等离子体改性的医疗设备和方法

文档序号:3675733阅读:284来源:国知局
等离子体改性的医疗设备和方法
【专利摘要】本发明提供了涂层、设备及方法,其中医疗设备至少有一个接触面接触体液或组织,通过独特的两步等离子体涂覆工艺,将持久耐用的生物活性剂或官能团涂覆在该接触面上,涂覆工艺第一步利用含硅单体涂覆一层等离子体薄层,第二步利用含氮分子及含氧分子的混合物进行等离子体表面改性。该两步等离子体涂覆工艺使得植入性医疗设备能够防止临床条件下的再狭窄和血栓形成。本发明还涉及制造医疗设备的金属及高分子生物材料的表面处理,使这些设备的临床表现及耐用性有明显改善。
【专利说明】等离子体改性的医疗设备和方法
【技术领域】
[0001]本发明是关于医疗设备辉光放电等离子体涂层的用途与方法,在临床实践上,该医疗设备的长期生物相容性有所改善。特别是本发明与支架、导管、起博器、生物传感器等植入性医疗设备有关,通过独特的两步等离子体涂覆工艺,将持久耐用的生物活性剂或官能团涂覆到设备表面上,从而防止临床条件下的再狭窄和血栓形成。本发明还涉及到制造医疗设备的金属及高分子生物材料的表面处理,使这些设备的临床表现及耐用性有明显改

口 O
【背景技术】
[0002]请注意以下论述涉及到作者的一些发表论文和发表年份,最近论文发表的日期不能认为是在本发明之前的现有技术。本文对这些论文所作的讨论有更完整的背景,不能解释为因出于确定专利性的目的而承认这些论文为现有技术。
动脉硬化引起的冠状动脉性心脏病(CHD),因脂肪斑块的形成导致冠状动脉狭窄,仍是美国一大公共健康问题。每年有大约450,000人死于冠心病,近126万美国人有新发或复发性冠状动脉事件。冠心病在美国是致死的首要原因[心血管疾病统计,1americanheart.0rfi/l。在临床实践中,冠状动脉支架是一个较小的金属或合金制网管,其功能如脚手架一样撑开堵塞了的心脏动脉血管,防止其再度变窄(临床称为再狭窄)。但仍有大约25%植入的金属裸支架(BMS)仍会遭受再狭窄(较为典型的是在六个月时)。相比之下,当用于临床批准的适应症时,药物洗脱支架(DES)的再狭窄率则小于10%。
但是,由于近年来在安装 支架后第I年内在支架中形成血栓(即支架血栓)的风险据说虽很小但却明显增大,因此DES的安全性越来越引起关注。事实上,DES植入后,在0.5%的病人会出现晚期支架血栓(即确定在经皮冠状动脉介入治疗(PCI)后,1-12月内发生),安装支架后至少4年的极晚期支架血栓(即PCI后超过I年发生)的风险仍较高[Daemen J等:《柳叶刀》369:667-678,2007],虽然晚期支架血栓并不是时常发生的,但它却是一个威胁生命安全的问题。通过血管内超声显像检测[Alfonso等,《美国心脏病学会杂志》50:2095-2097,2007]和血管镜研究[Kotani等,《美国心脏病学会杂志》47 =2108-2111,2006],已确定愈合迟缓是晚期支架血栓的首要原因。每年约有600,000美国人安装DES[支架实际情况,http://americanheart.mediaroom.com/],这意味着即使风险上升幅度很小,也会导致成千上万的病患因此心脏病发作以及死亡。而且,对安装DES后的长期且具挑战性的抗血栓治疗,在进行PCI后第I年内需要外科手术(该手术要求必须暂时停止使用抗血栓药物)的病人的管理中也是一个主要的难题。
相较于恢复血液流动的冠状动脉旁路移植术,冠状动脉成形术则是一项较便宜的临床手术,在该手术中,使球囊在堵塞的动脉中膨胀以恢复血液流动。美国每年约进行131万例的PCI血管成形术[血管成形术和心脏血运再建统计数据,WWW.americanheart.0rg/]。但血管成形术后的再狭窄却是一个重要的临床问题,因为对该血管损伤的生物反应就是刺激动脉平滑肌细胞加速增殖。使用BMS降低血管成形术后的再狭窄率是介入性心脏病学领域中的彻底改革[Indolfi等,《意大利心脏病学杂志》6 (6):498-506,2005],DES虽然允许直接用于降低受损动脉再狭窄的药物控释,但会造成晚期支架血栓,认为这是由于持续的药物洗脱,从而在支架表面上遗留下一层高分子聚合物层所造成的。该聚合物层可在某些病人中引起慢性炎症和过敏性反应[Pendyala等,《介入心脏病学杂志》22 (I ):37-48, 2009] 0尸解研究表明支架支柱的不完整内皮覆盖与纤维蛋白的持续沉积相关,是DES植入后晚期支架血栓形成的主要病理解剖底物[Joner等,《美国心脏病协会杂志》48 =193-202, 2006 ;Byrne等,《心脏脉管学》57 (5) =567-584,2009]。在使用BMS的病人中尚未发现此愈合迟缓。
因此,在冠状动脉性心脏病患者中使用防止再狭窄和血栓形成的医疗设备,特别是冠状动脉支架时,需要涂层和表面处理以改善安全性及疗效。
现已开发了各种方法以改善植入支架的生物相容性。一种利用多孔支架表面的新型给药技术[Tsujino等,《药物输送专家意见》4 (3):287-295,2007]可提供有利的药物洗脱特性。但该技术仍处于初级阶段。目前正在探索利用可进行生物降解的聚合物作为DES的新平台[Grube等,《医疗设备专家评论》3 (6):731 -741, 2006 ;Lockwood等,《生物材料科学一聚合物版》21 (4):529-552,2010],但仍需要对临床使用进行进一步的调查研究,最新的可生物降解涂层的形态学研究已表明了在支架扩张后涂层上有裂纹[Basalus等,《Eurollntervention》5(4):505-10, 2009]。最近调查研究了无聚合物载体vestasync洗脱支架(VES)的性能及疗效[Costa等,《美国心脏病学学院心血管介入杂志》I (5):545-551,2008],但要求对更复杂的患者及病变子集进行长期追查,从而确定其初步成果。曾揭示了支架表面吸附的一种新型聚合物涂层,在6周猪冠状动脉再狭窄模型中可降低内膜增生[Billinger等,《侵袭性心脏病学杂志》18 (9):423_427,2006],但该聚合物涂层是否会在支架中形成晚期血栓仍是一个悬而未决的问题。在支架上涂覆聚氨酯涂层,并发现该涂层可抑制血小板附着[Fontaine等,《介入放射学杂志》5:567-572,1994 ;Fontaine等,《血管内手术杂志》3:276- 283,1996],并减少血栓形成[Tepe等,《生物材料》27 (4):643 -650,2006],不过,还发现聚氨酯涂覆支架的长期植入可减少慢性炎症[van de Giessen等,《循环》94:1690-1697,1996]。曾开发了一种防止血栓形成的新型双作用聚合物涂层,将表面结合肝素与NO (—氧化氮)释放结合在一起,模拟了衬在健康血管内壁上的内皮细胞层的抗血栓特性[Zhou等,《生物材料》26 =6506-6517, 2005]。但却没有支架应用的系统研究报告。另外一种方法是将放射性物质附于支架表面上以防止再狭窄[Zamora等,《生物医学材料研究杂志》(应用生物材料)53:244-251,2000],但使用聚氨酯作为支架表面上放射性药剂的密封剂在引发慢性炎症上仍有问题。曾报告有一种新型的钛表面仿生纳米结构涂层(无药物)可显著提高内皮细胞密度,但对支架应用而言,则需要进一步的探索[Fine等,《国际纳米医学杂志》4:91-97,2009]。总的说来,上述方法均不能通过一个特定涂层来同时解决晚期血栓和支架内再狭窄两个问题。人们已注意到奥布斯奈希(Orbus Neich)公司的宣传,该公司称其涂层不仅能防止血栓,还能降低再狭窄的风险。该涂覆工艺由三步过程组成,包括表面底漆工艺,生化反应及共价键结合[奥布斯奈希拓展全球市场营销团队,WWW.0rbusneich.coin/genous/]。近期已经在研究在支架上涂覆两种药物,以同时最小化再狭窄和血栓的形成[Huang等,《国际心脏病学杂志》22 (5):466_478,2009]。动物研究已表明再狭窄形成得到显著降低,但是否会形成晚期支架血栓仍不清楚。近年来,在具有独特性能的生物医学材料制备及医疗设备制造上广泛使用了等离子体工艺[Ratner BD,见:聚合物的等离子体处理,1997],例如,作为支架移植物外表涂层的一种新型富氮等离子体沉积生物材料可促进血管内主动脉瘤修复术后移植物四周的愈合[Lerouge等,《生物材料》28 (6):1209- 1217,2007]。等离子体沉积是一个薄膜形成过程,通常发生在真空室,本文在等离子体条件下,在基底表面上沉积薄膜。在等离子体沉积过程中,单聚体被引入到等离子体反应器中并激活,产生由高能电子、离子、自由基及活跃单体分子组成的气态合成物,已知为等离子态。通过等离子体沉积,可在沉积涂层中产生许多适宜的官能团,如氨基、羟基、羧酸等,有利于生物活性分子固定化。更为重要的是,通过选择正确的单聚体及等离子体工艺参数,这些化学基团几乎可放到所有材料上。
等离子体表面处理在解决生物医学材料的表面预处理问题上已成为一项有力的工具[Chu等,《材料科学与工程》R36:143-206,2002]。例如氧等离子体已用于提高细胞对聚合物表面的附着力[Ertel等,《生物材料科学一聚合物版》3 =163-183, 1991 ;Chilkoti等,《分析化学》,67:2883-2891,1995 ;Ertel等,《生物医学材料研究杂志》24:1637-1659,1990]。等离子体还用于将氨基和酰胺基引入高分子材料,从而提高细胞附着力,特别是内皮细胞[Griesser等,《生物材料科学一聚合物版》5:531-554,1994 ;Ramires等,《生物医学材料研究杂志》51 =535-539,2000 ;Tseng等,《生物医学材料研究杂志》42:188-198,1998 ;Harsch等,《神经科学杂志》98:135-144,2000]。两种血蛋白质、纤连蛋白及玻连蛋白的吸收也可通过等离子体处理改良[Mooradian等,《外科研究杂志》53:74-81,1992 ;Steele等,《生物材料科学一聚合物版》6 =511-532,1994],并直接影响内皮细胞附着。除聚合物外,广泛用于医疗设备结构的不锈钢、钛钢等金属表面[Gotman,《腔镜泌尿外科杂志》11 =383-389,1997],均根据不同用途进行了等离子体处理。
美国专利第6,613,432号提供了一种利用等离子体表面改性,在植入性医疗设备表面上引入一层生物活性层或涂层,从而抑制支架再狭窄,提高血小板和白血球附着等提高生物相容性的方法。但是,在对该专利等离子体技术的大量动物研究中,在移植了等离子体处理过的支架后,在支架开放处观察到某些(但常常是大量)的变体,相信这是由于在不锈钢裸表面上的单步ΝΗ3/02等离子体表面处理产生的潜在的表面活性的不稳定性所造成的。
如上所述,目前可用的冠状动脉支架及正在开发的提高支架生物相容性的方法存在以下几个至关重要的问题:1)现有BMS支架工艺仍有较高的再狭窄发生率;2)与BMS相比,即使DES因其较好的再狭窄控制能力而得以更广泛地使用,但仍有发生晚期支架血栓的风险,这又与在临床上明显的死亡风险联系在一起;3)在研究的大多数现有涂覆工艺均有重要限制,不能同时避免再狭窄和血栓。因此需要提供能同时降低再狭窄和血栓形成的医疗设备表面新涂层。特别是需要提供设备和基底的处理及加工方法,防止这些问题发生。
参考文献
1.心血管疾病统计数据,www.americanheart.0rg/ (访问时间2011年8月)。
2.Daemen J, Wenaweser P, Tsuchida K等:常规临床实践中西罗莫司洗脱及紫杉醇洗脱支架的早期及晚期冠状动脉支架血栓形成:数据来自一项大型双向性队列研究,《柳叶刀》369:667-678, 2007ο
3.Alfonso F,Suarez A,Perez-Vizcayno MJ等:药物洗脱支架血栓发作时的血管内超声检查,《美国心脏病学会杂志》50 =2095-2097, 2007o4.Kotani J,Awata M,Nanto S等:西罗莫司洗脱支架的不完整新生内膜覆盖,《美国心脏病学会杂志》47:2108-2111, 2006。
5.支架实际情况,http://americanheart.mediaroom.com/ (访问时间 2011 年 8 月)。
6.血管成形术和心脏血运再建统计数据,www.americanheart.0rg/(访问时间2011年8月)。
7.1ndolfi C, Mongiardo A, Spaccarotella C等:药物洗脱支架的现在与未来,《意大利心脏病学杂志》6 (6) =498-506, 2005o
8.Pendyala L, Jabara 11, Robinson K, Chronos N:冠状动脉内支架的惰性与活性聚合物涂层:促进动脉愈合的新型设备,《介入心脏病学杂志》22 (I):37-48,2009。
9.Joner M, Finn AV, Farb A, et al:人体药物洗脱支架病理学:愈合迟缓及晚期血栓形成风险,《美国心脏病学会杂志》48:193-202,2006。
10.Byrne RA, Joner M, Kastrati A:聚合物涂层与药物洗脱支架移植后的延迟动脉愈合,《心脏脉管学》57 (5) =567-584, 2009o
11.Tsujino I,Ako J7Honda Y等:经纳米、微孔及大孔冠状动脉支架表面的药物输送,《药物输送专家意见》4 (3):287-295,2007。 12.Grube E and Buellesfeld L:BioMatrix 公司 Biolimus A9 洗脱冠状动脉支架:冠状动脉性疾病的下一代药物洗脱支架,《医疗设备专家评论》3 (6):731-741,2006。
13.LockwoodNA,Hergenrother Rff,Patrick LM,Stucke SM,Steendam R,Pacheco E,Virmani R, Kolodgie FD, Hubbard B:用作药物洗脱支架涂层的新型可生物降解聚合物的体外及体内特征,《生物材料科学一聚合物版》21 (4):529-552,2010。
14.Basalus MW, van Houwelingen KG, Ankone M, de Man FH, von Birgelen C:扩张型Biolimus洗脱支架上可生物降解涂层的扫描电子显微镜评估,((EuroIntervention))5 (4):505-10,2009ο
15.Costa JR Jr,Abizaid A,Costa R等:用于单支原发冠脉病变治疗的无轻磷灰石聚合物载体西罗莫司洗脱支架的初步结果:第三代药物洗脱支架系统的人类研究,《美国心脏病学学院心血管介入杂志》I (5) =545-551, 2008o
16.Billinger Μ, Buddeberg F, Hubbell JA等:防止内膜增生的聚合物支架涂层,《侵袭性心脏病学杂志》18 (9):423-427, 2006。
17.Fontaine AB,Koelling K,Clay J等:聚合物涂覆钽支架上血小板附着减少,《介入放射学杂志》5:567-572,1994。
18.Fontaine AB,Koelling K,Passos SD等:钽支架的聚合物表面改性,《血管内手术杂志》3 =276-283,1996。
19.Tepe G, Schmehl J, Wendel HP等:镍钛合金支架降低血栓可能性-不同表面改
性及涂层的体外评价,《生物材料》27 (4) =643-650, 2006o
20.van de Giessen WJ, Lineoff AM, Schwartz RS等:在猪冠状动脉中移植可生物降解和不可生物降解聚合物的明显炎症性后遗症,《循环》94 =1690-1697,1996。
21.Zhou ZR及Meyerhoff M E:—氧化氮释放与固定活性肝素结合的聚合物涂层的制备与特征,《生物材料》26 =6506-6517, 2005o
22.Zamora PO, Osaki S., Som P等:用螯合的Re-188进行放射性标记的近距离治疗源的缩微拍摄:支架,《生物医学材料研究杂志》(应用生物材料)53:244-251,2000。
23.Fine E, Zhang L, Fenniri H及Webster TJ:提高钛血管支架上花环碳纳米管涂层上的内皮细胞功能,《国际纳米医学杂志》4:91-97,2009。
24.奥布斯奈希拓展全球市场营销团队,www.0rbusneich.com/genous/.2007 (访问时间2008年7月)。
25.Huang Y, Venkatraman SS, Boey FYC, Umashankar PR, Mohanty M 及 Arumugam S:在猪冠状动脉模型中洗脱两种药物的钴铬支架的再狭窄和血栓性短期影响,《介入心脏病学杂志》22 (5) =466-478, 2009ο
26.Ratner BD,见:聚合物的等离子体处理,d,Agostino R, Favia P 及 Fracassi F,Ed.荷兰多德雷赫特克鲁维尔(Kluwer)学术出版社,1997。
27.Lerouge S, Major A, Girault-Lauriault PL等:促进血管内主动脉瘤修复术后支架移植物四周愈合的富氮涂层,《生物材料》28 (6): 1209-1217,2007。
28.Chu PK, Chen JY, Wang LP等:生物材料的等离子体表面改性,《材料科学与工程》,R36:143-206,2002。
29.Ertel SI,Chilkoti A.,Horbett TA等:通过射频等离子体沉积的含氧膜上的内皮细胞增殖:表面羰基的作用,《生物材料科学一聚合物版》3:163-183,1991。
30.Chilkoti A., Schmierer AE, Perez-Luna VII等:表面化学与内皮细胞增殖之间的关系研究:含氧等离子体沉积膜的静态二次离子质谱仪的偏最小二乘法回归,《分析化学》,67 =2883-2891,1995。
31.Ertel SI, Ratne r BD及Horbett TA.:含氧膜在聚苯乙烯和聚合(对苯二甲酸乙二酯)基底上的射频等离子体沉积可改善内皮细胞增殖,《生物医学材料研究杂志》,24:1637-1659,1990。
32.Griesser HJ, Chatelier RC,Gengenbach TR等:等离子聚合物上的人体细胞增殖:氨基和酰胺基的推定作用,《生物材料科学一聚合物版》,5:531 -554,1994。
33.Ramires PA.,Mirenghi L.,Romano AR等:等离子体处理的PET表面可改善人体内皮细胞的生物相容性,《生物医学材料研究杂志》51:535-539,2000。
34.Tseng DY及Edelman ER:酰胺和胺类等离子体处理过的ePTFE血管移植物对人工循环系统中的内皮细胞衬里的影响,《生物医学材料研究杂志》42 =188-198,1998。
35.Harsch A, Calderon J, Timmons RB等:丙烯胺在聚硅氧烷上的脉冲等离子体沉积:神经细胞附着的稳定表面,《神经科学杂志》,98:135-144,2000。
36.Mooradian DL., Trescony P,Keeney K.等:等离子体TFE血管移植材料的辉光放电表面改性对纤连蛋白和层连蛋白保存及内皮细胞附着的影响,《外科研究杂志》53:74-81,1992。
37.Steele JG, Johnson G, McFarland C等:血清玻连蛋白和纤连蛋白在人体血管内皮细胞及皮肤成纤维细胞在射频等离子体制备的含氧及含氮表面上的初始附着中的作用,《生物材料科学——聚合物版》6 =511-532,1994。
38.Gotman 1:移植物使用金属的特性,《腔镜泌尿外科杂志》11 =383-389,1997。
39.Zamora PO, Osaki S及Chen M:等离子体沉积的涂层、设备及方法,美国专利第6,613,432 号,2003 年 9 月 2 号。40.Liu Q, Ding X, Qiu F, Song X, Fu G, Ji J:anti_⑶34 抗体功能化肝素-胶原复合层涂覆的血管内支架的原位内皮化,《生物材料》31 (14):4017-4025,2010。
41.ffesselv R:新颖药物洗脱支架理念,《自然综沐——心脏病学》,7 (4): 194-203,2010。
42.Maalej N, Albrecht R, Loscalzo J 及 Folts JD:人造表面 S-亚硝化白蛋白涂层明显的血小板抑制作用,《美国心脏病学会杂志》.33 (5):1408-1414,1999。
43.Chen M, Zamora PO, Som P等:ΝΗ3/02混合气体等离子体可改变血液成分与不锈钢之间的相互作用,《生物医学材料研究杂志》,67A:994-1000,2003。
44.Chin-Quee SL, Hsu SH,Nguyen-Ehrenreich KL,Tai JT, Abraham GM,Pacetti SD,Chan YF, Nakazawa G, Kolodgie FD, Virmani R, Ding NN, Coleman LA:含氟共聚物及憐酸胆碱聚合物支架涂层上的内皮细胞恢复,急性血栓形成,及单核细胞附着和激活,《生物材料》31 (4) =648-657, 2010ο
45.Liu H, Slamovich E, Webster T:有最大纳米表面粗糙度的纳米二氧化钛/聚丙交酯-乙交酯共聚合物的复合物中成骨细胞功能增加,《生物医学材料研究杂志》A辑78 A
(4):798-807,2006。
46.Tharp DL, Wamhoff BR, Wulff H, Ranman G, Cheong A 及 Bowles DK:局部输送KCa3.1阻断剂TRAM-34防止血管成形术诱发的急性冠状动脉平滑肌细胞表型转化和限制性狭窄,《动脉硬化、血栓和血管生物学杂志》28 (6) =1084-1.089,2008。

【发明内容】

[0003]在本发明提供了一种可植入医疗设备,该设备至少有一个接触面以接触体液或组织,其中该接触面通过两步等离子体处理过程进行涂覆,第一步利用含硅单体进行等离子体沉积,从而提供一层均匀的保形纳米级等离子体涂层,第二步利用氮分子及氧分子混合物进行等离子体表面改性。在一个实施例中,每个含氮分子所含的原子小于6个,最好含4个或更少原子。含氮分子为NH3, NH4, N2O, NO, NO2和N2O4中的一种或几种。含氧分子为O2和/或03。可同时用这些含氮分子和含氧分子进行等离子体处理。
本发明说明性实施例就是要提供一种新型生物相容涂层,在构成冠状动脉支架的金属生物材料表面上,该涂层具有较强的抗血栓形成能力。作为环境友好工艺,低温等离子体工艺沉积了一层超薄(纳米级)但连续的涂层,该涂层足以产生必要的耐磨性并固定在随后的等离子体表面处理中产生的生物活性官能团,从而防止血块和再狭窄,同时该涂层也足够薄,并顾及到送入病人体内时支架扩张而不会产生裂纹。等离子体改性的金属表面表现出下列特性:1)在ΝΗ3/02等离子体处理的不锈钢表面上,无血块形成且平滑肌细胞(SMC)凋亡增加,无炎症反应;2)利用直流(DC)等离子体涂覆一层三甲基硅烷(TMS)薄涂层后,再经ΝΗ3/02等离子体表面改性,在等离子体涂覆后12周,不锈钢薄片上冠状动脉内皮细胞(EC)附着有统计显著的增加,且不会促进平滑肌细胞增殖,间接表明了稳定且持久的生物活性表面的形成;3)在不锈钢支架上利用直流等离子体进行两步等离子体涂覆,该过程显示其内膜增生明显小于猪动脉的未处理对照组;4)表面结合的NO官能团,在抑制纤维蛋白原吸附和防止血小板聚集上,其作用类似NO自由基;5)优选等离子体涂层厚度为20nm,表现出对不锈钢基底的强有力的附着,支架扩张后,未观察到涂层裂纹。除用于冠状动脉支架处,医疗设备显著增加的生物相容性还可用于其它植入性医疗设备,如心脏起博器、脉冲发生器、心脏除颤器及生物传感器等。
等离子体处理通常大约不到5分钟,较好是不到2分钟,更好是不到I分钟,最好则是介于约30秒到约I分钟之间。 在一个实施例中,含氮分子为NH3,含氧分子为O2。对每个NH3和O2分子,等离子体处理中的质量流率大约介于1.5:1和1: 1.5之间。在另一实施例中,含氮分子为N2O,含氧分子为02。对每个N2O和O2分子,等离子体处理中的质量流率大约介于1.5:1和1: 1.5之间。
本发明医疗设备包括支架、导管、球囊、分流器、心脏的瓣(膜)、起博器、脉冲发生器、心脏除颤器、脊髓刺激器、大脑刺激器、骶神经刺激器、导向器、诱导物、传感器、粒子、螺钉、固定器、薄板及接头。至少一个接触面可为金属材料,或为高分子材料。如为高分子材料,则可生物降解。
该设备还包括一层由两步等离子体涂覆过程沉积的生物相容涂层。在一个实施例中,生物相容涂层是由氢环硅氧烷单体等离子体聚合而成的薄膜。在另一个实施例中,生物相容涂层可以是一种聚合物或共聚物,如聚丙烯酸酯、双酚A型聚碳酸酯、聚丁二烯、聚碳酸酯、聚对苯二甲酸丁二醇酯、聚甲基丙烯酸丁酯、聚二甲基硅氧烷、聚脂、聚乙烯亚胺、聚甲基丙烯酸甲酯、聚丙烯、聚苯乙烯、聚砜、聚氨酯、聚乙烯化合物、聚醋酸乙烯酯-聚乳酸、聚乙交酯、聚已酸内酯或聚偏氟乙烯。
本发明还包括植入性医疗设备的涂层,该设备至少有一个接触面接触体液或组织,其中涂层包括了接触面上的第一层,该层包括有两步等离子体涂覆过程的产物。涂层还可包括沉积在第一层上的第二层,该层包括氢环硅氧烷单体等离子体聚合作用的产物。
【专利附图】

【附图说明】
[0004]附图纳入到本说明书中,并形成了本说明书的一部分。附图对本发明的数个实施例进行了说明,并配有描述,用以解释本发明的数个原理。附图仅用于说明本发明的优选实施例,并不构成对本发明的限制。在这些附图中:
图1利用直流(DC)和射频(RF)等离子体涂覆的不锈钢(SS)薄片的水接触角与老化时间的关系。DC-TMS:利用直流等离子体涂覆三甲基硅烷(TMS)涂层的不锈钢;DC-NH3/02:利用直流等离子体涂覆TMS涂层,再经ΝΗ3/02处理的不锈钢;RF-TMS:利用射频等离子体涂覆的带三甲基硅烷(TMS)涂层的不锈钢;RF-NH3/02:利用射频等离子体涂覆TMS涂层,再经ΝΗ3/02处理的不锈钢。对裸不锈钢(未涂覆)薄片,接触角为:77° 土 3° (未在图中表明)。n=4时,数据为平均值土标准偏差。
图2细胞接种后第3天,在不锈钢薄片上的猪内皮细胞数量与样本类型的关系。见图1对样本ID的说明。每种情况下,样本总数n=3。图中的统计数据为等离子体处理组相对于未处理对照组(裸不锈钢)的成对t检验。
图3细胞接种后第I天,在不锈钢薄片上的人体冠状动脉血管平滑肌细胞数量与样本类型的关系。见图1对样本ID的说明。每种情况下,样本总数n=2。
图4细胞接种后第3天,在不锈钢薄片上内皮细胞(EC)和平滑肌细胞(SMC)的附着/增殖与老化6&12周样本的类型的关系。见图1对样本ID的说明。每种情况下,样本总数n=4。图中的统计数据为等离子体处理组相对于未处理对照组(裸不锈钢)的成对t检验。图5支架移植21天后,猪冠状动脉支架段的I/M (新生内膜面积与中膜面积)比。金属裸支架(BMS)用作对照。见图1对样本ID的说明。
【具体实施方式】
[0005]揭露并说明本等离子体改性医疗设备及方法之前,应了解本发明并不限于本文揭露的具体配置、工艺步骤及材料,因为这类配置、工艺步骤和材料也可有些许变化。还应了解本文所采用的术语仅用于说明具体实施例,并非意在限制,因为本发明的范围仅通过所附权利要求及其等效物进行限制。
本文提及的公告和其他参考资料,用以说明本发明【背景技术】并提供其与实践有关的其他详细信息,均以引用的方式并入本文中。本文所论述之参考资料仅为其在本次申请的 申请日期:之前的披露内容而提供。本文中的任何内容均不能解释为承认
【发明者】无权凭借在先发明而提前进行此类披露。
还必须注意的是,本说明书和所附权利要求所使用的单数形式“一”、“一个”和“该”包括复数指代物,除非上下文中另有明确的指示。
除非另有定义,本文中使用的所有科技术语的意思均与本发明所属领域的技术人员通常了解的意思相同。
说明本发明并要求保护本
【发明内容】
时会使用到以下术语,其定义如下。 本文使用的“包含”、“包括”、“含有”、“其特征为”及其语法同等成分均为包容性或开放性术语,不排除附加、未列举的要素或方法步骤。“包含”应解释为包括了更严格的术语“由......组成”和“基本上由......组成”。
本文所使用的“由……组成”及其语法同等成分不包括权利要求中未规定的任何要素、步骤或成分。
本文所使用的“基本上由……组成”及其语法同等成分将权利要求的范围限制在规定材料或步骤,以及那些对所要求保护发明的基本和全新的一项或几项特性不会产生重大影响的材料或步骤之内。
本发明提供一种带等离子体改性表面的植入性医疗设备,其具有至少一个接触面以接触体液或组织,其中在该接触面上首先沉积一层薄的等离子体涂层,再用含氮分子和含氧分子进行等离子体表面改性。在该医疗设备中,与未用本发明提供的方法进行等离子体改性的类似表面相比,其等离子体改性接触面显示出显著增强的内皮细胞附着,间接表明了在等离子体改性的植入性医疗设备上的快速内皮化。
本发明包含一个结构组件,其至少有一个等离子体改性接触面产生有利或具有医用价值的特性。
适宜的带接触面的结构组件包括医疗设备,希望其接触血液或其它组织,如支架、导管、分流器、移植物等此项技术中已知的医疗设备。该结构组件可包括网、弹簧栓子、金属丝、充气球囊、或任何其它可在目标位置植入的设备或结构,包括血管内目标位置、腔内目标位置、实体组织内的目标位置,用于肿瘤治疗等。
植入性设备可用于永久性或临时性植入。这类设备可通过血管内及其它医用导管送入或并入这些导管中。
适宜表面包括不锈钢、镍钛合金、钛合金等金属合金,聚氯乙烯、聚乙烯、聚交酯、聚乙交酯、聚己内酯、聚甲基丙烯酸甲酯、聚甲基丙烯酸羟乙酯、聚氨酯、聚苯乙烯、聚碳酸酯、聚脂纤维、伸展性聚四氟乙烯(Teflon.RTM.)、相关含氟聚合物复合材料(Gore-Tex.RTM.),或其化合物。全部或部分可用表面可进行改性。还可使用其它基底材料,包括聚丙烯酸酯、双酚A型聚碳酸酯、聚丁二烯、聚对苯二甲酸丁二醇酯、聚甲基丙烯酸丁酯、聚二甲基硅氧烷、聚脂、聚乙烯亚胺、聚砜、聚乙酸乙烯酯、聚偏氟乙烯、聚交酯、聚乙交酯、聚己内酯及其共聚物和变异体。
一种使结构组件的一面暴露于等离子体的适当的方法,涉及将结构组件个别、成组,或通过流化床等诸如此类的方法放置于等离子场中,如美国专利第6,613,432号的揭示内容,并以引用的方式并入本文中。
本发明提供一种纳米级(小于IOOnm)等离子体涂层,该涂层的制作通过在由金属、合金或聚合物制成的植入性医疗设备上进行辉光放电等离子体沉积的过程,该设备至少有一个接触面用于接触体液或组织,随后利用含氧分子和含氮分子的混合物进行等离子体表面改性,从而在表面上产生生物活性官能团,如一氧化氮或氧亚硝酸。
此两步等离子工艺是利用射频(RF)和直流(DC)两个不同的等离子体源进行,全过程中不将薄片或支架取出等离子体反应器。利用含硅单体进行薄涂层沉积。通过辉光放电等离子体涂覆过程,这种有机硅烷可迅速聚合并沉积到基底表面上,且良好附着。
这种用途的有机硅烷可单独或以任何化合物形式使用,包括三甲基硅烷(TMS)、乙烯基二氣硅烷、四乙氧基硅烷、乙烯基二乙氧基硅烷、7K甲基二娃氣烧、四甲基硅烷、乙烯基二甲基乙氧基硅烷、乙烯基二甲氧基硅烷、四乙稀硅烷、二乙酸氧基乙烯基硅烷和甲基二甲氧基硅烷中的一种。在一个实施例中,含娃单体包括一种正常情况下(0_25°C, 1-2标准大气压)为气体的有机硅烷。在另一个实施例中,含硅单体包括一种在低于100°C的温度下汽化的有机硅烷。在又一个实施例中,含硅单体为(CH3)3-SiH或(CH3)2-SiH2的硅烷基。在又一个实施例中,含硅单体包括三甲基硅烷(TMS)。等离子体沉积的有机硅烷涂层不仅有与通常的等离子体涂层一样的 薄膜密度,而且由于该涂层的-S1-S1-和-S1-C-S1-无机主干,其还提供一定程度的支架表面耐磨性。良好的附着是因为等离子体沉积层和金属或聚合物表面之间形成了化学键。
完成第一步等离子体沉积过程后,得到的纳米级(小于IOOnm)等离子体涂层再由氮、氧分子混合物作第二次等离子体处理。在一个实施例中,使用ΝΗ3/02混合物进行等离子体表面处理,因为这两种气体会被在等离子体室中产生的高能电子激活,从而在表面上生成一氧化氮,因此给表面提供持久的生物活性,促进医疗设备表面上的内皮化,如支架支柱。第二步用ΝΗ3/02气体混合物进行等离子体处理以提供所希望的氧亚硝酸官能团,且通过共价键结合,最大数量地附着到等离子体涂覆表面上。本发明经两步处理后的等离子体涂层的结合体提供一种稳定且耐用的功能化表面,从而得到等离子体涂覆的植入性设备显著提高的性能。本发明提供的这种经两步处理的功能化且耐用的等离子体涂层被发现具有较好的成本效益,其在支架表面上生成生物活性剂,无须任何药物或试剂即可抑制再狭窄和支架内血栓形成。无药物基础的支架涂层被认为是改善支架安全性和疗效的一种新方法[Wessely等,《自然综述——心脏病学》7 (4) =194-203, 2010]。
本文中用到的结构组件事实上是指可临时或永久性植入或移植到人体或动物宿主上的任何设备。适宜的有一个表面的结构组件包括希望接触血液的组件,如支架、导管、分流器、移植物等。意在作为组织植入的适宜设备包括近距离治疗源、栓塞材料、瘤床植入物、关节内植入物、减少粘连的材料等。设备可包括网、弹簧栓子、金属丝、充气球囊、微珠、薄片,或任何其它在目标位置可植入的结构,包括血管内目标位置、腔内目标位置、实体组织内的目标位置,通常用于肿瘤治疗等。植入性设备能够用于永久性或临时性移植。这类设备可通过血管内及其它医用导管送入或并入这些导管中。设备植入可有不同用途,包括肿瘤治疗、心血管疾病治疗或预防、炎症治疗、减少粘连等诸如此类。该设备的一个应用是用于治疗血管内增生,该病症已通过常规再通技术,特别是血管再通技术,如血管成形术、粥样斑块切除术等进行过治疗。
典型结构组件及设备包括血管内支架。血管内支架包括球囊扩张支架和自扩张支架。球囊扩张支架可向数名商业供应商购买,包括Cordis公司的Palmaz-Schatz支架。自扩张支架通常由形状记忆合金组成,可向供应商购买,如Instent。球囊扩张支架通常由不锈钢框架构成,而自扩张支架则通常由镍/钛合金构成。这两种结构框架均适合用于本发明。
典型设备还包括球囊,如球囊导管上的球囊。血管内球囊导管的结构已为我们熟知,并在专利及医学资料中有充分说明。充气球囊可不是一种可有可无的球囊,通常由聚对苯二甲酸乙二醇酯组成,或为一种弹性球囊,通常由乳胶或硅烷橡胶组成。根据本发明的方法,这些结构材料均适合于涂覆。
植入性设备会有一个或多个表面,或一个表面的部分,这些位置通过由含氧和氮分子组成的气体等离子体进行处理。如为支架,则特别有必要对整个表面进行处理。如为安装在导管上的球囊,则有必要至少涂覆球囊在血管内充气时接触到血管的外圆筒形表面。
除上述设备外,其它各种植入性结构,如金属丝、弹簧栓子、薄片、靶丸、微粒及纳米微粒等,均可按照本发明方法,利用含氧或氮分子的气态等离子体进行处理,包括组织植入的近距离治疗源、栓塞材料、瘤床移植物等。
设备可根据其类型通过 常规方式引入患者体内。如为支架,可使用一个支架送入导管,如为球囊扩张支架,则通常使用一个血管内球囊导管,如为自扩张支架,则使用一个容纳性导管。
认为本发明在用于心血管支架时特别有益于防止支架放置后的再狭窄,但在其他疗法中也可使用其它介入治疗,如肿瘤治疗或控制炎症或血栓形成。符合本发明的任何设备一般按常规医疗设备包装进行包装,如盒装、袋装、托盘、软管等。使用说明可打印在一张单独的纸上,或部分或全部打印在设备包装上。包装内的植入性设备可视需要进行消毒。
以下示例可使所属领域的技术人员更清楚地了解怎样进行本发明的实践。还应了解的是,当本发明与其优选具体实施例同时进行说明时,其说明内容是希望阐明而非限制本发明的范围。本发明的其他方面对所属领域的技术人员而言显而易见。
例1:支架制备
不锈钢冠状动脉支架在未扩张时的尺寸为1.6mm (直径)X 12mm (长度),裸露金属丝表面总面积为20.66mm2。在超声波浴中,于5(TC下用2% (v/v)Detergent 8清洁剂溶液清洗支架30分钟。然后支架于50°C下在蒸馏水中再进行声处理30分钟。最后用蒸馏水冲洗支架,再在50°C的烘箱中干燥30分钟。
然后,用银胶将支架穿过附于铝面板上的导电金属丝,铝面板的表面积为15.3cm X
7.6cm。对DC处理组,我们使用氧预处理步骤(I sccm氧气,50mTorr,20 W DC, 2分钟),再进行 TMS 等离子聚合物沉积(lsccmTMS,50 mTorr, 5 W DC, 15 秒),并在 50 mTorr,5 W DC的条件下,用2:1氨/氧等离子体表面改性处理2分钟。对RF处理组,我们使用氧预处理步骤(Isccm氧气,50mTorr, 20 W RF, 2分钟),再进行TMS等离子聚合物沉积(IsccmTMS,50 mTorr, 30 W RF, 4分钟),并在50 mTorr, 5 W RF的条件下,用2:1氨/氧等离子体表面改性处理2分钟。
例2:等离子体涂覆不锈钢薄片的水接触角
直到等离子体涂覆后12周,对等离子体涂覆的薄片进行测量以评价其长期稳定性。结果表明等离子体涂覆的表面在等离子体处理后大约2周就趋于稳定,与未涂覆对照组相t匕,利用DC等离子体,涂覆TMS再经MVO2等离子体处理的薄片(图1)在等离子体涂覆处理后12周仍保留有亲水性,表明等离子体涂覆工艺产生了持久的表面生物活性。
例3:附着于基底表面等离子体涂层及涂层的完整性
在等离子体涂覆的不锈钢薄片上用刀片划出交叉线,再进行Scotch?胶带拉力试验。目测表明无涂层从交叉线处或其四周脱落,表明了涂层强有力地附着于基底表面上,从而在支架卷曲及在临床应用中的导航和扩张时,保证涂层在发生弯折时的完整性。
通用设计的不锈钢支架,其尺寸为01.6mmX12mm (直径X长度),在扩张前进行涂层开裂试验。等离子体涂覆后,利用20倍和50倍光学显微镜进行支架成像。然后,用球囊导管(马萨诸塞州纳蒂克波士顿科学公司(Boston Scientific)单轨?Maverick PTCA扩张导管)进行样本扩张,充气至直径达3.0_。然后再次用光学显微镜和扫描电子显微镜(SEM)目测检查支架,以确定扩张是否在等离子体涂层上产生了任何裂纹。该显微镜检查汇总于表1,证明支架扩张不会在厚度为20nm的等离子体涂层上造成任何裂纹。
表1扩张后支架上等离子体涂层的显微镜检查
【权利要求】
1.一种用以植入人体或动物宿主体内的医疗设备,包括至少有一个接触面以接触体液或组织,所述接触面由两步等离子体处理过程进行改性:1)利用含硅单体进行等离子体沉积形成薄的等离子体涂层,从而生成一层等离子体表面;2)所述等离子体表面随后使用含氮分子和氧分子的混合物进行改性。
2.根据权利要求1所述的医疗设备,其特征在于:所述含硅单体包括一种在正常情况下为气态的娃烷基。
3.根据权利要求1所述的医疗设备,其特征在于:所述含硅单体包括一种在低于100°C的温度下可汽化的硅烷基。
4.根据权利要求1所述的医疗备,其特征在于:所述含硅单体包括三甲基硅烷(TMS)、乙烯基二氣硅烷、四乙氧基硅烷、乙烯基二乙氧基硅烷、7K甲基二娃氣烧、四甲基硅烷、乙烯基二甲基乙氧基硅烷、乙烯基二甲氧基硅烷、四乙稀硅烷、二乙酸氧基乙烯基硅烷和甲基二甲氧基硅烷中的一种。
5.根据权利要求1所述的医疗设备,其特征在于:所述含硅单体为(CH3)3-SiH或(CH3)2-s;lh2。
6.根据权利要求1所述的医疗设备,其特征在于:每个所述含氮分子包括的原子数小于6个。
7.根据权利要求5所述的医疗设备,其特征在于:每个所述含氮分子包括4个或更少的原子。
8.根据权利要求1所述的医疗设备,其特征在于:所述含氮分子包括NH3,N2O, NO, NO2和N2O4中的一种或几种。
9.根据权利要求1所述的医疗设备,其特征在于:所述含氧分子包括O2和/或03。
10.根据权利要求1所述的医疗设备,其特征在于:所述含氮分子和含氧分子的等离子体表面改性是同时进行的。
11.根据权利要求1所述的医疗设备,其特征在于:与未用等离子体改性的类似接触面相比,等离子体改性的接触面表现出至少某些哺乳动物细胞的附着增强。
12.根据权利要求10所述的医疗设备,其特征在于:人体或动物宿主包含有内皮细胞。
13.根据权利要求1所述的医疗设备,其特征在于:所述医疗设备是支架,并且至少有一个接触面构成支架的内腔。
14.根据权利要求13所述的医疗设备,其特征在于:与未用等离子体改性的类似支架相比,等离子体改性的接触面在放入血管后表现出再狭窄减少。
15.根据权利要求1所述的医疗设备,其特征在于:所述等离子体涂层厚度小于lOOnm。
16.根据权利要求15所述的医疗设备,其特征在于:所述等离子体涂层厚度小于60nm。
17.根据权利要求15所述的医疗设备,其特征在于:所述等离子体涂层厚度小于20nm。
18.根据权利要求15所述的医疗设备,其特征在于:所述等离子体涂层厚度介于10到20nm之间。
19.根据权利要求1所述的医疗设备,其特征在于:所述等离子体表面改性时间少于10分钟。
20.根据权利要求1所述的医疗设备,其特征在于:所述等离子体涂层沉积是含硅单体(CH3) 3-SiH的等离子体沉积。
21.根据权利要求1所述的医疗设备,其特征在于:所述等离子体涂层涂是纳米级(小于IOOnm)的等离子体涂层,通过辉光放电等离子体沉积过程制作成。
22.根据权利要求1所述的医疗设备,其特征在于:所述含氮分子是NH3,所述含氧分子是o2。
23.根据权利要求1所述的医疗设备,其特征在于:所述接触面是金属表面或聚合物表面。
24.根据权利要求1所述的医疗设备,其特征在于:所述医疗设备为支架、导管、球囊、分流器、移植物、心脏的瓣、心脏起博器、脉冲发生器、心脏除颤器、脊髓刺激器、大脑刺激器、导向器、螺钉及传感器中的一种。
【文档编号】C08J7/18GK103748147SQ201280039960
【公开日】2014年4月23日 申请日期:2012年7月25日 优先权日:2011年8月17日
【发明者】陈猛 申请人:陈猛
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1