高韧性的陶瓷复合体制备方法与流程

文档序号:19581071发布日期:2019-12-31 20:00
高韧性的陶瓷复合体制备方法与流程

本发明涉及陶瓷工艺的技术领域,尤其是指一种高韧性的陶瓷复合体制备方法。



背景技术:

稳定氧化锆陶瓷具有强度高、硬度大、耐磨、抗腐蚀、自润滑、耐高温、高温导电,另外稳定氧化锆陶瓷热膨胀系数与金属接近、稳定氧化锆相变体积效应大等特性,被广泛应用各个领域,如刀具、模具、阀门、高级耐火材料、氧传感器、固体燃料电池、高温电极、高温热敏陶瓷、无机颜料、高温陶瓷釉料等。稳定氧化锆陶瓷除了上述特性外,还因其质地高贵、色泽温润如玉等,而成为倍受青睐的外观壳体材料。

目前市面上稳定氧化锆陶瓷制品多由单一材料制成,即其为单层结构,而摩尔数比不同的稳定氧化锆材料制成的稳定氧化锆陶瓷制品性能上也有所差异,基于各方面因素的考虑,一般会选用各方面性能较为均衡的稳定氧化锆陶瓷制品,但这样也导致稳定氧化锆陶瓷制品各方面的性能不够突出,如应用在手机背板上的稳定氧化锆陶瓷制品,柔韧性差的手机背板在受压时容易产生变形,影响用户使用。



技术实现要素:

本发明要解决的技术问题是提供一种韧性强的高韧性的陶瓷复合体制备方法。

为了解决上述技术问题,本发明采用如下技术方案:高韧性的陶瓷复合体制备方法,包括以下工艺步骤:

步骤一:将摩尔数比为2.5%至4%的稳定氧化锆通过成型加工制得厚度为0.2至0.6mm的x层;

步骤二:将摩尔数比为1%至2.5%的稳定氧化锆通过成型加工制得厚度为0.2至0.6mm的y1层;

步骤三:将摩尔数比为1%至2.5%的稳定氧化锆通过成型加工制得厚度为0.2至0.6mm的y2层;

步骤四:将上述y1层、x层、y2层从上至下依次层叠设置形成生坯;

步骤五:对完成步骤四的生坯进行包封处理;

步骤六:将完成步骤五的生坯移入等静压设备中进行等静压处理;

步骤七:将完成步骤六的生坯移入排胶设备进行排胶处理;

步骤八:将完成步骤七的生坯移入烧结设备进行烧结处理,得到陶瓷复合体;烧结设备的加工温度变化情况为:

a:所述烧结设备内的温度升高至t1,所需时间为15至60分钟,t1的温度为10至50摄氏度;

b:所述烧结设备内的温度升高至t1+70摄氏度至t1+120摄氏度,所需时间为90至140分钟;

c:所述烧结设备内的温度升高至t1+550摄氏度至t1+600摄氏度,所需时间为300至400分钟;

d:所述烧结设备内的温度升高至t1+1000摄氏度至t1+1050摄氏度,所需时间为240至350分钟;

e:所述烧结设备内的温度升高在t1+1370摄氏度至t1+1440摄氏度,所需时间为120至200分钟;

f:所述烧结设备内的温度维持至t1+1370摄氏度至t1+1440摄氏度,持续时间为180至260分钟。

优选的,所述步骤八:将完成步骤七的生坯移入烧结设备进行烧结处理,得到陶瓷复合体;烧结设备的加工温度变化情况为:

a:所述烧结设备内的温度升高至t1,所需时间为20至50分钟,t1的温度为15至40摄氏度;

b:所述烧结设备内的温度升高至t1+70摄氏度至t1+100摄氏度,所需时间为100至140分钟;

c:所述烧结设备内的温度升高至t1+550摄氏度至t1+580摄氏度,所需时间为320至400分钟;

d:所述烧结设备内的温度升高至t1+1000摄氏度至t1+1040摄氏度,所需时间为260至340分钟;

e:所述烧结设备内的温度升高在t1+1370摄氏度至t1+1420摄氏度,所需时间为150至200分钟;

f:所述烧结设备内的温度维持至t1+1370摄氏度至t1+1420摄氏度,持续时间为200至260分钟。

优选的,所述步骤八:将完成步骤七的生坯移入烧结设备进行烧结处理,得到陶瓷复合体;烧结设备的加工温度变化情况为:

a:所述烧结设备内的温度升高至t1,所需时间为20至40分钟,t1的温度为25至40摄氏度;

b:所述烧结设备内的温度升高至t1+80摄氏度至t1+95摄氏度,所需时间为100至130分钟;

c:所述烧结设备内的温度升高至t1+550摄氏度至t1+580摄氏度,所需时间为340至370分钟;

d:所述烧结设备内的温度升高至t1+1000摄氏度至t1+1030摄氏度,所需时间为260至310分钟;

e:所述烧结设备内的温度升高在t1+1370摄氏度至t1+1400摄氏度,所需时间为160至200分钟;

f:所述烧结设备内的温度维持至t1+1370摄氏度至t1+1400摄氏度,持续时间为220至260分钟。

优选的,所述步骤一中的成型加工为干压、流延、凝胶、注塑、轧膜、干袋式等静压、喷涂、丝网印刷中的任意一种;所述步骤二中的成型加工为干压、流延、凝胶、注塑、轧膜、干袋式等静压、喷涂、丝网印刷中的任意一种;所述步骤三中的成型加工为干压、流延、凝胶、注塑、轧膜、干袋式等静压、喷涂、丝网印刷中的任意一种。

优选的,所述步骤五中的包封处理为将完成步骤四的生坯放入包封袋中进行真空包封。

优选的,所述步骤六中等静压处理的加工参数为:压强为130至170兆帕,保压时间为10至30分钟,水温为48至70度。

优选的,所述步骤六中的等静压处理为冷等静压处理或温等静压处理。

优选的,完成所述步骤八的陶瓷复合体的厚度为0.4至1.5mm。

优选的,还包括步骤九:将完成步骤八的陶瓷复合体进行切割处理、研磨处理、抛光处理以及镀膜处理。

优选的,所述y1层与x层之间以及y2层与x层之间均设有至少一层过渡层。

优选的,所述y1层的摩尔数比小于过渡层的摩尔数比,所述y1层与x层之间的过渡层摩尔数比小于x层的摩尔数比;所述y2层的摩尔数比小于过渡层的摩尔数比,所述y1层与x层之间的过渡层摩尔数比小于x层的摩尔数比。

本发明的有益效果在于:本发明提供了一种高韧性的陶瓷复合体制备方法,充分利用y1层与y2层硬度小韧性大以及x层硬度大韧性小的特点,将y1层和y2层分别设于x层的上下两端,这样加工形成的陶瓷复合体表面层具有较强的韧性性能,因此在陶瓷复合体发生形变时具有较强的吸收变形力的能力,降低发生脆性断裂的现象发生,同时中间层具有一定的抗冲击能力,为陶瓷复合体提供一定的结构强度。

附图说明

图1为本发明高韧性的陶瓷复合体的结构示意图。

图2为本发明高韧性的陶瓷复合体中烧结设备加工温度变化曲线图。

具体实施方式

为了便于本领域技术人员的理解,下面结合实施例对本发明作进一步的说明,实施方式提及的内容并非对本发明的限定。

如图1至图2所示,高韧性的陶瓷复合体制备方法,包括以下工艺步骤:

步骤一:将摩尔数比为2.5%至4%的稳定氧化锆通过成型加工制得厚度为0.2至0.6mm的x层;

步骤二:将摩尔数比为1%至2.5%的稳定氧化锆通过成型加工制得厚度为0.2至0.6mm的y1层;

步骤三:将摩尔数比为1%至2.5%的稳定氧化锆通过成型加工制得厚度为0.2至0.6mm的y2层;

步骤四:将上述y1层、x层、y2层从上至下依次层叠设置形成生坯;

步骤五:对完成步骤四的生坯进行包封处理;

步骤六:将完成步骤五的生坯移入等静压设备中进行等静压处理;

步骤七:将完成步骤六的生坯移入排胶设备进行排胶处理;

步骤八:将完成步骤七的生坯移入烧结设备进行烧结处理,得到陶瓷复合体;烧结设备的加工温度变化情况为:

a:所述烧结设备内的温度升高至t1,所需时间为15至60分钟,t1的温度为10至50摄氏度;

b:所述烧结设备内的温度升高至t1+70摄氏度至t1+120摄氏度,所需时间为90至140分钟;

c:所述烧结设备内的温度升高至t1+550摄氏度至t1+600摄氏度,所需时间为300至400分钟;

d:所述烧结设备内的温度升高至t1+1000摄氏度至t1+1050摄氏度,所需时间为240至350分钟;

e:所述烧结设备内的温度升高在t1+1370摄氏度至t1+1440摄氏度,所需时间为120至200分钟;

f:所述烧结设备内的温度维持至t1+1370摄氏度至t1+1440摄氏度,持续时间为180至260分钟。

优选的,所述步骤八:将完成步骤七的生坯移入烧结设备进行烧结处理,得到陶瓷复合体;烧结设备的加工温度变化情况为:

a:所述烧结设备内的温度升高至t1,所需时间为20至50分钟,t1的温度为15至40摄氏度;

b:所述烧结设备内的温度升高至t1+70摄氏度至t1+100摄氏度,所需时间为100至140分钟;

c:所述烧结设备内的温度升高至t1+550摄氏度至t1+580摄氏度,所需时间为320至400分钟;

d:所述烧结设备内的温度升高至t1+1000摄氏度至t1+1040摄氏度,所需时间为260至340分钟;

e:所述烧结设备内的温度升高在t1+1370摄氏度至t1+1420摄氏度,所需时间为150至200分钟;

f:所述烧结设备内的温度维持至t1+1370摄氏度至t1+1420摄氏度,持续时间为200至260分钟。

优选的,所述y1层与y2层可预先单独通过成型加工(干压、流延、凝胶、注塑、轧膜、干袋式等静压、喷涂、丝网印刷中的任意一种)制成,也可在x层上直接加工y1层与y2层,即在x层的上下两端表面直接通过成型加工(干压、流延、凝胶、注塑、轧膜、干袋式等静压、喷涂、丝网印刷中的任意一种)制得y1层与y2层。

一般的通过本发明制成的陶瓷复合体中,x层占陶瓷复合体总厚度的2%至95%,而当陶瓷复合体应用在手机背板上时,x层占陶瓷复合体总厚度为60%至80%,当然也可根据实际需求看,将本发明的陶瓷复合体应用在其它产品上。

优选的,所述排胶设备为排胶炉,所述烧结设备为烧结炉,另外排胶处理与烧结处理可通过排烧一体隧道炉进行加工。

优选的,用于制备稳定氧化锆材料中的稳定剂可为氧化钇、氧化铈、氧化钙、氧化镁中的任意一种或多种;若制备陶瓷复合体采用氧化钇稳定氧化锆时,该氧化钇稳定氧化锆为黑色氧化钇稳定氧化锆。

本实施例中,所述步骤一中的成型加工为干压、流延、凝胶、注塑、轧膜、干袋式等静压、喷涂、丝网印刷中的任意一种;所述步骤二中的成型加工为干压、流延、凝胶、注塑、轧膜、干袋式等静压、喷涂、丝网印刷中的任意一种;所述步骤三中的成型加工为干压、流延、凝胶、注塑、轧膜、干袋式等静压、喷涂、丝网印刷中的任意一种。

本实施例中,所述步骤五中的包封处理为将完成步骤四的生坯放入包封袋中进行真空包封。

本实施例中,所述步骤六中等静压处理的加工参数为:压强为130至170兆帕,保压时间为10至30分钟,水温为48至70度。

本实施例中,所述步骤六中的等静压处理为冷等静压处理或温等静压处理。

本实施例中,完成所述步骤八的陶瓷复合体的厚度为0.4至1.5mm。

本实施例中,还包括步骤九:将完成步骤八的陶瓷复合体进行切割处理、研磨处理、抛光处理以及镀膜处理。

本实施例中,所述y1层与x层之间以及y2层与x层之间均设有至少一层过渡层。

本实施例中,所述y1层的摩尔数比小于过渡层的摩尔数比,所述y1层与x层之间的过渡层摩尔数比小于x层的摩尔数比;所述y2层的摩尔数比小于过渡层的摩尔数比,所述y1层与x层之间的过渡层摩尔数比小于x层的摩尔数比。

充分利用y1层与y2层硬度小韧性大以及x层硬度大韧性小的特点,将y1层和y2层分别设于x层的上下两端,这样加工形成的陶瓷复合体表面层具有较强的韧性性能,因此在陶瓷复合体发生形变时具有较强的吸收变形力的能力,降低发生脆性断裂的现象发生,同时中间层具有一定的抗冲击能力,为陶瓷复合体提供一定的结构强度。

实施例一:高韧性的陶瓷复合体制备方法,包括以下工艺步骤:

步骤一:将摩尔数比为2.5的稳定氧化锆通过成型加工制得厚度为0.2mm的x层;

步骤二:将摩尔数比为1%的稳定氧化锆通过成型加工制得厚度为0.2mm的y1层;

步骤三:将摩尔数比为1%的稳定氧化锆通过成型加工制得厚度为0.2mm的y2层;

步骤四:将上述y1层、x层、y2层从上至下依次层叠设置形成生坯;

步骤五:对完成步骤四的生坯进行包封处理;

步骤六:将完成步骤五的生坯移入等静压设备中进行等静压处理,等静压处理的加工参数为:压强为130兆帕,保压时间为10分钟,水温为48度;

步骤七:将完成步骤六的生坯移入排胶设备进行排胶处理;

步骤八:将完成步骤七的生坯移入烧结设备进行烧结处理,得到陶瓷复合体,该陶瓷复合体的厚度为0.4mm;烧结设备的加工温度变化情况为:

a:所述烧结设备内的温度升高至10摄氏度,所需时间为15分钟;

b:所述烧结设备内的温度升高至80摄氏度,所需时间为90分钟;

c:所述烧结设备内的温度升高至560摄氏度,所需时间为300分钟;

d:所述烧结设备内的温度升高至1010摄氏度,所需时间为240分钟;

e:所述烧结设备内的温度升高在1380摄氏度,所需时间为120分钟;

f:所述烧结设备内的温度维持至1380摄氏度,持续时间为180分钟。

实施例二:高韧性的陶瓷复合体制备方法,包括以下工艺步骤:

步骤一:将摩尔数比为2.8%的稳定氧化锆通过成型加工制得厚度为0.3mm的x层;

步骤二:将摩尔数比为1.5%的稳定氧化锆通过成型加工制得厚度为0.27mm的y1层;

步骤三:将摩尔数比为1.7%的稳定氧化锆通过成型加工制得厚度为0.33mm的y2层;

步骤四:将上述y1层、x层、y2层从上至下依次层叠设置形成生坯;

步骤五:对完成步骤四的生坯进行包封处理;

步骤六:将完成步骤五的生坯移入等静压设备中进行等静压处理,等静压处理的加工参数为:压强为138兆帕,保压时间为13分钟,水温为55度;

步骤七:将完成步骤六的生坯移入排胶设备进行排胶处理;

步骤八:将完成步骤七的生坯移入烧结设备进行烧结处理,得到陶瓷复合体,该陶瓷复合体的厚度为0.7mm;烧结设备的加工温度变化情况为:

a:所述烧结设备内的温度升高至20摄氏度,所需时间为23分钟;

b:所述烧结设备内的温度升高至100摄氏度,所需时间为101分钟;

c:所述烧结设备内的温度升高至583摄氏度,所需时间为330分钟;

d:所述烧结设备内的温度升高至1040摄氏度,所需时间为270分钟;

e:所述烧结设备内的温度升高在1410摄氏度,所需时间为130分钟;

f:所述烧结设备内的温度维持至1410摄氏度,持续时间为200分钟。

实施例三:高韧性的陶瓷复合体制备方法,包括以下工艺步骤:

步骤一:将摩尔数比为3%的稳定氧化锆通过成型加工制得厚度为0.4mm的x层;

步骤二:将摩尔数比为1.9%的稳定氧化锆通过成型加工制得厚度为0.38mm的y1层;

步骤三:将摩尔数比为2.1%的稳定氧化锆通过成型加工制得厚度为0.45mm的y2层;

步骤四:将上述y1层、x层、y2层从上至下依次层叠设置形成生坯;

步骤五:对完成步骤四的生坯进行包封处理;

步骤六:将完成步骤五的生坯移入等静压设备中进行等静压处理,等静压处理的加工参数为:压强为143兆帕,保压时间为20分钟,水温为63度;

步骤七:将完成步骤六的生坯移入排胶设备进行排胶处理;

步骤八:将完成步骤七的生坯移入烧结设备进行烧结处理,得到陶瓷复合体,该陶瓷复合体的厚度为1mm;烧结设备的加工温度变化情况为:

a:所述烧结设备内的温度升高至30摄氏度,所需时间为35分钟;

b:所述烧结设备内的温度升高至120摄氏度,所需时间为118分钟;

c:所述烧结设备内的温度升高至600摄氏度,所需时间为360分钟;

d:所述烧结设备内的温度升高至1060摄氏度,所需时间为310分钟;

e:所述烧结设备内的温度升高在1430摄氏度,所需时间为160分钟;

f:所述烧结设备内的温度维持至1430摄氏度,持续时间为240分钟。

实施例四:高韧性的陶瓷复合体制备方法,包括以下工艺步骤:

步骤一:将摩尔数比为3.5的稳定氧化锆通过成型加工制得厚度为0.5mm的x层;

步骤二:将摩尔数比为2.3%的稳定氧化锆通过成型加工制得厚度为0.51mm的y1层;

步骤三:将摩尔数比为2.2%的稳定氧化锆通过成型加工制得厚度为0.54mm的y2层;

步骤四:将上述y1层、x层、y2层从上至下依次层叠设置形成生坯;

步骤五:对完成步骤四的生坯进行包封处理;

步骤六:将完成步骤五的生坯移入等静压设备中进行等静压处理,等静压处理的加工参数为:压强为159兆帕,保压时间为24分钟,水温为67度;

步骤七:将完成步骤六的生坯移入排胶设备进行排胶处理;

步骤八:将完成步骤七的生坯移入烧结设备进行烧结处理,得到陶瓷复合体,该陶瓷复合体的厚度为1.2mm;烧结设备的加工温度变化情况为:

a:所述烧结设备内的温度升高至40摄氏度,所需时间为50分钟;

b:所述烧结设备内的温度升高至140摄氏度,所需时间为129分钟;

c:所述烧结设备内的温度升高至631摄氏度,所需时间为380分钟;

d:所述烧结设备内的温度升高至1080摄氏度,所需时间为340分钟;

e:所述烧结设备内的温度升高在1460摄氏度,所需时间为180分钟;

f:所述烧结设备内的温度维持至1460摄氏度,持续时间为250分钟。

实施例五:高韧性的陶瓷复合体制备方法,包括以下工艺步骤:

步骤一:将摩尔数比为4%的稳定氧化锆通过成型加工制得厚度为0.6mm的x层;

步骤二:将摩尔数比为2.5%的稳定氧化锆通过成型加工制得厚度为0.6mm的y1层;

步骤三:将摩尔数比为2.5%的稳定氧化锆通过成型加工制得厚度为0.6mm的y2层;

步骤四:将上述y1层、x层、y2层从上至下依次层叠设置形成生坯;

步骤五:对完成步骤四的生坯进行包封处理;

步骤六:将完成步骤五的生坯移入等静压设备中进行等静压处理,等静压处理的加工参数为:压强为170兆帕,保压时间为30分钟,水温为70度;

步骤七:将完成步骤六的生坯移入排胶设备进行排胶处理;

步骤八:将完成步骤七的生坯移入烧结设备进行烧结处理,得到陶瓷复合体,该陶瓷复合体的厚度为1.5mm;烧结设备的加工温度变化情况为:

a:所述烧结设备内的温度升高至50摄氏度,所需时间为60分钟;

b:所述烧结设备内的温度升高至170摄氏度,所需时间为140分钟;

c:所述烧结设备内的温度升高至650摄氏度,所需时间为400分钟;

d:所述烧结设备内的温度升高至1100摄氏度,所需时间为350分钟;

e:所述烧结设备内的温度升高在1490摄氏度,所需时间为200分钟;

f:所述烧结设备内的温度维持至1490摄氏度,持续时间为260分钟。

对比例1:高韧性的陶瓷复合体制备方法,包括以下工艺步骤:

步骤一:将摩尔数比为1%的稳定氧化锆通过成型加工制得厚度为0.1mm的x层;

步骤二:将摩尔数比为0.5%的稳定氧化锆通过成型加工制得厚度为0.1mm的y1层;

步骤三:将摩尔数比为0.3%的稳定氧化锆通过成型加工制得厚度为0.1mm的y2层;

步骤四:将上述y1层、x层、y2层从上至下依次层叠设置形成生坯;

步骤五:对完成步骤四的生坯进行包封处理;

步骤六:将完成步骤五的生坯移入等静压设备中进行等静压处理,等静压处理的加工参数为:压强为110兆帕,保压时间为3分钟,水温为33度;

步骤七:将完成步骤六的生坯移入排胶设备进行排胶处理;

步骤八:将完成步骤七的生坯移入烧结设备进行烧结处理,得到陶瓷复合体,该陶瓷复合体的厚度为0.1mm;烧结设备的加工温度变化情况为:

a:所述烧结设备内的温度升高至5摄氏度,所需时间为6分钟;

b:所述烧结设备内的温度升高至65摄氏度,所需时间为73分钟;

c:所述烧结设备内的温度升高至520摄氏度,所需时间为240分钟;

d:所述烧结设备内的温度升高至950摄氏度,所需时间为180分钟;

e:所述烧结设备内的温度升高在1300摄氏度,所需时间为85分钟;

f:所述烧结设备内的温度维持至1300摄氏度,持续时间为120分钟。

对比例2:高韧性的陶瓷复合体制备方法,包括以下工艺步骤:

步骤一:将摩尔数比为6%的稳定氧化锆通过成型加工制得厚度为1.3mm的x层;

步骤二:将摩尔数比为4%的稳定氧化锆通过成型加工制得厚度为1.4mm的y1层;

步骤三:将摩尔数比为3.7%的稳定氧化锆通过成型加工制得厚度为1.5mm的y2层;

步骤四:将上述y1层、x层、y2层从上至下依次层叠设置形成生坯;

步骤五:对完成步骤四的生坯进行包封处理;

步骤六:将完成步骤五的生坯移入等静压设备中进行等静压处理,等静压处理的加工参数为:压强为200兆帕,保压时间为42分钟,水温为80度;

步骤七:将完成步骤六的生坯移入排胶设备进行排胶处理;

步骤八:将完成步骤七的生坯移入烧结设备进行烧结处理,得到陶瓷复合体,该陶瓷复合体的厚度为2mm;烧结设备的加工温度变化情况为:

a:所述烧结设备内的温度升高至62摄氏度,所需时间为80分钟;

b:所述烧结设备内的温度升高至200摄氏度,所需时间为170分钟;

c:所述烧结设备内的温度升高至700摄氏度,所需时间为470分钟;

d:所述烧结设备内的温度升高至1180摄氏度,所需时间为450分钟;

e:所述烧结设备内的温度升高在1600摄氏度,所需时间为280分钟;

f:所述烧结设备内的温度维持至1600摄氏度,持续时间为350分钟。

抗弯强度测试:采用三点弯曲试验机对实施例一至实施例五以及对比例一和对比例二的抗弯强度进行测试;断裂韧性测试:采用压痕法对实施例一至实施例五以及对比例一和对比例二的断裂韧性进行测试;维氏硬度测试:采用一个相对面间夹角为136度的金刚石正棱锥体压头,在规定载荷f作用下压入被测试样表面,保持定时间后卸除载荷,测量压痕对角线长度d,进而计算出压痕表面积,最后求出压痕表面积上的平均压力,即为金属的维氏硬度值。测试结果如表一。

表一:抗弯强度、断裂韧性、维氏硬度对比:

表二:本发明陶瓷复合体与2%的稳定氧化锆和3%的稳定氧化锆断裂韧性对比:

结合表一和表二的测试数据可得,本发明制备的陶瓷复合体相对于对比例1、对比例2、2%的稳定氧化锆以及3%的稳定氧化锆在断裂韧性上都具有较大的提升,本发明的陶瓷复合体可应用在手机背板、陶瓷刀,手表外壳等领域,而当手机背板、陶瓷刀,手表外壳等产品受压变形时,较强的断裂韧性能够吸收变形力,降低陶瓷复合体受变形而导致断裂的现象发生,且由表一可知,如一味减少稳定氧化锆的摩尔数比,将导致陶瓷复合体的维氏硬度降低,即导致抗冲击性能降低,制备得到的成品无法让消费者安心使用,同时在制备过程中也带来更大的时间支出以及成本的大幅提高,得不偿失。

如有术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或隐含指明技术特征的数量。由此,限定有“第一”、“第二”特征可以明示或者隐含包括一个或者多个该特征,在本发明描述中,“数个”的含义是两个或两个以上,除非另有明确具体的限定。

以上所述实施例仅表达了本发明的若干实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

再多了解一些
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1