一种铝电解用铁酸镍基陶瓷惰性阳极材料及其制备方法与流程

文档序号:15198691发布日期:2018-08-19 02:46阅读:180来源:国知局

本发明涉及铝电解技术和陶瓷基复合材料技术领域,特别涉及一种铝电解用铁酸镍基陶瓷惰性阳极材料及其制备方法。



背景技术:

现行的hall-héorult铝电解槽采用消耗式碳素阳极而存在碳耗高、环境污染严重等问题;在低碳环保的时代主题下,传统铝电解碳素阳极的缺点更趋明显,国家也加大了对高碳耗、高污染源排放企业的监管和控制,电解铝行业面临巨大危机;因此,铝业界迫切需要一种高效率、无污染(或少污染)的炼铝新工艺,如惰性电极工艺等;惰性阳极不参与阳极反应,在阳极只产生氧气,消除了温室气体co2、cf4、c2f6和有毒物质co、沥青烟气的排放,符合绿色环保发展要求,节省大量优质碳素材料和阳极更换时的人力消耗,减小阳极更换引起电解槽热平衡的扰动,生产运行更加稳定,能有效提高电流效率、降低生产成本;因此,将惰性阳极材料应用于铝电解工艺中是铝生产工业实现低碳环保、提高效率、降低成本的重要发展方向。

目前国内外关于铝电解用惰性阳极材料的专利和研究报导比较多,惰性阳极选材主要集中在金属合金阳极、氧化物陶瓷阳极和金属陶瓷阳极等三个方面;其中,nife2o4基金属陶瓷惰性阳极兼具nife2o4陶瓷相的高温化学稳定性好、抗熔盐腐蚀能力强以及金属相的良好导电性及抗热冲击性等优点,被认为是一种最具应用前景的铝电解用惰性阳极材料,成为铝业界重点研究对象;国内外对nife2o4基金属陶瓷惰性阳极进行了大量研究并取得一定成果,但是nife2o4基金属陶瓷惰性阳极的耐腐蚀性能仍无法满足铝电解工业要求,产品铝纯度也未达到工业原铝要求,制约惰性阳极的工业化应用;nife2o4基金属陶瓷惰性阳极中金属相的添加主要是提高材料的导电性、改善阳极的力学性能和抗热震性能等,但是金属相的耐腐蚀性能远低于nife2o4陶瓷相,电解过程中金属相优先腐蚀溶解,大幅度降低了nife2o4基惰性阳极的耐腐蚀性能;在目前的金属陶瓷惰性阳极制备技术和电解工艺条件下,导电性和耐腐蚀性不能兼顾,nife2o4基金属陶瓷惰性阳极的耐腐蚀性能难以取得突破;因此,迫切需要一种新思路和新方法来提高阳极的导电性能。



技术实现要素:

本发明的目的是针对nife2o4基金属陶瓷惰性阳极导电性和耐腐蚀性不能兼顾的难题,提供一种铝电解用铁酸镍基陶瓷惰性阳极材料及其制备方法,通过掺杂导电性能优异和抗氧化性能良好的tin陶瓷相代替金属相,在提高nife2o4基陶瓷惰性阳极耐腐蚀性能的同时保证导电性能良好,满足现行铝电解工艺要求的高电导率、耐高温熔盐腐蚀能力等性能。

本发明的铝电解用铁酸镍基陶瓷惰性阳极材料的物相由nife2o4基复合陶瓷相和钛的氮化物相组成,nife2o4基复合陶瓷相和钛的氮化物相的质量比为19:1~4:1,nife2o4基复合陶瓷相由nife2o4、nio、mno2和v2o5组成,钛的氮化物相为tinx,并且x在0.37~1.2之间。

上述的nife2o4基复合陶瓷相中,nio的质量分数为5~17%,mno2的质量分数为1~3%,v2o5的质量分数为0.5~1.5%,余量为nife2o4尖晶石。

本发明的铝电解用铁酸镍基陶瓷惰性阳极材料的制备方法包括以下步骤:

(1)nife2o4基复合陶瓷颗粒制备:按照设计所需的质量配比分别称取原料fe2o3粉末、nio粉末、mno2粉末和v2o5粉末;将全部原料放入球磨罐中,加入去离子水湿磨混合4~8小时,然后将混合物料在100±2℃条件下烘干;向烘干后的混合物料中加入有机粘结剂,有机粘结剂占烘干后的混合物料总质量的2~6%,然后混合均匀,再筛分出粒径≤250μm的部分作为一次粘结物料;将一次粘结物料在60~100mpa条件下模压成型,制成一次生坯;将一次生坯在900~1100℃条件下预烧结保温5~8小时,再随炉冷却至常温,获得nife2o4基复合陶瓷块料;将nife2o4基复合陶瓷块料破碎后筛分出粒径≤74μm的部分,作为nife2o4基复合陶瓷颗粒;

(2)混料:按照设计的质量配比分别称取nife2o4基复合陶瓷颗粒和tin粉末,然后一同放入球磨罐中,加入去离子水湿磨混合6~12小时,再在100±2℃条件下烘干;向烘干的混合物料中加入有机粘结剂,有机粘结剂占烘干后的混合物料总质量的4~8%,然后混合均匀,再筛分出粒径≤250μm的部分作为二次粘结物料;

(3)成型:将二次粘结物料冷等静压成型制得二次生坯;

(4)烧结:将二次生坯置入高温烧结炉中,在空气气氛和1300~1450℃条件下烧结保温4~8小时,制备得到nife2o4基陶瓷惰性阳极材料。

上述的fe2o3粉末粒径≤1μm,nio粉末粒径≤10μm,mno2粉末粒径≤5μm,v2o5粉末粒径≤100μm。

上述的tin粉末的粒径≤1μm。

上述的步骤(1)和(2)中的有机粘结剂为质量分数为2~8%的聚乙烯醇溶液。

上述方法中,冷等静压成型圧力为200~400mpa。

上述的nife2o4基陶瓷惰性阳极材料的960℃时电导率≥30s/cm,腐蚀速率≤10mm/年。

本发明与现有技术相比,具有如下特点和积极效果:

(1)通过掺杂导电性能和耐腐蚀性能优异的tin颗粒代替金属粉,避免金属相的加入,在保证铝电解要求所需的导电性能的同时显著提高nife2o4基陶瓷惰性阳极材料的耐腐蚀性能,降低电解过程中惰性阳极的消耗速率,延长惰性阳极的使用寿命,降低产品铝的杂质含量,保证产品铝纯度。

(2)由于不需要加入金属相,烧结过程中无需真空或氩气保护条件,在常压空气气氛中即可;因此,普通高温烧结炉即可满足烧结要求,无需真空系统,设备和工艺相对简单,降低了阳极制造成本。

本发明的方法以导电性能优异的活性陶瓷相代替金属陶瓷中的金属相,避免金属相的加入,通过粉末冶金法制备铝电解用nife2o4基陶瓷惰性阳极,在保证耐腐蚀性能前提下显著提高陶瓷阳极的导电性能,克服金属陶瓷导电性和耐腐蚀性不能兼顾这一关键问题,有助于推动铝电解用惰性阳极的工业化应用。

附图说明

图1为本发明实施例1制备的nife2o4基陶瓷惰性阳极材料的显微形貌图;

图2为本发明实施例2制备的nife2o4基陶瓷惰性阳极材料的显微形貌图;

图3为本发明实施例3制备的nife2o4基陶瓷惰性阳极材料的显微形貌图。

具体实施方式

下面结合实施例对本发明的较佳实施案例进行详细阐述。

本发明实施例中采用的fe2o3粉末、nio粉末、mno2粉末、v2o5粉末和tin粉末均为市购产品。

本发明实施例中观测显微形貌采用的设备为ssx-550型扫描电子显微镜。

本发明实施例中测试电导率的方法为通过直流四探针法测量960℃时试样的电阻率计算得到电导率。

本发明实施例中测试腐蚀速率的方法为通过失重法测量阳极材料在960℃冰晶石熔盐体系(2.2naf·alf3+5%caf2+5%al2o3)中电解腐蚀(阳极电流密度为0.8a/cm2)8小时后的腐蚀量,计算后得到年腐蚀速率。

实施例1

按照设计所需的质量配比分别称取原料fe2o3粉末、nio粉末、mno2粉末和v2o5粉末,质量配比按fe2o3与nio全部反应生成nife2o4尖晶石,其余的nio的质量分数为17%,mno2的质量分数为1%,v2o5的质量分数为1.5%;其中fe2o3粉末粒径≤1μm,nio粉末粒径≤10μm,mno2粉末粒径≤5μm,v2o5粉末粒径≤100μm;

全部原料放入球磨罐中,加入去离子水湿磨混合6小时,然后将混合物料在100±2℃条件下烘干;

向烘干后的混合物料中加入有机粘结剂质量分数8%的聚乙烯醇溶液,有机粘结剂占烘干后的混合物料总质量的2%,然后混合均匀,再筛分出粒径≤250μm的部分作为一次粘结物料;

将一次粘结物料在60mpa条件下模压成型,制成一次生坯;

将一次生坯在900℃条件下预烧结保温8小时,再随炉冷却至常温,获得nife2o4基复合陶瓷块料;

将nife2o4基复合陶瓷块料破碎后筛分出粒径≤74μm的部分,作为nife2o4基复合陶瓷颗粒;

按照设计的质量配比分别称取nife2o4基复合陶瓷颗粒和tin粉末,tin粉末的粒径≤1μm,nife2o4基复合陶瓷颗粒和tin粉末的质量比为4:1,然后一同放入球磨罐中,加入去离子水湿磨混合12小时,再在100±2℃条件下烘干;向烘干的混合物料中加入有机粘结剂质量分数8%的聚乙烯醇溶液,有机粘结剂占烘干后的混合物料总质量的4%,然后混合均匀,再筛分出粒径≤250μm的部分作为二次粘结物料;

将二次粘结物料冷等静压成型制得二次生坯;冷等静压成型圧力为200mpa;

将二次生坯置入高温烧结炉中,在空气气氛和1300℃条件下烧结保温8小时,制备得到nife2o4基陶瓷惰性阳极材料;

nife2o4基陶瓷惰性阳极材料的物相由nife2o4基复合陶瓷相和钛的氮化物相组成,nife2o4基复合陶瓷相由nife2o4、nio、mno2和v2o5组成,钛的氮化物相为tinx,并且x在0.37~1.2之间,即钛的氮化物相为tin0.37~tin1.2;其960℃时电导率72s/cm,腐蚀速率10mm/年,其显微形貌如图1所示。

实施例2

按照设计所需的质量配比分别称取原料fe2o3粉末、nio粉末、mno2粉末和v2o5粉末,质量配比按fe2o3与nio全部反应生成nife2o4尖晶石,其余的nio的质量分数为11%,mno2的质量分数为2%,v2o5的质量分数为1%;其中fe2o3粉末粒径≤1μm,nio粉末粒径≤10μm,mno2粉末粒径≤5μm,v2o5粉末粒径≤100μm;

全部原料放入球磨罐中,加入去离子水湿磨混合4小时,然后将混合物料在100±2℃条件下烘干;

向烘干后的混合物料中加入有机粘结剂质量分数5%的聚乙烯醇溶液,有机粘结剂占烘干后的混合物料总质量的4%,然后混合均匀,再筛分出粒径≤250μm的部分作为一次粘结物料;

将一次粘结物料在80mpa条件下模压成型,制成一次生坯;

将一次生坯在1000℃条件下预烧结保温6小时,再随炉冷却至常温,获得nife2o4基复合陶瓷块料;

将nife2o4基复合陶瓷块料破碎后筛分出粒径≤74μm的部分,作为nife2o4基复合陶瓷颗粒;

按照设计的质量配比分别称取nife2o4基复合陶瓷颗粒和tin粉末,tin粉末的粒径≤1μm,nife2o4基复合陶瓷颗粒和tin粉末的质量比为7:1,然后一同放入球磨罐中,加入去离子水湿磨混合6小时,再在100±2℃条件下烘干;向烘干的混合物料中加入有机粘结剂质量分数5%的聚乙烯醇溶液,有机粘结剂占烘干后的混合物料总质量的6%,然后混合均匀,再筛分出粒径≤250μm的部分作为二次粘结物料;

将二次粘结物料冷等静压成型制得二次生坯;冷等静压成型圧力为300mpa;

将二次生坯置入高温烧结炉中,在空气气氛和1375℃条件下烧结保温6小时,制备得到nife2o4基陶瓷惰性阳极材料;

nife2o4基陶瓷惰性阳极材料的物相由nife2o4基复合陶瓷相和钛的氮化物相组成,nife2o4基复合陶瓷相由nife2o4、nio、mno2和v2o5组成,钛的氮化物相为tinx,并且x=0.37~1.2之间,即钛的氮化物相为tin0.37~tin1.2;其960℃时电导率46s/cm,腐蚀速率8mm/年,其显微形貌如图2所示。

实施例3

按照设计所需的质量配比分别称取原料fe2o3粉末、nio粉末、mno2粉末和v2o5粉末,质量配比按fe2o3与nio全部反应生成nife2o4尖晶石,其余的nio的质量分数为5%,mno2的质量分数为3%,v2o5的质量分数为0.5%;其中fe2o3粉末粒径≤1μm,nio粉末粒径≤10μm,mno2粉末粒径≤5μm,v2o5粉末粒径≤100μm;

全部原料放入球磨罐中,加入去离子水湿磨混合8小时,然后将混合物料在100±2℃条件下烘干;

向烘干后的混合物料中加入有机粘结剂质量分数2%的聚乙烯醇溶液,有机粘结剂占烘干后的混合物料总质量的6%,然后混合均匀,再筛分出粒径≤250μm的部分作为一次粘结物料;

将一次粘结物料在100mpa条件下模压成型,制成一次生坯;

将一次生坯在1100℃条件下预烧结保温5小时,再随炉冷却至常温,获得nife2o4基复合陶瓷块料;

将nife2o4基复合陶瓷块料破碎后筛分出粒径≤74μm的部分,作为nife2o4基复合陶瓷颗粒;

按照设计的质量配比分别称取nife2o4基复合陶瓷颗粒和tin粉末,tin粉末的粒径≤1μm,nife2o4基复合陶瓷颗粒和tin粉末的质量比为19:1,然后一同放入球磨罐中,加入去离子水湿磨混合9小时,再在100±2℃条件下烘干;向烘干的混合物料中加入有机粘结剂质量分数2%的聚乙烯醇溶液,有机粘结剂占烘干后的混合物料总质量的8%,然后混合均匀,再筛分出粒径≤250μm的部分作为二次粘结物料;

将二次粘结物料冷等静压成型制得二次生坯;冷等静压成型圧力为400mpa;

将二次生坯置入高温烧结炉中,在空气气氛和1450℃条件下烧结保温4小时,制备得到nife2o4基陶瓷惰性阳极材料;

nife2o4基陶瓷惰性阳极材料的物相由nife2o4基复合陶瓷相和钛的氮化物相组成,nife2o4基复合陶瓷相由nife2o4、nio、mno2和v2o5组成,钛的氮化物相为tinx,并且x=0.37~1.2之间,即钛的氮化物相为tin0.37~tin1.2;其960℃时电导率30s/cm,腐蚀速率5mm/年,其显微形貌如图3所示。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1