一种储能效率提高的反铁电储能陶瓷及其制备方法与应用与流程

文档序号:16954993发布日期:2019-02-22 22:19阅读:450来源:国知局
一种储能效率提高的反铁电储能陶瓷及其制备方法与应用与流程

本发明属于电能储存材料领域,具体涉及一种储能效率提高的反铁电储能陶瓷及其制备方法与应用。



背景技术:

目前,介质电容器已成为航空航天电力电子、地下天然气和石油勘探、混合动力交通工具逆变设备中不可或缺的组成部分;电磁炮、定向能武器、综合全电力推动舰艇等负载所需要的高驱动电流也只有该类电容器可以提供。

国内外在高储能密度介质材料上的研制水平基本一致,高储能密度已普遍在掺镧锆锡钛酸铅(plzst)反铁电陶瓷中获得,然而储能效率高达90%以上的报道甚少。由于能量耗散主要以热能的形式散发,低的储能效率不仅会造成能源的浪费,也容易因散热而引起器件局部过热。因此,除了高储能密度外,高储能效率在实际应用中同样具有重要意义。同时,介质电容器朝小型化、轻型化及多功能方向发展对电容器储能密度及储能效率提出了更高的要求。提高电容器储能特性的关键在于开发出具有高储能密度及高储能效率的电介质材料。



技术实现要素:

本发明解决了现有技术中反铁电储能陶瓷储能效率低的技术问题。

根据本发明的第一方面,提供了一种储能效率提高的反铁电储能陶瓷的制备方法,含有以下步骤:

(1)反铁电预烧粉体的制备:将pbo粉体、baco3粉体、la2o3粉体、zro2粉体、sno2粉体和tio2粉体充分混匀得到混合粉体a,所述pbo、baco3、la2o3、zro2、sno2和tio2的物质的量之比为0.93:0.04:0.01:(0.95-x):x:0.05,所述x的取值范围为0.3≤x≤0.45;将所述混合粉体a在800℃-880℃条件下保温2h-3h,得到反铁电预烧粉体;

(2)线性介质材料的制备:将caco3粉体、zro2粉体和tio2粉体充分混匀得到混合粉体b,所述caco3、zro2和tio2的物质的量之比为1:y:(1-y),所述y的取值范围为0.3≤y≤0.5;将所述混合粉体b在1100℃-1200℃条件下保温3h-4h,然后进行预压,将预压后的粉料在1400℃-1500℃温度下煅烧2h-3h,即得到线性介质材料;

(3)反铁电预烧粉体与线性介质材料复合:将步骤(1)得到的反铁电预烧粉体与步骤(2)得到的线性介质材料进行混合得到混合粉体c,所述线性介质材料质量为混合粉体c质量的1%-8%;将所述混合粉体c在1200℃-1250℃温度下煅烧2h-3h,即得到储能效率提高的反铁电储能陶瓷。

优选地,步骤(1)中所述保温之后,还包括依次进行的球磨、烘干和过筛的步骤,过筛之后再进行预压。

优选地,步骤(1)所述烘干所采用的温度为90℃-110℃;步骤(1)所述过筛的过筛目数为60目-80目。

优选地,步骤(2)中所述煅烧之后,还包括依次进行球磨、烘干和过筛的步骤。

优选地,步骤(2)所述烘干所采用的温度为90℃-110℃;步骤(2)所述过筛的过筛目数为60目-80目。

优选地,步骤(2)中所述预压的压力为15mpa-20mpa。

优选地,步骤(3)中所述煅烧步骤之前,还包括将混合粉体c依次进行球磨、烘干、粉碎、造粒和干压的步骤;所述造粒为加入聚乙烯醇溶液进行造粒;所述聚乙烯醇溶液中聚乙烯醇的质量分数为3%-5%;所述聚乙烯醇溶液的质量为混合粉体c质量的6%-10%。

优选地,步骤(3)所述干压的压力为18mpa-20mpa。

根据本发明的另一方面,提供了任一所述方法制备得到的储能效率提高的反铁电储能陶瓷,所述反铁电储能陶瓷为反铁电介质与线性介质的复合物;所述反铁电介质为(pb0.93ba0.04la0.02)(zr0.95-xsnxti0.05)o3(pblzst),其中x的取值范围为0.3≤x≤0.45;所述线性介质为ca(zryti1-y)o3(czt),其中y的取值范围为0.3≤y≤0.5。

根据本发明的另一方面,提供了所述储能效率提高的反铁电储能陶瓷作为电容器介质材料的应用。

总体而言,通过本发明所构思的以上技术方案与现有技术相比,主要具备以下的技术优点:

(1)本发明提供了一种简单有效的方法来提高反铁电储能陶瓷材料的储能效率。从材料电滞回线与储能效率定义可知,反铁电介质储能效率较低,线性介质储能效率较高。为解决现有反铁电陶瓷材料储能密度可观但效率较低的问题,本发明将储能密度高的反铁电材料与储能效率高的线性材料进行复合,获得具有高储能密度及储能效率的反铁电材料。

(2)本发明制备的介质储能陶瓷优点在于,结合了反铁电介质的高储能密度与线性介质)的高储能效率的特点,获得了兼具高储能密度和储能效率的反铁电储能材料。所得样品储能密度由2.95j/cm3提升到4.39j/cm3、储能效率由77.23%提升为92.23%。这对反铁电储能陶瓷材料的实际应用具有重要价值。

(3)本发明中所用反铁电介质(pb0.93ba0.04la0.02)(zr0.95-xsnxti0.05)o3的组分选取pb0.97la0.02(zrsnti)o3相图获取,通过调整zr、sn、ti含量的,以及引入大离子半径的ba2+,获得极化强度达45μc/cm2,双电滞回线明显,储能密度为2.95j/cm3的反铁电材料。

(4)本发明制备过程中在线性介质材料catio3中引入zr,制备的ca(zryti1-y)o3减小了czt的介电常数,有利于获得储能效率高且击穿场强大的线性材料。

(5)本发明的制备方法中,首先分别采用固溶法制备反铁电预烧粉体(800℃-880℃)和线性介质材料(1400℃-1500℃),完成反铁电材料与线性材料的分别合成。第三步采用复合方法,以反铁电预烧粉体为母体,以线性介质材料为第二相进行复合(1200℃-1250℃),实现反铁电介质与线性介质的共存,获得了储能密度和储能效率具有显著提高的复合材料。

(6)本发明制备方法中,所述线性介质材料质量为反铁电预烧粉体与线性介质材料质量的1%-8%,得到的复合材料中,不仅储能效率得到了有效的提升(由77.23%提升到92.23%),同时储能密度也由2.95j/cm3提升到4.39j/cm3,储能密度的提升主要由于线性介质的引入提升了复合材料的耐受场强,且反铁电到铁电的相变电场向高电场方向移动。

(7)本发明复合制备过程中,优选地将混合粉体依次进行球磨、烘干、粉碎、造粒和干压的步骤,以使反铁电预烧粉体与线性介质材料充分混匀,得到均匀的混合粉体,煅烧之后得到均匀的复合材料。

(8)本发明制备方法中,两相复合的过程中中采用适合母体材料pblzst烧结的温度范围1200℃-1250℃下煅烧混合粉料,保温2h-3h,保证两相的共存。若温度过高,则出现过烧现象,铅损失严重,样品的相结构不纯净;若温度过低,则成瓷性不好。

附图说明

图1是本发明对比例1和实施例1-5反铁电陶瓷样品xrd示意图。

图2是本发明对比例1和实施例1-5反铁电陶瓷样品介温曲线。

图3是本发明对比例1和实施例1-5样品的电滞回线示意图。

图4是本发明对比例1和实施例1-5样品的储能密度、储能效率变化图。

具体实施方式

为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。

实施例1

(1)高储能密度反铁电材料的制备:

依照化学式(pb0.93ba0.04la0.02)(zr0.65sn0.3ti0.05)o3进行配料,制备0.2mol的(pb0.93ba0.04la0.02)(zr0.65sn0.3ti0.05)o3时,pbo(99.9%),la2o3(99.9%),zro2(99.5%),sno2(99.6%),tio2(99.6%),baco3(99.8%)的质量分别为88.901g(6wt%过量的氧化铅),1.304g,31.950g,18.158g,1.604g,2.392g。采用湿式球磨法,按照原料:酒精=1:0.6的质量比球磨6个小时,烘干后以5℃每分钟升至850℃,于空气中保温3小时。将所得粉料进行球磨、烘干、过60目筛,以20mpa的压力进行预压,预压后的粉料进行二次过筛,得到高储能密度的反铁电预烧粉体。

(2)高储能效率线性材料的制备:

依照化学式ca(zr0.5ti0.5)o3进行配料,称取原材料制备0.2mol的ca(zr0.5ti0.5)o3时,caco3(99.7%),zro2(99.5%),tio2(99.6%),对应的质量分别为20.060g,12.385g,8.020g。采用湿式球磨法,按照原料:酒精=1:0.6的质量比球磨6个小时,烘干后以5℃每分钟升至1100℃,于空气中保温3小时。将所得粉料进行球磨、烘干、过筛,预压后在1400℃温度下烧结3小时,球磨、烘干、过筛后即为高储能效率的线性介质粉体。

(3)高储能密度反铁电材料与高储能效率线性材料复合:

将步骤(1)、(2)所得到的粉体按照99:1的质量比进行混合,球磨混合4小时,烘干和粉碎后,加入浓度5%的pva溶液,溶液占粉末的质量百分比为8%,再经造粒、干压成型后,在1200℃温度下烧结3小时,并在1000℃下退火1个小时,制得储能陶瓷材料。

实施例2

(1)用实施例1中(1)相同的方法制得高储能密度反铁电材料预烧粉体。

(2)用实施例1中(2)相同的方法制得高储能效率线性材料粉体。

(3)将步骤(1)、(2)所得到的粉体按照98:2的质量比进行混合,球磨混合4小时,烘干和粉碎后,加入浓度5%的pva溶液,溶液占粉末的质量百分比为8%,再经造粒、干压成型后,在1200℃温度下烧结3小时,并在1000℃下退火1个小时,制成储能陶瓷材料。

实施例3

(1)用实施例1中(1)相同的方法制得高储能密度反铁电材料预烧粉体。

(2)用实施例1中(2)相同的方法制得高储能效率线性材料粉体。

(3)将步骤(1)、(2)所得到的粉体按照96:4的质量比进行混合,球磨混合4小时,烘干和粉碎后,加入浓度5%的pva溶液,溶液占粉末的质量百分比为8%,再经造粒、干压成型后,在1200℃温度下烧结3小时,并在1000℃下退火1个小时,制成储能陶瓷材料。

实施例4

(1)用实施例1中(1)相同的方法制得高储能密度反铁电材料预烧粉体。

(2)用实施例1中(2)相同的方法制得高储能效率线性材料粉体。

(3)将步骤(1)、(2)所得到的粉体按照94:6的质量比进行混合,球磨混合4小时,烘干和粉碎后,加入浓度5%的pva溶液,溶液占粉末的质量百分比为8%,再经造粒、干压成型后,在1200℃温度下烧结3小时,并在1000℃下退火1个小时,制成储能陶瓷材料。

实施例5

(1)用实施例1中(1)相同的方法制得高储能密度反铁电材料预烧粉体。

(2)用实施例1中(2)相同的方法制得高储能效率线性材料粉体。

(3)将步骤(1)、(2)所得到的粉体按照92:8的质量比进行混合,球磨混合4小时,烘干和粉碎后,加入浓度5%的pva溶液,溶液占粉末的质量百分比为8%,再经造粒、干压成型后,在1200℃温度下烧结3小时,并在1000℃下退火1个小时,制成储能陶瓷材料。

实施例6

表1中分别列举了当x为0.3、y为0.3,x为0.35、y为0.4,x为0.4、为0.4,x为0.45、y为0.5时,对应的总体储能密度、有效储能密度和储能效率。

表1

对比例1

依照化学式(pb0.93ba0.04la0.02)(zr0.65sn0.3ti0.05)o3进行配料,称取原材料pbo(99.9%),la2o3(99.9%),zro2(99.5%),sno2(99.6%),tio2(99.6%),baco3(99.8%),采用湿式球磨法,按照原料:酒精=1:0.6的质量比球磨6个小时,烘干后以5℃每分钟升至850℃,于空气中保温3小时。加入浓度5%的pva溶液,溶液占粉末的质量百分比为8%,再经造粒、干压成型后,在1200℃温度下烧结3小时,并在1000℃下退火1个小时,制成反铁电储能陶瓷材料。

结果分析:

将实施例1-5及对比例1所得的陶瓷试样磨片、清洗、烧制电极后进行电学性能测试,结果如表2所示。

表2样品主要性能参数

根据表1、2中主要性能参数及图1-4可知,本发明的反铁电储能材料主要具有以下特点。

(1)图1中对比例1和实施例1-5陶瓷样品的xrd表明,所有陶瓷主晶相均为钙钛矿结构。

(2)图2对比例1和实施例1-5陶瓷样品的介温曲线表明,随着czt含量的增加,相对介电常数逐渐减小,介电峰不明显。

(3)图3对比例1和实施例1-5陶瓷样品的电滞回线对比发现,随着czt含量的增加,反铁电到铁电的相变电场向高电场方向移动,同时,电滞回线逐渐细化,并向线性介质转变。

(4)图4与表2中对比例1和实施例1-5陶瓷样品的储能密度与效率变化表明,随着czt含量的增加,储能密度呈现先增加后减小的变化,储能效率呈现增加的趋势,且最大储能效率接近95%。

(5)图4中实施例2样品仍具有较典型的双电滞回线,样品的极化强度维持在较高的水平。结合表2可知,实施例2样品具有4.39j/cm3的有效储能密度,92.23%的储能效率。对比图4与表2中对比例1和实施例2的储能特性可知,相较与对比例1,实施例2的储能密度有显著提升,储能效率提高了15%。

(6)实施例6列举了不同x,y取值情况下,plzst与czt质量比为98:2时,复合陶瓷的储能密度与效率,与表1中对比例1相比,储能密度与效率均有明显提升。

本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1