的不定形耐火物用颗粒。
接下来,例示几种使用了本发明的不定形耐火物用颗粒的不定形耐火物。优选的一个方案为浇注耐火物,其中每单位重量包含至少30wt%、更优选50~70wt%的本发明的不定形耐火物用颗粒。
对作为浇注耐火物的用途没有限定,但为了有效利用本发明的不定形耐火物用颗粒所具有的上述优异的热特性,特别适合于在1000℃以上的高温区、并且想要抑制热损失的用途。作为这样的用途,例如可以列举钢铁用浸渍喷嘴的顶端部内外面的保护等。
而且,上述浇注耐火物为了显著发挥这种优异的热特性,每单位重量可以包含至少30wt%的本发明的不定形耐火物用颗粒。需要说明的是,上限可以根据使用目的、状态而适时设定,但若超过80wt%,则在作为不定形材料施工时,为了赋予所需的流动性,所需的水分量会增加,干燥时需要长时间、或者干燥时的收缩变大而容易发生龟裂等,作为不定形耐火物难以处理,因此优选为80wt%以下。
另外,另一方案为塑料耐火物或捣打料,其中每单位重量包含至少30wt%、更优选40~60wt%的本发明的不定形耐火物用颗粒。
这里,在塑料耐火物、捣打料中本发明的不定形耐火物用颗粒的含量为30wt%是根据与浇注耐火物的情形同样的理由设定的,因此上限也可根据使用目的、状态而适时设定,但若超过70wt%,则作为不定形材料难以处理,因此仍然优选为70wt%以下。
如上所述,通过根据用途适时设定不定形耐火物用颗粒的含量,可以获得符合其用途的最合适的特性和使用方法。需要说明的是,在本发明中,不定形耐火物用颗粒以外的材料也同样可以根据用途而适时使用公知的材料。
需要说明的是,上述的使用不定形耐火物用颗粒的比例不过是优选的一个例子而已,根据用途可以改变其范围。例如,在浇注耐火物中,在允许长期的干燥时间、允许发生龟裂的情况或者在形成薄的绝热层时等不易发生干燥龟裂的情况等中,可以选择适当的粘合剂,使用超过80wt%的本发明的不定形耐火物用颗粒,根据情况,可以形成仅由本发明的不定形耐火物颗粒制成的层。
进一步而言,不仅可以使本发明的不定形耐火物用颗粒均匀混合于不定形耐火物整体中,也可以设成部分性地偏向于面方向或厚度方向。或者,可以在其他耐火物上重新设置仅由本发明的不定形耐火物用颗粒制成的层。
需要说明的是,例如在制作浇注耐火物时,为了在施工中赋予适宜的流动性,通常是添加粘土矿物,但粘土矿物含有si作为主要成分,若本发明的不定形耐火物中包含15wt%以上的si,则在高温下使用时,本发明的不定形耐火物用颗粒与si发生化学反应,有可能因不定形耐火物收缩而发生龟裂、上述的微小气孔减少而导致绝热效果降低。因此,认为应该避免使用这种含si材料、或者限于最小限度的使用。
使用了本发明的不定形耐火物用颗粒的不定形耐火物,只要不存在使绝热特性明显劣化等不良影响,就可以进行各种变形。例如,在浇注耐火物、塑料耐火物或捣打料的表面或内部可以形成由本发明的不定形耐火物用颗粒制成的层。这种情况下,为了提高绝热性,可以使其厚度达到至少3mm以上、优选5mm以上。
如上所述,本发明所涉及的不定形耐火物优选其在室温下的导热率为0.3~1.0w/(m·k)、而在1000℃以上且1500℃以下的高温区的导热率为1.0w/(m·k)以下。像这种在1000℃以上的高温区的导热率的增加得到抑制的不定形耐火物,即使其在高温区使用,绝热效果的变动也少。需要说明的是,在1000℃以上且1500℃以下的导热率更优选为0.7w/(m·k)以下。为了获得这种高温下的低导热率,可以调整本发明的不定形耐火物用颗粒的添加量,使不定形耐火物中包含25vol%以上的气孔径为0.8μm以上且10μm以下的气孔。
只要不损及本发明的效果,则上述不定形耐火物可以包含其他材料、例如由氧化铝颗粒等制成的骨料(骨材)、中空氧化铝颗粒和无机纤维等添加剂。包含这种材料的不定形耐火物的热特性低于本发明的不定形耐火物用颗粒本身所具有的优异的热特性。尽管如此,如上述所示,与以同等形态使用的以往的各种不定形耐火物相比,仍发挥着以往非常难以实现的高温下的低导热特性。
因此,在要求超过以往的不定形耐火物的绝热性的情况、不太具有设置不定形耐火物的空间的情况、或者要求不定形耐火物的轻量化的情况等中,本发明的不定形耐火物会发挥较佳的效果。
实施例
以下,根据实施例来具体地说明本发明,但本发明并不受下述所示实施例的限制。
[不定形耐火物用颗粒的制作]
(实施例1~6、比较例1~3)
相对于11mol的水凝(硬)性氧化铝粉末(bk-112;住友化学株式会社制造),以9mol的比例混合氧化镁粉末(mgo11pb;株式会社高纯度化学研究所制造),向其中加入纯水,进行均匀分散,调制了浆液。然后,相对于上述浆液以0~50vol%的范围混合造孔材料,进行成型和干燥,在大气中、在1600℃下煅烧3小时后,获得了这些多孔烧结体。
分别如下述表1的实施例1~6、比较例1~3所示,通过适当变更调制浆液时的纯水添加量、或用作造孔材料的丙烯酸树脂颗粒的直径和添加量等,调整了气孔的构成。
使用市售的粉碎机粉碎这些多孔烧结体,通过适时变更粉碎条件来调节不同粒径(粒子径別)的颗粒存在比(vol%),制作了粒度分布如表1所示的不定形耐火物用颗粒。
这里,对于上述获得的各多孔烧结体,在通过x射线衍射(x射线源:cukα、电压:40kv、电流:0.3a、扫描速度:0.06˚/秒)鉴定结晶相时,均观察到了氧化镁尖晶石相。
关于上述实施例1~6、比较例1~3,使用汞微孔测径仪测定了气孔容积(jisr1655-2003)、并测定了叩击松密度(jisr1628-1997),上述的各种评价结果一并见下述表1。
这里,由于在颗粒状态下难以评价导热率,因此没有评价实施例1~6和比较例1~3中制作的颗粒单体的导热率,而是制作如下所示的浇注耐火物后进行了评价。
[浇注耐火物的制作]
(实施例1a~6a)
将60wt%(重量%)的实施例1~6的颗粒、25wt%的粒径为1~5mm的中空氧化铝颗粒、15wt%的高铝水泥(aluminacement)和作为分散剂的微量的六偏磷酸钠与水一同混合,浇铸成型成200mm×100mm×50mm的形状。使所得成型体进行110℃×20小时的干燥,形成了干燥体。将干燥体进行1550℃×3小时的大气煅烧,形成了实施例1a~6a的浇注耐火物。
(比较例1a~3a)
然后,将60wt%的比较例1~3的颗粒、25wt%的粒径为1~5mm的中空氧化铝颗粒、15wt%的高铝水泥和作为分散剂的微量的六偏磷酸钠与水一同混合,浇铸成型成200mm×100mm×50mm的形状。使所得成型体进行110℃×20小时的干燥,形成了干燥体。将干燥体进行1550℃×3小时的大气煅烧,制作了比较例1a~3a的浇注耐火物。
(实施例7、比较例4)
另外,将30wt%的含有85wt%的氧化铝、5wt%的二氧化硅的市售绝热浇注用粉末和70wt%的实施例1的颗粒分别进行干式混合,之后添加水,利用混合器搅拌直至均匀,浇铸成型成200mm×100mm×50mm的形状。使所得成型体进行110℃×20小时的干燥,形成了干燥体。将干燥体进行1550℃×3小时的大气煅烧,形成了实施例7的浇注耐火物。
再向含有85wt%的氧化铝、5wt%的二氧化硅的市售绝热浇注用粉末中添加水,利用混合器搅拌直至均匀,浇铸成型成200mm×100mm×50mm的形状。使所得成型体进行110℃×20小时的干燥,形成了干燥体。将干燥体进行1550℃×3小时的大气煅烧,形成了比较例4的浇注耐火物。
对于实施例1a~6a、比较例1a~3a、实施例7和比较例4的各种不定形耐火物,参考jisr2616-2001“耐火绝热砖的导热率的试验方法(耐火断熱れんがの熱伝導率の試験方法)”分别测定了导热率。上述结果同样见表1。
[表1]
由表1可知:与比较例1a~3a和比较例4相比,实施例1a~6a和实施例7在1000℃以上的加热下的导热率低,处于导热率的温度依赖性小的趋势。特别是,在实施例中1500℃下的导热率均为1w/(m·k)以下,相对于此,在比较例中1500℃下的导热率均超过1w/(m·k)。由此认为:与以往产品相比,使用了处于本发明的实施范围的不定形耐火物用颗粒的产品在1000℃以上可获得低导热率。
特别是,与不含本发明的不定形耐火物用颗粒的比较例4相比,包含本发明的不定形耐火物用颗粒的实施例7在导热率上产生了较大的差异,可以认为这更明显地显示出了本发明的不定形耐火物用颗粒所产生的效果。