一种氧化锌压敏电阻生料及其制备方法与流程

文档序号:16241142发布日期:2018-12-11 23:06阅读:619来源:国知局
一种氧化锌压敏电阻生料及其制备方法与流程

本发明属于压敏电阻器材料技术领域,具体涉及一种氧化锌压敏电阻生料及其制备方法。

背景技术

氧化锌是一种ⅱb-ⅵa族宽禁带半导体材料。纤锌矿结构的氧化锌是压敏电阻、线性电阻和透明导电薄膜等电力电子器件的主要基体材料。氧化锌压敏电阻可以有效地吸收电路中的浪涌电压,能对电力电子系统进行过电压实时保护。非线性系数α和击穿场强e1ma是压敏电阻的主要特性参数,非线性系数α值越大的压敏电阻对过电压的灵敏性越高,通过控制合适的击穿场强e1ma可以使压敏电阻适用于不同的电力电子系统。氧化锌压敏电阻压敏性能的形成机理主要与其特殊的晶界结构有关,晶界厚度小、界面明显且分布均匀的氧化锌压敏电阻通常具有较高的非线性系数和稳定的击穿场强。

以氧化锌为基体材料的压敏电阻体系主要有zno-bi2o3体系和zno-pr2o3体系两种,压敏电阻的烧结温度通常高于内电极的熔点。因此zno-bi2o3体系可采用银电极、铂电极或钯电极,主要适用于烧结温度处于900℃左右的低温烧结过程,zno-pr2o3体系采用铂电极或钯电极,适用于1000℃以上的高温烧结过程。由于铂和钯属于贵金属,使用成本高,因此zno-bi2o3压敏电阻体系具有较广泛的应用。

氧化锌压敏电阻是在zno粉末基料中掺入少量的的bi2o3、co2o3、mnco3、sb2o3、tio2、cr2o3、ni2o3等多种添加剂,经混合、球磨、成型、烧结等工艺过程制成的精细电子陶瓷元件,应用领域非常广泛,例如电力系统、工业配电系统、建筑物、航空航天器的nemp保护、军事工业,而且还在不断扩展。采取的添加剂不同,影响氧化锌压敏电阻的致密度和电性能,因此通过改变添加剂的成分和剂量,从而改变氧化锌压敏电阻的晶界结构,减小其晶界厚度小、提高其界面分布均匀度,成为提高氧化锌压敏电阻的电性能的主要方法。



技术实现要素:

本发明所要解决的技术问题在于针对上述现有技术中的不足,提供一种氧化锌压敏电阻生料及其制备方法,其配方合理、工艺简单,通过改变氧化锌压敏电阻中的掺杂成分和不同掺杂成分的掺杂比例,改善了氧化锌的晶格结构,显著地提高了氧化锌压敏电阻的非线性系数,同时降低了氧化锌压敏电阻的损耗。

为解决上述技术问题,本发明采用的技术方案是:一种氧化锌压敏电阻生料,其特征在于,所述氧化锌压敏电阻生料由如下组分按摩尔百分比混合组成:

氧化锌87.0%~96.5%;

三氧化二铋0.5%~3.5%;

第ⅱa族氧化物、第ⅲa族氧化物或第ⅴb族氧化物1.0%~3.5%;

三氧化二钇、二氧化硅或二氧化钛1.0%~3.0%;

与锌离子的离子半径相对差值小于15%的金属氧化物1.0%~3.0%。

上述的一种氧化锌压敏电阻生料,其特征在于:所述第ⅱa族氧化物、第ⅲa族氧化物或第ⅴb族氧化物采用五氧化二钒。

上述的一种氧化锌压敏电阻生料,其特征在于:所述与锌离子的离子半径相对差值小于15%的金属氧化物采用三氧化二铬。

一种氧化锌压敏电阻生料的制备方法,其特征在于,包括如下步骤:

步骤一、按摩尔百分比取如下组分原料:氧化锌87.0%~96.5%、三氧化二铋0.5%~3.5%、五氧化二钒1.0%~3.5%、三氧化二钇1.0%~3.0%、三氧化二铬1.0%~3.0%;

步骤二、将步骤一中的生料混合后压制成氧化锌压敏电阻生坯;

步骤三、将氧化锌压敏电阻生坯放入马弗炉中进行排胶,除去陶瓷生坯中的有机成分;

步骤四、将排胶后的氧化锌压敏电阻生坯放入高温电阻炉中进行烧结,升温速率为3℃/min,烧结温度为900℃~1000℃,在烧结温度下保温4~6h;

步骤五、烧结完成后,自然降温至室温;

步骤六、在其两面烧银电极完成氧化锌压敏电阻的制备。

上述的方法,其特征在于:将步骤一中的生料混合后,加水,采用行星式球磨机进行研磨,研磨转速为300~500r/min,研磨时间为6~12小时,将得到的浆料在80℃~120℃温度下烘干,加入粘合剂,采用80~120目的尼龙筛进行筛选造粒,并将造好的粉粒陈腐10~24h,陈腐后的粉粒干压成型,得到氧化锌压敏电阻生坯。

上述的方法,其特征在于:研磨前球石、生料、水的配比如下:质量比为20%~25%的球石、质量比为50%~60%的生料,以及质量比为20%~25%的水。

上述的方法,其特征在于:所述氧化锌压敏电阻生坯呈圆片状,所述氧化锌压敏电阻生坯的直径为8~10mm,厚度为1.0~3mm。

上述的方法,其特征在于:步骤三中马弗炉的温度设置为450℃~700℃,排胶时间为6~14小时。

本发明与现有技术相比具有以下优点:

1、本发明的结构简单、设计合理,实现及使用操作方便。

2、本发明配方合理,在氧化锌中掺杂三氧化二铋,在烧结过程中铋离子不能固溶到氧化锌晶格中,因此会偏析到晶界,而且三氧化二铋的熔点较低,在烧结过程中容易形成液相,流动性强,在制备压敏电阻过程中起的主要作用是控制平均晶粒尺寸,能改善晶界环境,提高氧化锌压敏电阻的非线性系数。

3、本发明中,在氧化锌中掺杂第ⅱa族氧化物、第ⅲa族氧化物或第ⅴb族氧化物,第ⅱa族氧化物、第ⅲa族氧化物或第ⅴb族氧化物能够在烧结过程中形成尖晶石相,尖晶石相在晶界处富集,促进了烧结的进行,使晶体发育完善,起到优化晶界环境的作用。

4、本发明在氧化锌中掺杂三氧化二钇、二氧化硅或二氧化钛,三氧化二钇、二氧化硅或二氧化钛均能够在烧结过程中促进尖晶石相的生成,改善氧化锌压敏电阻的晶界分布情况,提高晶界分布的均匀度。

5、本发明在氧化锌中加入与zn2+离子半径相对差值小于15%的金属氧化物,该金属氧化物的离子能够固溶到氧化锌晶格中,改善了氧化锌的晶格结构,降低了氧化锌压敏电阻的损耗。

6、本发明工艺简单,先后经过混合、球磨、造粒、压片、排胶、烧结、烧银电极等步骤完成氧化锌压敏电阻的制备,制备方法成本较低,原料易得,具有良好的应用前景。

综上所述,本发明配方合理、工艺简单,通过改变氧化锌压敏电阻中的掺杂成分和不同掺杂成分的掺杂比例,改善了氧化锌的晶格结构,显著地提高了氧化锌压敏电阻的非线性系数,同时降低了氧化锌压敏电阻的损耗。

下面通过附图和实施例,对本发明的技术方案做进一步的详细描述。

附图说明

图1为本发明中掺杂不同浓度三氧化二铋时氧化锌压敏电阻的微观结构图。

具体实施方式

一种氧化锌压敏电阻生料由如下组分按摩尔百分比计混合组成:

氧化锌87.0%~96.5%;

三氧化二铋0.5%~3.5%;

第ⅱa族氧化物、第ⅲa族氧化物或第ⅴb族氧化物1.0%~3.5%;

三氧化二钇、二氧化硅或二氧化钛1.0%~3.0%;

与锌离子的离子半径相对差值小于15%的金属氧化物1.0%~3.0%。

实际使用时,氧化锌为基体材料,是一种由第ⅱb族的zn元素和第ⅵa族的o元素形成的共价化合物,主要为纤锌矿结构,无毒无污染,禁带宽度为3.36ev,激子束缚能为60mev。氧化锌晶格中空隙较多,因此很容易实现掺杂改性,是第三代半导体的典型代表,是制备压敏电阻优先选择的原料。

实际使用时,掺杂氧化物的种类也是决定氧化锌压敏电阻压敏性能的重要因素。在离子尺寸方面:当掺杂离子半径与zn2+离子半径的相对偏差小于15%时,掺杂离子可以完全置换zn2+位置形成连续置换型固溶体;当相对偏差介于15%-30%之间时,掺杂离子可以部分置换zn2+位置形成有限置换型固溶体;当相对偏差大于30%时,掺杂离子不能固溶到氧化锌晶格中。

铋离子的半径较大,和锌离子半径的相对差值大于30%,因此在氧化锌中掺杂三氧化二铋,在烧结过程中铋离子不能固溶到氧化锌晶格中,因此会偏析到晶界,而且三氧化二铋的熔点较低,在烧结过程中容易形成液相,流动性强,在制备压敏电阻过程中起的主要作用是控制平均晶粒尺寸,能改善晶界环境,提高非线性系数。

第ⅱa族氧化物、第ⅲa族氧化物或第ⅴb族氧化物能够在烧结过程中形成尖晶石相,尖晶石相在晶界处富集,促进了烧结的进行,使晶体发育完善,起到优化晶界环境的作用。本实施例中,所述第ⅱa族氧化物、第ⅲa族氧化物或第ⅴb族氧化物采用五氧化二钒。

三氧化二钇、二氧化硅或二氧化钛均能够在烧结过程中促进尖晶石相的生成,改善氧化锌压敏电阻的晶界分布情况,本实施例中,采用三氧化二钇。

与锌离子的离子半径相对差值小于15%的金属氧化物能够固溶到氧化锌晶格中,形成固溶体,改善氧化锌的晶格结构。如氧化锑、五氧化二钽、一氧化锰和三氧化二铬。本实施例中,与锌离子的离子半径相对差值小于15%的金属氧化物采用三氧化二铬。

本实施例中,一种氧化锌压敏电阻生料的制备方法,包括如下步骤:

步骤一、按摩尔百分比取如下组分原料:氧化锌93.5%、三氧化二铋2.5%、五氧化二钒2.0%、三氧化二钇1.0%、三氧化二铬1.0%。

实际使用时,如图1所示,其中(a)(b)(c)(d)(e)(f)(g)对应三氧化二铋浓度分别为0.0mol%、0.5mol%、1.0mol%、1.5mol%、2.0mol%、2.5mol%、3.0mol%时氧化锌压敏电阻的微观结构图,随着三氧化二铋的掺杂浓度增大,氧化锌压敏电阻的晶界逐渐变得清晰。当掺杂浓度为2.0mol%和2.5mol%时,晶界中出现了明显的片状物质,且掺杂浓度为2.5mol%时,该片状物质分布更加均匀、形状更加细小和明显,因此该浓度下氧化锌压敏电阻的电学性能达到最佳,晶界能量增大。当掺杂浓度达到3.0mol%时,该片状物质逐渐消失且变为颗粒状,因此氧化锌压敏电阻的电学性能会有所下降。

对图1中掺杂不同浓度三氧化二铋时的氧化锌压敏电阻进行电学性能测试,测试结果如表1。

表1不同浓度三氧化二铋掺杂时氧化锌压敏电阻相关性能参数

如表1所示,当三氧化二铋掺杂量为2.5mol%时,氧化锌压敏电阻的平均晶粒尺寸最大,击穿场强最小,非线性系数最大,损耗角正切最小,相对介电常数最大,电性能最好。因此本实施例中,三氧化二铋的掺杂量为2.5mol%。

步骤二、将步骤一中的生料混合后压制成氧化锌压敏电阻生坯。本实施例中,将步骤一中的生料混合后,采用行星式球磨机进行研磨,研磨前球石、生料、水的配比如下:质量比为20%~25%的球石、质量比为50%~60%的生料,以及质量比为20%~25%的水。研磨转速为300~500r/min,研磨时间为6~12小时,将研磨得到的浆料在80℃~120℃温度下烘干,加入粘合剂,采用80~120目的尼龙筛进行筛选造粒,并将造好的粉粒陈腐10~24h,将陈腐后的粉粒干压成型,得到氧化锌压敏电阻生坯。所述氧化锌压敏电阻生坯呈圆片状,氧化锌压敏电阻生坯的直径为8mm,厚度为1mm。

步骤三、将氧化锌压敏电阻生坯放入马弗炉中进行排胶,除去陶瓷生坯中的有机成分。

步骤四、将排胶后的氧化锌压敏电阻生坯放入高温电阻炉中进行烧结,升温速率为3℃/min,烧结温度为900℃~1000℃,在烧结温度下保温4~6h。实际使用时,烧结温度为910℃。

步骤五、烧结完成后,自然降温至室温。

步骤六、在其两面烧银电极完成氧化锌压敏电阻的制备。

实际使用时,在烧结完成后的氧化锌压敏电阻的两面均烧银电极,银电极相对铂电极和钯电极来说,使用成本低,具有较广泛的应用。

以上所述,仅是本发明的实施例,并非对本发明作任何限制,凡是根据本发明技术实质对以上实施例所作的任何简单修改、变更以及等效结构变化,均仍属于本发明技术方案的保护范围内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1