包括改进的柔性隔离膜的缓冲装置的制作方法

文档序号:3689806阅读:148来源:国知局
专利名称:包括改进的柔性隔离膜的缓冲装置的制作方法
本申请是申请日为1995年8月30日、发明名称为“用于缓冲装置的永久密封和永久充气膜及其制造方法”的中国专利申请CN95116700.6的分案申请。
本发明涉及鞋类用的缓冲装置。更具体地说,本发明涉及一种充气的缓冲装置,它包括一种弹性隔离材料,这种材料选择地控制惰性气体的扩散,但另一方面能允许通常大气中含有的气体的受控制的扩散,这种缓冲装置特别被用于鞋类产品。
为了进一步理解本发明,可以参考美国专利申请No.08/299,286,此申请的发明名称为“层压的柔软弹性隔离膜”它与本申请共同在中国申请,申请号为CN951169033,因此特意引用该申请,以供参考。
鞋,特别是运动鞋,可以被描述为包括两个主要部分,即,鞋面和鞋底。鞋面通常用于整洁而又舒适地包围脚。理想的鞋面应该用吸收性的、很耐久的而又舒适的材料或几种材料的组合而制成。鞋底,也可以用一种或多种耐久性材料制成,它主要用来提供摩擦力,并且在符合鞋的设计的任何应用过程中保护穿用者的脚和身体。在穿用过程中,例如体育运动过程中产生的相当大的力要求运动鞋的鞋底为穿用者的脚、踝和腿提供加强的保护和冲击吸收。例如,在跑步运动中出现的冲击可能产生高达两到三倍体重的力;一些其它运动,例如打篮球,已经知道会产生高达约6-10倍个人体重的力。为了在剧烈的体育运动中使穿用者缓冲,现在许多鞋特别是许多运动鞋的鞋底装有某种有回弹性的冲击—吸收材料或冲击一吸收部件。这样的有回弹性的冲击—吸收材料或部件现在在制鞋工业中已开始被称为“中底”。
更准确地说,寻找能获得有效的冲击响应的中底设计已经成为该工业的焦点,在这种冲击响应中适当地考虑到足够的冲击吸收和回弹性。这样的回弹性的冲击—吸收材料或部件也可以被应用于鞋的内底部分,这种内底部分通常被称为直接作脚底表面衬里的鞋面部分。
寻找中底或插入结构设计已经成为制鞋工业的特定的焦点,这种中底或插入结构设计适合于以液体或气体状态或两者兼有的状态含有流体。在以下这些文献中说明了在鞋底内使用充气结构的一些例子,在此引用所有这些文献作参考。这些文献是1908年10月13日颁发给Miller的名称为“鞋类缓冲”的美国专利900867号,1913年7月29日颁发给Guy的名为“鞋的缓冲底和后跟”的美国专利1069001号,1919年5月27日颁发给Spinney的名为“充气内底”的美国专利1304915,1924年11月4日颁发给Schopf的名为“脚弓的缓冲”的美国专利1514468号,1937年5月18日颁发给Gilbert的名为“充气鞋垫”的美国专利2080469号,1953年7月21日颁发给Towne的名为“鞋的缓冲内底”的美国专利2645865号,1954年5月11日颁发给Reed的名为“鞋的缓冲内底及其制备方法”的美国专利2677906号,1980年1月15日颁发给Rudy的名为“鞋类制品的内底结构”的美国专利4183156号,1980年9月2日颁发给Rudy的名为“鞋”的美国专利4219945号,1988年2月2日颁发给Huang的名为“空气缓冲鞋底”的美国专利4722131号,以及1989年9月12日颁发给Horovitz的名为“鞋类的鞋底结构”的美国专利4864738号。正如该技术中技术熟练人员将会认识到的那样,这样的充气结构(在制鞋工业中往往称为“气胆”)一般属于两个重要类型,即,(1)“永久性”充气体系,例如美国专利4183156号和4219945号中公开的那些,以及(2)泵和阀可调体系,如美国专利4722131号中公开的那些。作为另外的例子,是美国专利4182156中公开的那类运动鞋,这类鞋包含“永久性”充气气胆,已经由Beaverton,Oregon的Nike公司以“Air Sole”商标和其它商标成功地销售。到目前为止,在美国和世界各地已经销售了几百万双这种类型的运动鞋。
一般借助于这样一些方法构成永久性充气气胆,这些方法使用柔性热塑性材料,用大分子的低溶解度系数的气体,换句话说是在工业上称之为“超级气体”的气体,例如SF6,使这种材料充气。例如,1982年7月20日颁发给Rudy的名为“扩散充气装置的自充气装置”,在这里特意引用这篇文献作参考,该文献公开了一对弹性的可选择性地穿透的薄膜片材,将这对片材形成一个气胆,然后用一种气体或几种气体的混合物将这个气胆充气到最好是高于大气压的规定压力。从理论上,所用的气体具有较低的透过选择性地可穿透的气胆到外界的扩散速率,同时一些气体例如氮气、氧气和氩气(包含在大气中并具有较高的扩散速度)能透入气胆中。借助于从大气扩散到气胆中的氮气、氧气和氩气的分压和在充气时最初充入到气胆中的气体的分压的相加特性,这导致气胆内总压的增加。这种几乎是气体完全“单向”相加的概念,在该技术中现在被称为“扩散充气”(diffusion pumping)。
在一个扩散充气体系中,在内压达到稳定状态之前要占用一段时间。这段时间所用的气胆材料和选择包含在气胆中的气体有关。例如,氧气能相当快地扩散到气胆中,其结果是增加内压约2.5磅/英寸2。相比之下,氮气将经过几个星期的时间逐渐扩散到气胆中,结果是使内压增加12.0磅/英寸2。这种气胆内压的逐渐增加一般导致外皮张力的增加,其结果是由于拉伸而增加体积。在工业上通常将这种结果称为“拉伸松驰”或“蠕变”。因此,为了使气胆以想要的内压基本上永久地充气,并因此保持想要的内压经过长久的一段时间,最初选择气胆所有的材料和选择最初充气所用的截获的气体或气体混合物是关键的。
在采用Air SoleTM运动鞋之前和之后不久,工业中使用的许多中底的气胆都是由单层隔离型的膜构成的,这种膜是由基于聚偏二氯乙烯的材料制成的,例如SaranR(Dow Chemical公司注册的商标)。按其性质是刚性塑料来说,这些材料的屈挠疲劳、可热合性、弹性和降解性不太理想。人们试图通过用例如层合和贴合(包括与一种柔性气胆材料例如各种热塑性塑料配合的一种或多种隔离材料)的方法克服这些缺点,于是出现了这样的配合所特有的各种各样的问题。关于复合结构的上述问题典型地包括层分离,剥离,在焊接界面处的气体扩散或毛细管作用,造成充气产品起皱的低伸长率,成品气胆出现混浊,抗刺穿力和撕裂强度下降,抵抗通过吹塑和/或热和/或射频焊接进行的成型,高加工成本,以及亦在其中的关于泡沫封铸和粘合方面的困难。
技术上试图在制备层合制品中通过在层间使用结合层或粘合剂来解决这些问题(试图层合两种或更多种不同的材料以平衡任何单一材料的优点和缺点而产生的问题)。使用这样的一些结合层有助于解决一些上述困难,但是一般却妨碍了回收和再循环产品成型过程中产生的任何废料使之重新成为能用的产品,因此,这还造成制造的高成本和有关的废料。在美国专利4340626,4936029和5042176号中,更详尽地描述了现有技术的这些和其它缺点,因此特意引用这些文献作参考。
由于一些产品例如Air SoleTM鞋在商业上的广泛成功,消费者能够喜欢具有使用寿命长、优良的冲击吸收和回弹性、合理的价格以及不用泵阀的充气压力稳定性的产品。因此,由于通过使用寿命长的充气气胆已经取得了显著的商业上的承认和成功,所以最理想的是促进克服与这样的产品相关的剩余的为数不多的缺点。于是,目标是提供柔性的、“永久地”充气的、充气鞋的缓冲部件,这种部件符合并有希望超过象Nike公司销售的Air SoleTM运动鞋那样的产品所达到的性能。
潜在的进步的一个关键领域源于这样一种认识,即,最好是用不同于上述尾号为156,945和738的专利中所述的大分子、低溶解度系数的“超级气体”的“捕获”或“截获”的气体,而是用成本较低并且可能对环境更有利的气体来代替它们。例如,美国专利4936029和5042176号具体地论述了生产柔性的气胆膜的方法,这种膜通过用氮气作为截获的气体基本上保持了永久充气。就象也特意在此参考引用的美国专利4906502号中所述的那样,通过将结晶材料的机械隔离层加到柔性膜(例如织物、长丝、无纺织物和网状物)中,解决了上述尾号为029和176的专利中所讨论的许多觉察到的问题。用上述尾号为502的专利中所述的技术制成的鞋类产品(标有Nike公司的商标Tensile AirTM)已经获得了显著地商业上的成功。其中所用的气胆一般是由层合到芯层织物的三维、双梳栉拉舍尔经编机编织的尼龙织物上的热塑性聚氨酯组成的,它包含有作为截获的气体的SF6。就象上述尾号为502的专利中讨论的那样,这样的气胆结构降低了对SF6、氮气和其它截获气体的透气性。
在ASTM 1434 V所指定的方法中列出了测量不同膜材料的有关渗透性、透气性和扩散性的可接受的典型方法。按照ASTM1434 V,用以下公式来测量渗透性、透气性和扩散性渗透性(气体的量)= 渗透性 =厘米3(面积)×(时间)×(压差)(GTR)/(压差) (米2)(24小时)(帕斯卡)透气性(气体的量)×(膜厚)=渗透性 =(厘米3)(密耳)(面积)×(时间)×(压差) (GTR)×(膜厚)/(压差)(米2)(24小时)(帕斯卡)扩散性(气体的量)= 透气速率 =厘米3(面积)×(时间) (GTR)(米2)(24小时)通过使用上面所列的公式,可以将透气速率与恒定的压差和膜厚结合起来,用于确定在特定条件下气体的运动。在这方面,对于试图满足采用猛烈和反复冲击的抗疲劳性试验的严格要求的运动鞋部件中的气胆来说,优选的透气速率(GTR)最好是用上述方法测得的,透气速率(GTR)的值小于约10,优选小于约7.5,更优选小于约5,进一步优选(GTR)值为2或更低。
除了前面所述的以外,上述尾号为029和176的专利还讨论了与前面试图采用从中选择至少一种塑料起氧气隔离层作用的那些塑料的共层合的组合相冲突的问题。在这方面,主要的担心是隔离层的抗疲劳性不足。就象上述尾号为176的专利中所述的那样,聚偏二氯乙烯(例如SaranR)和聚氨酯弹性体的令人满意的共复合需要一层中间粘合剂。在这样的结构中,需要比较复杂和昂贵的加工控制系统,例如严格的时间一温度关系和使用加热的压板和压力,与该系统相结合的是将材料在压力下冷压至冻结在一起。此外,使用粘合剂结合层或者以高到足以使透气速率为10或低于10的量将洁净组份加入到柔性膜中,都显著地降低了膜的柔软性。
因此,本发明的主要目的是提供一种能充气的缓冲装置,该装置基本上永久地充有氮气或其它合乎环境要求的气体,或者充有符合柔软性、耐久性和低成本目的的一些气体的混合物。
本发明的另一个目的是提供一种含有透气速率值为10或低于10的可渗透的隔离材料的缓冲装置。
本发明的又一个目的是提供一种基本上抗层间剥离的缓冲装置,该装置是相对透明的,并且制造起来是经济的。
本发明的又一个目的是提供一种缓冲装置,该装置中的隔离层是抗脱层的并且在隔离层和柔软层之间不需要结合层。
本发明的又一个目的是提供一种缓冲装置,它是用包括但并不限于吹塑、软管挤塑、片材挤塑、真空成型、热合和射频焊接的各种技术成型的。
本发明的又一个目的是提供一种气体缓冲装置,该装置防止气体沿材料间的界面借助于毛细管作用漏气。
本发明的又一个目的是提供一种缓冲装置,该装置可供正常的鞋类加工之用,例如将该缓冲装置密封在成型材料中。
以上所说明的不是本发明详尽的目的和优点。
为了达到上述的和其它的目的,本发明提供一种缓冲装置,该装置以一种或多种新的充气膜为特色,这些膜具有热塑性弹性膜的想要的物理性能,而且具有保持氮气和其它截获的气体的改进的隔离性能。按配方制造这些充气膜,以便选择地控制某些截获的气体(例如氮气和超级气体)通过这些膜向外扩散的速率,并能扩散抽吸外面的易流动气体(例如存在于环境空气中的氩气、氧气、二氧化碳和其它气体)进入到充气膜中。
本发明的充气膜最好是由共同起隔离层作用的至少两种柔性材料制成的,并且该充气膜在性质上最好是弹性的和极性的并能以各种各样的几何形状形成产品。从理论上,根据本发明的技术所采用的柔性隔离材料应该在充气膜的内室中含有截获的气体维持相当长的一段时间。在一个非常优选的实施方案中,例如,在为期超过两年的时间里充气膜中减少的气体不应超过最初充入气体压力的约20%。换句话说,最初充气到20.0至22.0磅/英寸2稳定态压力的产品,在约两年的一段时间后应保持约16.0至18.0磅/英寸2的压力。
此外,所用的隔离材料应该是柔性的、相当柔软和顺从的,并且应该是很耐疲劳的和能被焊接形成一般由射频焊接或热合所获得的有效的封合。这种隔离材料还应该具有经得起高循环载荷而不出现损坏的能力,特别是当所用的这种隔离材料的厚度为约5至约50密耳时。本发明的膜的另一个特性是,通过在大规模生产中所用的技术它们应该能加工成各种形状。在这些想要的技术中,在该领域已知的技术是吹塑、注塑、真空模塑、旋转式模塑、压铸和压力成型。本发明的膜应该最好是通过挤塑技术成型的,例如通过软管挤塑或片材挤塑,这包括特别是在足够高的温度下进行的挤坯吹塑,通过这样的吹塑来获得在下文中将更详尽描述的想要的“粘合的”或“化学的”结合,而不用单独的粘合剂或结合层。上述技术会产生其截面尺寸可被改变的产品。
就象上面所述的那样,本发明的膜的显著特征是控制易流动气体通过隔离层的扩散并在膜中保留截获的气体。借助于本发明,由于改进了隔离层的性能,不仅超级气体能用作截获的气体,而且氮气也可以用作截获的气体。主要的易流动气体是氧气,它相当快地扩散通过隔离层,其它易流动气体是除氮气以外通常存在于空气中的任何气体。对适于用作截获气体的氮气所提供的隔离材料的实际效果是显著的。
例如,最初可以用氮气或氮气与一种或多种超级气体或与空气的混合物将膜充气。如果用氮气或氮气和一种或多种超级气体的混合体充气,因为截获的气体基本上被保留在膜内,所以压力的增加造成氧气相当迅速地扩散到膜内。取决于最初的压力,实际上这种压力的增加总共不超过最初充气压力约2.5磅/英寸2,并且导致膜的体积比较适当地增长1至5%。然而,如果空气被用作充气的气体,氧气会扩散到膜外而氮气作为截获的气体被保留。在这种情况下,氧气扩散到膜外并且保留截获的气体,结果是最初充气压力的稳定态压力逐渐减小。
因为考虑到本发明的各种各样的形式和实施方案,所以本发明具有许多其它优点,对技术熟练的人来说这些优点将是比较明显的。在附图中说明了这样一些实施方案,它们构成了本说明书的一部分。为了说明本发明的一般原理而不是将以下的详细叙述看作限制的意义,现在将比较详尽地叙述各种实施方案。


图1是本发明的运动鞋的侧视图,此图中具有切开部分中底所露出的截面图;图2是图1的运动鞋的底视图,此图中具有部分切开所露出的另一个截面图;图3是沿图1的线3-3所取得的截面图;图4是本发明的管状双层的缓冲装置的一种实施方案的不完全的侧视投影图;图5是沿图4的线4-4所取得的截面图;图6是本发明的管状三层的缓冲装置的第二种实施方案的不完全的侧视投影图;图7是沿图6的线6-6所取得的截面的侧视图;图8是本发明另一种膜的实施方案的投影图;图9是图8中所表示的膜的侧视图;图10是本发明另一种膜的实施方案的投影图;图11是含有本发明另一种膜的实施方案的运动鞋的侧视投影图;图12是图11中所表示的膜的投影图;图13是图11和12中所表示的膜的顶视图;图14是含有本发明另一种膜的一种实施方案的运动鞋的侧视投影图;图15是图14中所表示的膜的投影图16是图14和15中所表示的膜的顶视图;图17是本发明另一种膜的实施方案的投影图;图18是图17中所表示的膜的侧视图;图19是图解表示各种材料的透气速率的示意图;图20是第一种试样材料的傅里叶变换红外辐射(FTIR)光谱的示意图;图21是第二种试样材料的傅里叶变换红外辐射(FTIR)光谱的示意图;图22是第三种试样材料的傅里叶变换红外辐射(FTIR)光谱的示意图;图23是第四种试样材料的傅里叶变换红外辐射(FTIR)光谱的示意图。
参照图1-5,所表示的是运动鞋10,它包括鞋底结构和缓冲装置,换句话说该缓冲装置被称为根据本发明技术的膜。此鞋10包括与鞋底14连接的鞋面12。可以用各种各样的惯用的材料构成鞋面12,这些材料包括但并不限于皮革、乙烯基材料、尼龙和其它通常是编织的纤维材料。一般来说,鞋面12包括围绕封闭着增强件的包头16、穿鞋带用的鞋眼18、鞋的后护口20和沿后跟的部位22,正如大多数运动鞋的情况那样,从包头部位16通过脚弓部位24到后跟部位22,鞋底14通常延长到鞋10的整个长度。
根据本发明,鞋底结构14包括一个或多个选择性地可透过的膜28,膜28最好被布置在鞋底结构的中底26中。作为例子,可以这样构成具有各种几何形状的本发明的膜28,例如象图1-5所示的那样将许多管状的膜相互隔开、相互平行地布置在中底26的鞋后跟部位22中。管状的膜28是密封的可充气的膜,它们含有充入的截获气体。更准确地说,这样形成每一个膜28,使它们包括一层隔离层,该隔离层容许易流动的气体扩散通过,但却阻挡或阻止截获的气体的扩散。沿着热塑性外层32的内表面,以直接相邻接触的方式来布置内隔离层30,由此给膜28提供那些预定的扩散性能。通过图4和5,可以很好地看到这两种膜层。正如以上所述,可以以各种各样的外形或形状构成本发明的膜28。例如,象图8和9中所表示的那样,可以以后跟垫的形状形成另一种膜28B。包含图8和9中所示的后跟垫结构的运动鞋已经被商业化地应用,并且已经被Beaverton,Oregon的Nike公司以商标Air Health WalkerPlusTM销售。在1993年4月20日申请的申请号007934的美国外观设计专利申请中也说明了图8和9的后跟垫结构。同样,具有基本上与图10中所表示的膜的实例28C相似的几何形状的后跟垫,也已经被用在Nike公司以商标Air Structure IITM销售的运动鞋中。在1994年1月25日发出的美国外观设计专利申请343504号中也说明了图10的后跟垫结构。作为另一个例子,参照图11-13所说明的另一种膜28D现在被用于鞋中,这种鞋也是以Nike公司所拥有的商标Air Max2TM和Air Max2CBTM销售的,这种鞋是可根据本发明的技术成型的。在1994年8月23日发出的美国外观设计专利申请349804号和1994年8月30日发出的美国外观设计专利申请350016号中也说明了这种膜的结构。参照图14-16还举例说明了另一种可供选择的膜28E。膜28E现在被用于以Nike公司的商标Air MaxTM销售的运动鞋中。在1992年6月12日申请的美国外观设计专利申请897966号中也说明了这种膜的结构。在图17和18中举例说明了参照28F所表示的另一种膜的结构。应该认识到,本发明的膜结构(无论是管状、长垫状或其它这样的形状)可以全部或部分地被密封在鞋类制品的中底或外底内。
虽然具有与本说明书中举例说明的那些膜相似的几何形状的许多管状部件和后跟垫已被商业化地使用,但是这些现有技术的实例中所用的管状膜和后跟垫一般是由单一的弹性材料构成的。作为例子,膜(在引用的这些参考文献中使用的术语是气囊)所常用的材料一般选自聚氨酯弹性体材料、聚酯弹性体、氟弹体、聚氯乙烯弹性体等,制成的产品被充有一种或多种超级气体。因为聚氨酯弹性体材料具有优良的热合性、挠曲疲劳强度、合适的弹性模量、拉伸和撕裂强度、以及耐磨性,所以这种材料一般是优选的。但是,与本发明的膜相比,现有技术所公开的聚氨酯弹性体体系(即,单一使用或者与结晶材料组合使用)作为隔离层,阻止不希望有的气体和超级气体的扩散往往不太有效。因此,本发明的目的是利用通常由聚氨酯弹性体所提供的性能的优点,同时通过提供改进的隔离材料来提高这些性能,这种改进的隔离材料所提供的优点是扩散充气而不用粘合剂或结合层,而且可以被广泛地用于现有技术公开的各种制备方法中。
再参照图1-5,其中举例说明的是本发明技术的膜28的第一种实施方案。如图所示,膜28具有一种复合结构,它包括由柔性回弹性的弹性材料形成的外层32,该外层32最好能承受气压时超过该膜预定的最大体积的膨胀。膜28还包括由隔离材料形成的内层30,它能控制扩散充气或自增压。
上述外层32是由一种材料或一些材料组合而形成的,这些材料提供优良的热合性、挠曲疲劳强度、合适的弹性模量、拉伸和撕裂强度以及耐磨性。在能提供上述性能的可获得材料中,现已发现由于聚氨酯类热塑性弹性体,换句话说在这里称为热塑性聚氨酯或简称为TPU′s具有极好的加工性能,所以它们是特别优选的。此处所用的术语“热塑性”,是指该材料在特性温度范围内能加热软化和冷却硬化,并且因此能通过各种技术在软化状态使该材料成型为各种制品。
在为数众多的热塑性聚氨酯中,用于形成外层32的是象PellethaneTM(Midland,Michigan的Dow化学公司的注册商标的产品),ElastollanR(BASF公司的注册商标)和ESTANER(B.F.Goodrich公司的注册商标)这样的聚氨酯,它们都是酯基的或醚基的,已经证实它们是特别有效的。还可以采用其它的基于聚酯、聚醚、聚己内酯和聚碳酸酯大分子二醇的热塑性聚氨酯。
内层30是主要的隔离成分,它主要担负着控制气体渗透的责任。内层30是选自以下物质的一种或多种材料制成的,这些物质是乙烯和乙烯醇的共聚物、聚偏二氯乙烯、丙烯腈和丙烯酸甲酯的共聚物(例如British Petroleum公司的注册商标为BAREXTM的产品)、聚酯(例如PET,即,聚对苯二甲酸乙二醇酯)、脂族的和芳族的聚酰胺、液晶聚合物以及聚氨酯的工程热塑性塑料(例如DowChemical公司注册商标的ISOPLAST)。
对于以上所列的材料,用包括乙烯和乙烯醇的共聚物形成的内层30是非常优选的,其中最优选的是基本上由乙烯和乙烯醇组成的共聚物。这样的一类非常优选的基于乙烯和乙烯醇的共聚物是商业上可买到的称为SOARNOLTM的产品,它从New York,N.Y.的Nippon Gohsei有限公司(U.S.A.)是可买到的。另一种商业上容易买到的乙烯和乙烯醇共聚物是可从美国的Lisle,Illinois的Eval公司买到的EVALR。非常优选的商业上可买到的乙烯和乙烯醇共聚物的平均乙烯含量一般为约27%摩尔至约48%摩尔。通常,较高的乙烯含量导致热塑性聚氨酯和乙烯一乙烯醇共聚物的各层之间的比较牢固的结合。
在前面引用参考的美国专利4340626号中描述了扩散充气。正如这篇专利中所述的那样,用于给膜充气的气体与膜周围的环境空气不同,或者至少部分地与膜周围的环境空气不同。称为“超级气体”的充气用的气体选自具有大分子和低溶解度系数的气体,这样的气体表现出很低的透气性,并且不容易扩散穿过内隔离层。由于环境空气围绕着膜,所以值得注意的是,在最初充气以后膜内的压力比较快地上升。这种压力的上升可能是由于以下原因所造成的,环境空气中的氮气、氧气和氩气穿过膜扩散到它的内部,直到膜内所含空气的分压等于膜外的大气压力为止。因为最初充入的气体可以只是很慢地穿过膜向外扩散,同时环境空气向内扩散,所以膜内的总压明显地升高。因此这个总压是膜内空气的分压和膜内最初充入的气体的压力的和。
正如上述尾号为626的专利中进一步所述的那样,在扩散充气作用的最初的2-4个月期间,压力上升到高于最初充气的压力,然后开始慢慢地下降。当总压上升达到其峰值程度时,扩散充气已经发展到膜内空气的分压已达到其最大值的点。在这一点,因为里面空气的压力与外面环境空气的压力相平衡,所以此时膜被充入了不能扩散到该装置外面的最大量的压力介质(空气)。此外,此刻超级气体的压力低于最初充气时的压力,这主要是由于因弹性膜的伸长而造成该装置体积增加的原因。压力比较低时,通常很低的超级气体扩散速率减小到更低的值。这两个因素,即,在平衡压力状态时的最大量的空气和超级气体的最小扩散,有助于长期气密在基本上恒定的压力上。
在压力达到峰值后,下降的速率很慢,膜中的总压保持高于最初压力超过两年或此后的更长时间,这取决于充气所用的特定气体、构成膜的材料和充气的压力。如上所述,压力的减小可能是连续的,但是,由于气体从膜中扩散的速率很慢,所以在膜中可保持足够高的压力,结果能使膜连续地再被有效地使用几年。因此,此膜基本上是永久充气的。
为了使本发明的产品能商业化地实际应用,重要的是使以下因素之间具有合适的和最恰当的平衡(1)一方面是主动扩散的最小速率,(2)另一方面是象抗疲劳、织造上的可加工性和热合性这样的物理性能。因此,最理想的是不形成100%地阻止扩散的隔离层,而是能使一些气体例如氧气扩散穿过膜,同时有效地防止包括氮气和超级气体在内的其它一些气体扩散穿过膜。
氧气能穿过膜扩散这个事实不是问题,实际上这是一个想要的和特有的好处。例如,给膜充入氮气和/或超级气体以后,通过前面所述的扩散充气的机理,周围环境中的氧气能扩散到膜中。因此,氧气的分压与已经包含在膜中的氮气和/或超级气体的分压相加,结果是产品的总压上升。周围大气中氧气的分压是大约2。5磅/英寸2(出自14.7磅/英寸2的海平面总压)。因此,氧气反向扩散到膜将造成的最大压力升高约为2.5磅/英寸2。在补偿空气中所有的气体成份扩散到膜中时膜的显著的拉伸松驰(结果增加了膜包围的内体积)过程中,这样的压力升高是有用的。因此,本发明的特征之一是,膜的复合材料是除氮气外空气中其它气体可半透过的膜,并且因此不是完全的隔离层。实际的优点是,通过氧气的扩散充气,还补偿了由于膜松驰的体积增加所造成的压力损失。
控制透气性和扩散充气的实际优点之一与以下因素有关,这个因素是使产品的拉伸松驰性能与由于保留截获的气体和扩散易流动的气体所造成的压力变化相适应。例如,在某些产品中,最好是使用弹性模量比较低或者比较薄型的膜,以使缓冲装置摸上去感到比较柔软。因为厚度比较低或者模量比较低,所以截获的气体扩散穿过隔离层的可能性是比较大的。为了补偿这样的损失,可以将装置稍微地过渡充气。但是,由于膜的厚度或低模量,所以该装置往往会扩大,结果是形成了其几何形状不大令人满意或者其几何形状在规定的时间以外改变的产品。因此,通过形成比较厚的内层30和外层32,分别地,提高了弹性模量,减少了截获气体的流动,并且在基本不需要使产品过渡充气的情况下,能使产品保持充气的压力,同时形状的变化比较小。
由于本发明的扩散充气能力,所以可以使用不太昂贵的截获气体。此外,可以将轻质的和不太昂贵的材料用于复合结构的最外层32。在以下表中将两种超级气体与根据本发明的技术有效地起超级气体作用的不太昂贵的截获气体做了比较。
表中的气体是指在25磅/英寸2和70°F的条件下的1立方英尺的气体或蒸汽。
因为出于从可获得性、成本和重量的观点考虑,空气和氮气是本发明的实践中的充气气体的最佳选择,所以,虽然一般不将它们分入超级气体类,但是还是将它们列入了上表中。
本发明的重要优点之一显然是图8和9中所表示的膜,正如所提到过的那样,取决于缓冲装置的几何形状,在扩散充气期间膜可以基本上不膨胀。膜的总体积膨胀保持在原来体积的约3-5%以内。因此,在从最初充气开始一直到扩散充气和一直到产品的使用期限为止的时间范围内,膜的样子和几何形状保持相当恒定。
如上所述,可以通过各种各样的加工技术形成在这里所公开的膜,这些加工技术包括但不限于吹塑、注塑、真空模塑以及软管挤塑和片材积塑的膜材料的热合或射频焊接。优选的是通过以下方法成本发明技术的膜,该方法是将热塑性聚氨酯材料的外层和乙烯—乙烯醇共聚物的内层共挤出在一起,有效地产生多层的膜材料,成品的膜是用这种材料制成的,然后,在形成多层的膜材料以后,将这种膜材料热合或射频焊接,形成可充气的膜,这种膜既具有高柔软性又具有扩散充气能力的性能。
参照图6和7,说明的是长管状多层部件形式的第一种膜的实例28A。除了沿着隔离层30的内表面邻接地形成第三层34,以致隔离层30被夹在外层32和最内层34之间以外,改进的膜28A基本上与图1-5中所表示的复合结构相同。最内层34也优选是用基于热塑性聚氨酯的材料制成的,以进一步为隔离层30阻止湿气。除了防止隔离层30降解的好处之外,层34还有助于为气胆的三维形状提供高质量的焊接。
图1-7中所表示的气胆优选是用多层挤出的管制成的。共挤出的管的长度是从1英尺长到5英尺长的盘管,用截获的气体,优选氮气,使管充气到0-100磅/英寸2的想要的最初充气压力,优选5-50磅/英寸2的最初充气压力。将管射频焊接或热合成想要的长度以确定内室35。然后在气胆之间的焊接区域剪开,由此可以将形成的各气胆分开。应该认识到,也可以用内部几何形状被焊成管状的所谓平折挤塑的管来制造这种气胆。
当热塑性聚氨酯和主隔离层材料(即EVOH)通过各自的流道前进到挤出机的出口末端时,一旦它们接近模唇出口,熔流一般就以它们进入模身时以层状流体移动成层的状态混合和排列,由此而飘流在一起。从理论上来说,在约300°F-约450°F的温度使材料混合,以获得层30,32和34各自的连续部分之间的最佳润湿和最大粘合力。
正如将要进行的与图6和7有关的更详细的描述那样,按照图6和7,膜28A包括三层,这三层包括以“三明治”的形状排列的热塑性聚氨酯的第一层32,隔离材料的第二中间层30和热塑性聚氨酯的第三层34。
在一个非常优选的实施方案中,在升到足够高的温度下将两层热塑性聚氨酯层和乙烯—乙烯醇共聚物层共挤出,由此导致反应性的接触,因此基本上完全不需要中间粘合剂或结合层。
虽然不打算受到现有理论和知识的束缚,但是应该相信,当在约300°F-约450°F温度(例如共挤出),至少约200磅/英寸2压力下实现反应性接触时,热塑性聚氨酯和乙烯—乙烯醇共聚物的预聚合片材产生足够的氢键,导致形成总体的层合。
在致力于产生两层间的交联或普通的共价键的过程中,最好是不将热塑性聚氨酯和乙烯—乙烯醇类聚合物改性,也不使用任何结合层或粘合剂。当实现本发明方法的反应性接触时,本发明优选的组合物和方法只取决于热塑性聚氨酯和乙烯—乙烯醇共聚物的固有性能。
可以将在包括热塑性聚氨酯和乙烯—乙烯醇共聚物的各交替层之间形成表面结合的明显的化学反应归纳如下,其中的表面结合发生在基本上横过膜28A的整个打算接触的表面区域
其中R是 R1是短链的二醇,例如(CH2)4。
除了产生明显的氢键以外,其它一些因素也影响热塑性材料和主隔离材料的连续层之间的结合强度,这些因素例如是定向力和感应力,或者称为范德瓦尔斯力,它们是由存在于任何两个分子之间的色散力以及存在于极性分子之间的偶极—偶极力所引起的。
对用于形成本发明的层合膜IO的材料和对表示反应特征的膜的试样进行试验。开始是将商业上可买到的热塑性聚氨酯(即,PellethaneTM)放在乙二胺溶液中,以确定是否有游离的异氰酸酯基存在。没有沉淀出现,因此,没有脲形成。因此可以推断,没有可得到的异氰酸酯基出现在羟基的可能的键合中,其中羟基是由乙烯—乙烯醇的共聚物的乙烯醇部分提供的。因此,象美国专利5036110中所述的那样,没有发生显著的常规的异氰酸酯/多元醇反应,也不需要本发明的反应性接触。
此后,制备薄膜状的试样,用于说明热塑性聚氨酯中所含的氧气分子与乙烯和乙烯醇的共聚物的乙烯醇部分提供羟基之间可能发生的表面反应。用聚酯基的热塑性聚氨酯ElastollanRC-90A-13(000),聚酯基的热塑性聚氨酯PellethaneTM2355-87AE,以及乙烯—乙烯醇共聚物SOARNOLTM来制备相当薄的膜,此外,用三层的层合物形成薄膜,该层合物包括PellethaneTM2355-80AE第一层,EVALTM的第二层和PellethaneTM2355-80AE的第三层。根据图20和23中所表示的傅里叶变换红外辐射光谱,在大约3400波数,cm-1处,在每个膜中测出真正的氢键。因此,在本发明的膜(没有交联或使用结合层或粘合剂)中观察到的强键可以认为基本上是由氢键产生的,该氢键被观测到遍布在本发明膜的实际长度上。因此,采用热塑性聚氨酯和乙烯—乙烯醇共聚物交替层的本发明的膜将抗脱层(放在高极性溶剂中时除外)而不需要粘合剂或结合层。
与一般采用粘合剂结合层例如Bynel的现有技术的实施方案相比,本发明的热塑性聚氨酯层和乙烯—乙烯醇共聚物层之间的氢键例如改善和保持了热塑性聚氨酯和乙烯—乙烯醇共聚物的各层之间的结合。美国专利5036110中进一步说明了所认识到的这种结合在现有技术中存在和/或潜在的缺点。该专利公开了为了形成夹在热塑性聚氨酯层之间的隔离层,将乙烯—乙烯醇共聚物与热塑性聚氨酯进行预混合,这与未混合的热塑性聚氨酯和乙烯—乙烯醇共聚物层是不同的。美国专利5036110号的专利权所有人还提出,为了使两层TPU层牢固地结合,必须将热塑性聚氨酯和乙烯—乙烯醇共聚物的预混合层进一步改性。
在这方面,由于可获得的氢气分子的结果,出现了有效的结合,这些氢气分子是由沿层合膜的长度的乙烯—乙烯醇共聚物的乙烯醇基以及羟基和聚氨酯所提供的,或者仅由可得到的极性基团所提供的。
还应认识到,热塑性聚氨酯组合物还对隔离层30(即,乙烯—乙烯醇共聚物)以及外层32和内层34(即,热塑性聚氨酯)之间的结合有影响。此外,填料,例如非极性的聚合材料和无机填料或增量剂(例如滑石、二氧化硅、云母等)往往会对热塑性聚氨酯和乙烯—乙烯醇材料的结合能力产生不利的影响。
通常,本发明的热塑性聚氨酯(即,聚氨酯)含有交替的嵌段共聚物,该共聚物含有20-50%的硬链段,这些硬链段是借助于50-80%的在正常的使用温度下是橡胶状的弹性材料(聚酯或聚醚)的软链连接的。沿着聚合物链,硬链段和软链段可以是有序的或无规的。硬的嵌段的组成一般是二苯基甲烷二异氰酸酯(通常称为MDI)和1,4-丁二醇。当加热时,硬的和软的TPU嵌段共聚物链段熔化,材料变成流体,一些氨基甲酸酯键可能离解。当冷却时,一些链段再硬化并与软的链段连接,形成与热塑性橡胶相似的固态结构。此外,因为TPU弹性体是比较极性的,所以它们是很容易热合的,特别是用射频介电热合。
在图12-16中,表示了通过吹塑制造的气胆。将两层或者最好为三层薄膜的型坯共挤出。然后用常规的吹塑技术将型坯吹塑和成型。然后用想要的截获气体使最好是在图12和15中所表示的制成的气胆充气到最初的充气压力,然后通过射频焊接封闭充气口(例如充气口38)。
图8-10中表示了另一个优选的气胆制造方法。首先形成共挤出的两层或最好是三层的片材或薄膜。共挤出的片材或薄膜的厚度为0.001英寸至0.100英寸,优选0.010-0.050英寸。将多层薄膜的两个片材一层压一层地放置,并用常规热合技术或射频焊接技术沿着选择的点将它们焊接在一起,形成一个内室。然后通过形成的充气口130将未充气的气胆的内室充气到0-100磅/英寸2的想要的最初充气压力,优选充到5-50磅/英寸2的压力。优选的截获气体是氮气。
通过形成共挤出的两层或三层的管,制造图17和18中所表示的另一种优选的气胆。共挤出的管壁的厚度,即,贯穿所有的各层的截面,是0.001-0.100英寸,优选0.010-0.050英寸。用常规的热合技术或射频焊接技术,在选择的点并在每个末端,将管压扁成平放的扁片形状并将相对的壁焊接在一起。然后通过形成的充气口38将气胆充气到0-100磅/英寸2的想要的充气压力,优选5-50磅的充气压力,优选的截获气体是氮气。
所提供的图中所述的各种产品都被指定用作鞋类制品,特别是运动鞋的中底。在这样的应用中,可充气的膜可被用于下述几种不同的实施方案中的任何一种。这些实施方案是(1)完全密封在适合的中底泡沫中;(2)为了填满和弄平不平的表面以使脚下更舒适,只密封在装置的顶部;(3)为了帮助外底的连接,密封在底部;(4)密封在顶部和底部但是出于装饰性和销售方面的原因露出周围的侧面;(5)密封在顶部和底部但是只露出装置侧面的选择部分;(6)通过模塑的“脚床”密封在顶部;(7)一点也没有与密封泡沫一起使用。
作为另一个例子,在图19中说明了包括在本发明范围内的各种材料的透气速率的大部分。从图19中可以看出,除了由热塑性聚氨酯组分提供的柔软性之外,层合产品还提供了比较低的透气速率的优点。
虽然上面的详细说明描述了本发明的优选实施方案,但是应该认识到,在不背离附加权利要求的范围和清楚的含义的情况下,本发明是易于改进、变动和变换的。
权利要求
1.充气的缓冲装置,包括被模塑成具有能容纳至少一种截获的气体成分的内室的膜的多层薄膜,该多层薄膜包括由第一种柔性的回弹性的弹性热塑性材料组成的外层和由包含乙烯和乙烯醇的共聚物的全隔离材料组成的内层,该内层能选择性地阻挡上述截获的气体成分向外扩散并且容许至少一种易流动的气体成分向内扩散充气,该隔离层以直接地与上述外层接触的方式被布置。
2.权利要求1的充气的缓冲装置,其中所述的外层是由热塑性聚氨酯组成的,该聚氨酯选自基于聚酯、聚醚、聚己内酯、聚氧丙烯和聚碳酸酯大分子二醇的材料和它们的混合物。
3.权利要求1的充气的缓冲装置,其中所述的截获的气体成分是氮气。
4.权利要求1的充气的缓冲装置,其中所述的乙烯和乙烯醇的共聚物选自乙烯含量约为27-48%摩尔的共聚物。
5.用于鞋类的充气的缓冲装置,包括柔性的共挤出的薄膜材料,该材料包括热塑性材料的第一外层和包含乙烯和乙烯醇共聚物的隔离材料的第二内层。
6.权利要求5的充气的缓冲装置,其中所述的热塑性材料选自聚酯、聚醚、聚己内酯、聚氧丙烯、聚碳酸酯大分子二醇和它们的混合物。
7.用于缓冲装置的膜,具有改进的抗不希望有的透气性,它包括包含热塑性聚氨酯的第一层;和主隔离材料的第二层,这种主隔离材料选自基于乙烯和乙烯醇的共聚物、酯族和芳族的聚酰胺、聚偏二氯乙烯、丙烯腈和丙烯酸甲酯的共聚物、聚酯、液晶聚合物、聚氨酯的热塑性塑料和它们的混合物;该膜的特征在于,沿着热塑性聚氨酯和上述主隔离层材料之间的膜部分,出现反应性接触。
全文摘要
缓冲装置形式的产品,由柔性的膜制成,该膜包括至少一层热塑性聚氨酯和至少一层乙烯和乙烯醇的共聚物,该产品可充气到相当高的压力。通过工业上称为扩散充气的现象,该缓冲装置可长期保持内部的充气压力。从理论上来说,本发明的缓冲装置可以永久地充入一些气体,例如氮气或空气。
文档编号C08L75/00GK1533725SQ20041003352
公开日2004年10月6日 申请日期1995年8月30日 优先权日1994年8月31日
发明者P·H·米歇尔, J·C·西尔, H·W·伯克, P H 米歇尔, 伯克, 西尔 申请人:耐克国际有限公司, 四元塑料有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1