具有改性表面特性的聚合物和其制造方法与流程

文档序号:11632583阅读:252来源:国知局
具有改性表面特性的聚合物和其制造方法与流程
相关申请案本申请案要求2014年5月22日申请的美国临时申请案第62/001853号的优先权。本发明涉及由添加剂改性的聚合物的组合物,其中添加剂提供产生自由添加剂改性的聚合物的改性和/或反应性衬底表面。在一个实施例中,衬底是纤维或模制部件,并且添加剂是多元醇。当在聚合物处于熔融状态期间添加时,添加剂促进所选分子与纤维或模制部件的缔合,且/或提高纤维或模制部件的防污性。
背景技术
:经常处理形成自天然纤维和合成纤维的纤维以赋予有益于工业和住宅用途的特性。这些特性包括防染污性、染料持久性和防污性。当使用表面化学品来提供这些特性时,涉及其它设备、化学品和工艺。这可能对纤维制造工艺加以大量成本和时间。因此,需要以下纤维:其具有改性或反应性表面以允许表面处理剂(topicaltreatment)的定向共价连接或改良的非共价缔合,且/或具有改性表面以改良防污性和/或去污性。已描述各种具有增强染色特性的纤维。举例来说,美国专利6,623,853揭示一种方法,其将聚乙二醇和分枝剂共聚合到聚对苯二甲酸乙二酯中以获得组合物,可将所述组合物纺织成具有优良芯吸、染色性能和触感特性的纤维。美国专利5,135,697和5,272,246揭示将175ppm到700ppm季戊四醇和1.3wt%到3.1wt%己二酸并入到聚对苯二甲酸乙二酯(pet)中以使常压染色率改良到112。美国专利6,284,864揭示具有改良的染色性能和染料保持特性的聚对苯二甲酸乙二酯共聚物纤维,其由对苯二甲酸,或其酯类等效物;至少两种二甲酸,或其酸酐或酯类等效物;和季戊四醇而制备。然而,这些文献仅教示了聚酯纤维的改良的染色性能并且未教示改良纤维特性或允许表面处理剂的定向共价连接的改性或反应性表面。经过表面处理以具有防染污性的一些聚合纤维,如阳离子(“阳离子染色”)尼龙纤维因为所需酸性工艺参数,所以在染污阻挡处理之后渗色。因此,还需要改良的合成纤维,如尼龙纤维和溶液染色尼龙纤维,其具有改良的染料吸收率和/或染色牢度。美国公开专利申请案第2009/0149590a1号,eroshov揭示使用多元醇,其以化学方式键结到聚酰胺的至少一部分上,以改良可湿性并提供“极佳表面外观和极佳机械特性”。美国公开专利申请案第2013/0228728a1号,mathur还揭示添加多元醇,如单季戊四醇或季戊四醇(mpe)、二季戊四醇(dpe)、三季戊四醇(tpe)和其组合,以用于在暴露于高热下持续长时间段后赋予模制聚酰胺阻燃性并且帮助保持拉伸强度、伸长率和抗冲击性。这两个专利申请案都集中于模制尼龙而不是纤维,并且都没有论述在并入多羟基化合物之后将分子添加到物品的表面上。在纺织物,如地毯和服装的工业生产中,常见的是用组合物处理这类衬底以赋予额外所要特性,如对油性和干性污垢堆积的抗性。已描述各种氟化学组合物和其应用方法用于商业用途以赋予聚合物纤维地毯防污性。举例来说,美国专利5,882,762揭示包含多种热塑性聚合物丝的地毯纱,其中赋予氟化学亲水性的化合物分散在丝内。美国专利8,247,519揭示由聚酰胺制造并且包含氟醚官能化芳香族部分的具有防污性和防油性的物品。美国专利8,304,513揭示防污性聚酯聚合物,尤其是包含氟乙烯醚官能化芳香族重复单元的聚(对苯二甲酸丙二酯)。美国专利8,697,831揭示防污性聚酰胺,尤其是包含氟醚官能化芳香族重复单元的尼龙6,6和尼龙6。因此,需要提供具有改良或改性表面特性的聚合纤维,其包括内在防污性、反应性表面和改良的染料吸收率或染色牢度。技术实现要素:在本发明中,揭示具有改性和/或反应性表面特性的热塑性聚合物、纤维和模制产品。还揭示制品以及制造聚合物、纤维和模制部件的方法。因此,本发明的一个方面涉及一种具有改性和/或反应性表面的热塑性聚合物。热塑性聚合物通过在聚合物处于熔融状态期间,将产生改性和/或反应性表面的添加剂并入到聚合物中来产生。在一个实施例中,添加剂是多元醇,其在由聚合物产生的衬底表面上产生反应性羟基。本发明的另一方面涉及一种热塑性纤维或模制部件。热塑性纤维或模制部件包含热塑性聚合物和添加剂,所述添加剂存在于热塑性纤维或模制部件中,其在纤维或模制部件表面上产生改性和/或反应性基团。在一个实施例中,添加剂是多元醇,其在纤维或模制部件表面上产生反应性羟基。本发明的另一方面涉及一种热塑性纤维或模制部件,其包含热塑性聚合物;添加剂,其存在于热塑性纤维中,在纤维或模制部件表面上产生改性和/或反应性基团;和选定分子,如连接到改性和/或反应性基团上的表面处理剂和/或染料。本发明的另一方面涉及用于制造具有改性和/或反应性表面的热塑性纤维或模制部件的方法。方法包含在聚合物处于熔融状态期间,将产生改性和/或反应性表面的添加剂并入到聚合物中。在一个实施例中,添加剂是多元醇,其在聚合物、纤维或模制部件表面上产生反应性羟基。本发明的另一方面涉及一种制品,其至少一部分包含具有改性和/或反应性表面的热塑性聚合物,所述表面通过并入在由聚合物产生的衬底表面上产生改性和/或反应性基团的添加剂而产生。在一个实施例中,添加剂是多元醇,其在由聚合物产生的衬底表面上产生反应性羟基。本发明的另一方面涉及一种制品,其至少一部分包含热塑性纤维,所述热塑性纤维包含热塑性聚合物和添加剂,所述添加剂存在于热塑性纤维,其在纤维表面上产生改性和/或反应性基团。在一个实施例中,添加剂是多元醇,其在纤维表面上产生反应性羟基。本发明的另一方面涉及一种制品,其至少一部分包含热塑性纤维,所述热塑性纤维包含热塑性聚合物;添加剂,其存在于热塑性纤维中,在纤维表面上产生改性和/或反应性基团;和选定分子,如表面处理剂和/或染料,其连接到或结合到存在于纤维表面上的改性和/或反应性基团上。本发明的另一方面涉及一种热塑性纤维或模制部件,其包含热塑性聚合物和并入到热塑性聚合物中用于增强防污性的添加剂。本发明的另一方面涉及一种热塑性纤维,其包含热塑性聚合物;防染污性添加剂,其能够使热塑性聚合物的酸性染料位点丧失能力;和并入到热塑性聚合物中用于增强防污性的添加剂。本发明的又一方面涉及用于增强热塑性纤维或模制部件防污性的方法。方法包含在聚合物处于熔融状态期间,将产生改性和/或反应性表面的添加剂并入到聚合物中。在这种方法的一个实施例中,添加剂是多元醇,其在纤维或模制部件表面上产生反应性羟基。本发明的又一方面涉及用于增强热塑性纤维防染污性和防污性的方法,所述方法包含在聚合物处于熔融状态期间,将能够使酸性染料位点丧失能力的染污阻挡添加剂和产生改性和/或反应性表面的添加剂并入到热塑性聚合物中。附图说明图1a和1b是具有5%dpe的尼龙6,6纤维(图1a)和纯尼龙6,6(图1b)的sem图像。图2显示由尼龙6,6和各种多元醇纺织成的纤维的横截面图像和改性比(mr)。图3a是使用红色mx-5b染料染色并冲洗后,对照物和由具有1.5%dpe的尼龙6,6纤维制成的地毯的图像。图3b是显示于图3a中样品的色度数据图,其显示使用红色mx-5b染料的具有和不具有dpe的地毯的a*值(三次测量结果的平均值)。图4是在室温下使用红色mx-5b染料染色的具有和不具有dpe的地毯的色度数据图。图5a是使用亮橙色染料染色并冲洗后,对照物和由具有1.5%dpe的尼龙6,6纤维制成的地毯的图像。图5b是显示于图5a中样品的色度数据图,其显示具有和不具有dpe亮橙色染料的地毯的a*值(三次测量结果的平均值)。图6是在室温下使用亮橙色染料染色的具有和不具有dpe的地毯的色度数据图。图7是污染数据图,所述数据从在尝试和不尝试预提取不固定表面成分的情况下,对未着色、阳离子-可染性尼龙6,6割绒地毯进行astmd6540测试而获得。相较于未洗涤的数据,热水提取(hwe)数据中未产生变化,其表明存在于表面上的添加剂具有一定程度的耐久性。图8是受到污染和经过清洁的割绒地毯图像,图7中的数据即收集自所述地毯。图9巩固来自图7hwe和未洗涤读数的数据点,其进一步表明无论是否尝试提取,数据点都会集聚。图10是在具有内含0wt%、1wt%、和2wt%dpe的热塑性纤维的割绒地毯上每次进行astmd6540的额外污染数据图。图11是污染数据图,其来自尝试和不尝试通过hwe预提取未结合表面成分的割绒地毯,其中地毯用表面含氟化学品抗污染处理剂进行处理,并且显示其结合到2%dpe纤维表面的良好程度比不上其结合到标准尼龙纤维的程度。图12是在具有内含0wt%dpe、具有200ppm氟的表面抗污垢处理剂、以及0.53wt%和0.77wt%dpe的热塑性纤维的防染污性毛圈地毯上每次进行astmd6540的污染数据图。图13是在具有内含表面抗污垢处理剂(具有200ppm氟)以及0.53wt%和0.77wt%dpe的热塑性纤维的防染污性毛圈地毯上每次进行astmd6540的污染数据图。具体实施方式本发明提供具有改性和/或反应性表面的热塑性聚合物;热塑性聚合纤维或模制部件,其包含存在于热塑性聚合物中的添加剂,所述添加剂在纤维或模制部件表面上产生改性和/或反应性基团,以连接到表面处理剂和/或染料上和/或改良表面特性;制造这些热塑性聚合物、纤维或模制部件的方法;和制品,其至少一部分包含这些热塑性聚合物纤维或模制部件。本发明的实施例同样不需要长时间段高受热来获得所主张的益处,由此提供加工时间上的优势和降低的制造复杂性。适用于本发明的热塑性聚合物的实例包括聚酰胺、聚乙烯、聚丙烯和其组合。在一个实施例中,热塑性聚合物是聚酰胺,如(但不限于)nylon6,6;nylon6;nylon4,6;nylon6,12;nylon6,10;nylon6t;nylon6i;nylon9t;nylondt;nylondi;nylond6;和nylon7;和/或其组合。就这些聚合物来说,“其组合”意指包括(但不限于)嵌段共聚物、无规共聚物、三元共聚物以及熔融掺合物。在一个实施例中,热塑性聚合物是尼龙6,6。适用于本发明的添加剂当存在于热塑性聚合物中时,在由聚合物挤压后产生的任何衬底表面上产生改性和/或反应性基团。出于本发明的目的,“改性和/或反应性基团”或“改性和/或反应性表面”意指一或多种官能性化学基团,其通过并入到聚合物衬底表面上、和/或嵌入到聚合物衬底表面内、和/或赋予在聚合物衬底表面上的添加剂而产生。在非限制性实施例中,通过添加剂而产生的一或多种官能性化学基团能够以化学方式或以物理方式与选定分子反应、键结或连接到选定分子上、或与选定分子缔合,以改良聚合物衬底和/或其表面的特性。如本文所使用,非共价键结、连接或缔合包括偶极-偶极、离子-偶极或氢键结相互作用。举例来说,在衬底是纤维或模制部件的一个非限制性实施例中,在聚合物处于熔融状态期间并入多元醇添加剂会在纤维或模制部件表面上产生反应性羟基。适用于本发明的添加剂的实例包括(但不限于)多元醇,其包括(但不限于)季戊四醇(mpe)、二季戊四醇(dpe)、三季戊四醇(tpe)和其组合;以及如us2010/0029819a1(其教示内容并入本文中)所揭示的糖醇,其包括(但不限于)甘油、三羟甲基丙烷、2,3-二-(2'-羟基乙基)-环己烷-1-醇、己烷-1,2,6-三醇、1,1,1-三-(羟基甲基)乙烷、3-(2'-羟基乙氧基)-丙烷-1,2二醇、3-(2'-羟基丙氧基)-丙烷-1,2-二醇、2-(2'羟基乙氧基)-己烷-1,2-二醇、6-(2'-羟基丙氧基)己烷-1,2-二醇、1,1,1-三-[(2'-羟基乙氧基)-甲基]-乙烷、1,1,1-三-[(2'-羟基丙氧基)-甲基]-丙烷、1,1,1-三-(4'-羟苯基)-乙烷、1,1,1-三-(羟苯基)-丙烷、1,1,3-三-(二羟基-3-甲基苯基)-丙烷、1,1,4-三-(二羟苯基)-丁烷、1,1,5-三(羟苯基)-3-甲基戊烷、二-三甲基丙烷、乙氧基化三羟甲基丙烷或丙氧基化三羟甲基丙烷;和醣类,如环糊精、d-甘露糖、葡萄糖、半乳糖、蔗糖、果糖、木糖、阿拉伯糖(arabinose)、d-甘露醇、d-山梨醇、d-或l-阿拉伯糖醇(arabitol)、木糖醇、艾杜糖醇(iditol)、塔罗糖醇(talitol)、蒜糖醇、阿卓糖醇(altritol)、山梨糖醇、赤藻糖醇、苏糖醇(threitol)和d-古洛糖-y-内酯。所包括的添加剂的量可视衬底的所要质地和/或强度以及待改性的表面特性而变化。在一个非限制性实施例中,所包括的添加剂在约0.01wt%到约10wt%范围内。在另一非限制性实施例中,所包括的添加剂在约0.05wt%到约5wt%范围内。在另一非限制性实施例中,所包括的添加剂在约0.05wt%到约3wt%范围内。在另一非限制性实施例中,存在低于约2wt%的添加剂。在另一非限制性实施例中,存在低于1wt%的添加剂。在一个非限制性实施例中,所包括的添加剂的量高于约300ppm。在另一非限制性实施例中,所包括的添加剂的量高于约350ppm。在非限制性实施例中,至少一部分添加剂存在于热塑性纤维或模制部件的表面上。图1显示具有5%dpe的尼龙6,6纤维(图1a)和纯尼龙6,6(图1b)的sem图像。从图1a中可以看出,有添加剂存在于热塑性纤维表面上。当并入到热塑性纤维中时,在纤维表面发现的羟基可以通过与各种用于增强表面耐久性的表面处理剂和用于改良美观性的反应性染料进行化学反应或物理缔合来加以使用。使用纯聚合物,如单独使用尼龙6,6无法轻易获得这种颜色。在包含热塑性纤维的本发明的一个实施例中,存在于表面上的羟基可以与大量分子共价反应或非共价结合,所述分子包括(但不限于)表面染污阻挡剂、防污处理剂、包括同质和异质官能性反应性染料的反应性染料、抗菌剂、驱虫剂、芳香剂和去味剂。通过并入表面羟基,可实现定向共价连接或改良的非共价缔合,并且通过使用反应性染料可以实现替代性染色工艺。适用于本发明的反应性染料的实例揭示于ep0785304b1中,其教示内容以引用的方式并入本文中。在另一非限制性实施例中,添加剂使热塑性纤维表面改性以赋予其增强的防污性。实例4显示,存在添加剂的热塑性纤维显示内在防污性。在一个非限制性实施例中,所并入的添加剂在低于约2wt%范围内。通过实验,本申请人发现,具有内在防染污性和防污性的热塑性纤维可以由本发明的实施例形成。在一非限制性实施例中,热塑性纤维具有改良的防染污性,并且添加剂使纤维表面改性以赋予其增强的防污性。在这个实施例中,能够使酸性染料位点丧失能力的染污阻挡添加剂并入在热塑性聚合物中。染污阻挡添加剂可以直接添加到聚合物熔融物中或经由母料添加。在另一实施例中,在添加在热塑性纤维上产生改性和/或反应性表面的添加剂之前,染污阻挡添加剂已存在于热塑性聚合物中。合适内在染污阻挡添加剂包括那些已知使酸性染料位点丧失能力的添加剂。对于实例,在聚酰胺,如尼龙6,6或尼龙6中,酸性染料位点是指与产生染色的酸性染料反应或缔合的胺末端基团或酰胺键。染污阻挡添加剂与这些酸性染料位点反应或缔合,以防止酸性染料位点与酸性染料反应或缔合。用于聚酰胺的合适染污阻挡添加剂在美国专利第5,155,178号中有所论述,所述专利以引用的方式并入本文中。合适染污阻挡添加剂包括(但不限于)芳香族磺酸盐和其碱金属盐,如5-磺酸基间苯二甲酸钠盐和二甲基-5-磺酸基间苯二甲酸钠盐。在一个非限制性实施例中,染污阻挡添加剂是5-磺酸基间苯二甲酸钠盐(ssipa)。在一个非限制性实施例中,存在1wt%到10wt%范围内的染污阻挡添加剂。在另一非限制性实施例中,存在1wt%到5wt%范围内的染污阻挡添加剂。具有改良的防染污性和增强的防污性的本发明的热塑性纤维可适用于许多应用。一个应用是阔幅地毯和方块地毯。具有改良的防染污性和增强的防污性的本发明的热塑性纤维还可以经过变形处理以形成bcf纤维并且使用到阔幅地毯或方块地毯中。在一个非限制性实施例中,揭示热塑性纤维,其包含染污阻挡添加剂和赋予防污性的添加剂,其中热塑性纤维是蓬松连续丝(bcf)纤维。具有改良的防染污性和增强的防污性的本发明的热塑性纤维还可以是溶液染色纤维,其中本领域中已知的颜料并入在纤维中。在另一非限制性实施例中,揭示热塑性纤维,其包含染污阻挡添加剂和赋予防污性的添加剂,其中热塑性纤维是蓬松连续丝(bcf)和溶液染色纤维。在另一非限制性实施例中,揭示热塑性纤维,其包含染污阻挡添加剂和赋予防污性的添加剂,其中热塑性纤维是蓬松连续丝(bcf)和溶液染色尼龙(sdn)纤维。本文所述的添加剂还可以并入到模制热塑性材料中。在这个实施例中,在模制部件表面上所发现的羟基还预计与染料以及如(但不限于)阻燃剂的其它表面试剂反应,并且提高模制部件的亲水性。本发明还涉及热塑性纤维和模制部件,其包含热塑性聚合物;添加剂,其存在于热塑性聚合物中,在纤维或模制部件的表面赋予反应性基团;和表面处理剂和/或染料,其连接到反应性基团上。在本发明的一个实施例中,热塑性聚合物不进一步含有其它强化材料。在本发明的替代实施例中,热塑性纤维进一步包含其它强化材料。可用于本发明的纤维的其它强化材料的实例包括(但决不限于)各种形态的碳、玻璃和/或硅酸盐粒子。可以添加到本发明的热塑性材料聚合物中的其它组分的实例包括(但不限于)tio2、颜料、染料增强添加剂、磺化低聚物、润滑剂和工艺调节剂。本发明还提供用于制造具有改性和/或反应性表面的热塑性聚合物的方法。在这些方法中,在聚合物处于熔融状态期间,将产生改性和/或反应性表面的添加剂并入到聚合物中。在一个实施例中,添加剂是多元醇。在一个实施例中,将反应性羟基赋予到表面上。可使用标准热塑性聚合物工艺条件。添加剂可以直接添加到聚合物熔融物中或经由母料添加。本发明还提供用于增强热塑性纤维防污性的方法,所述方法包含在聚合物处于熔融状态期间,将产生改性和/或反应性表面的添加剂并入到热塑性聚合物中。在一个实施例中,添加剂是多元醇。在一个实施例中,将反应性羟基赋予到表面上。可使用标准热塑性聚合物工艺条件。添加剂可以直接添加到聚合物熔融物中或经由母料添加。本发明还提供用于增强热塑性纤维防染污性和防污性的方法,所述方法包含在聚合物处于熔融状态期间,将能够使酸性染料位点丧失能力的染污阻挡添加剂和产生改性和/或反应性表面的添加剂并入到热塑性聚合物中。在一个实施例中,添加剂是多元醇。在一个实施例中,将反应性羟基赋予到表面上。可使用标准热塑性聚合物工艺条件。添加剂和染污阻挡添加剂可以直接添加到聚合物熔融物中或经由母料添加。在另一实施例中,在聚合物处于熔融状态之前以及在添加在热塑性纤维上产生改性和/或反应性表面的添加剂之前,染污阻挡添加剂已存在于热塑性聚合物中。本发明还提供制品,其至少一部分包含热塑性聚合物,其具有改性和/或反应性表面,所述表面通过并入产生改性和/或反应性表面的添加剂而产生;热塑性聚合纤维或模制部件,其包含热塑性聚合物和存在于热塑性纤维中赋予纤维或模制部件表面改性或反应性基团的添加剂;和/或热塑性聚合物、并入到聚合物中在纤维或模制部件表面上产生改性和/或反应性基团的添加剂、和连接到反应性基团上的表面处理剂和/或染料。在一个实施例中,添加剂是多元醇。在一个实施例中,添加剂在物品表面的至少一部分上产生或赋予羟基和/或羟基官能团。这类制品的非限制性实例包括(但不限于)地毯、浴垫、小地垫、饰面材料、帐帘、亚麻织品、毛巾、服装、鞋袜、膜、食品和储存容器、设备和汽车部件。由根据本发明的纤维所制备的地毯显示出较高反应性染料吸收率以及具有化学部分定向共价连接和较高反应性染料吸收率的潜能,由此加深颜色并改善美学特性。此外,当与专门的表面处理剂反应时,包含本发明的纤维的制品预计会显示提高的亲水性、提高的吸湿性、芯吸性能和/或可湿性、以及提高的表面耐久性,由此使所述制品适用于以下应用:如(但不限于)浴垫、毛巾、袍服、亚麻织品、服装、医用织物和个人护理物品。使用傅里叶变换红外光谱(ftir)分析(fouriertransforminfraredspectroscopyanalysis)和颜色指示剂,具体是反应性染料来检验根据本发明所制备的纤维上羟基的存在。用聚酰胺尼龙6,6和多元醇dpe所制造的样品显示出羟基化表面。此外,如由图1证明,在用反应性染料红色mx-5b染色后,相比于对照物,具有二季戊四醇(dpe)的地毯显示出更高染料吸收率。这种差异在5次热水提取(hwe)后仍存在。当使用新颖反应性染料类型亮橙色(图2)时,同样表明这类结果。这表明羟基存在于表面以及纤维对所选染料具有反应性。不受任何具体理论束缚,根据图6中所描绘的sem图像,相信dpe正向纤维表面移动或辉散,并且一旦冷却即再结晶。这种行为解释了在sem图像中所观测到的粗糙表面。同样对在实验室规模微混合机上产生的本发明的热塑性材料和添加剂的熔融-挤压单丝进行染色,并且在复合聚合物与拉长细丝之间以及高旦尼尔丝与低旦尼尔丝之间发现一些差异。具有和不具有添加剂的复合聚合物吸收极少染料。纺织成纤维的那些材料吸收更多染料。较厚纤维(较高旦尼尔纤维)似乎因染料而仅具有轻微着色,而较精细的旦尼尔纤维吸收更多染料。不受任何具体理论束缚,相信拉伸纤维使基团对准或暴露于表面,且/或在淬灭期间材料正辉散到表面,并且由此对于较低旦尼尔纤维,很有可能材料可在完全淬灭前转移。还检验添加季戊四醇和三季戊四醇对纤维染料吸收率的影响。包含季戊四醇的尼龙6,6纤维易于加工并纺织成丝。包含tpe的尼龙6,6纤维的行为与dpe极其相似。当暴露于相同棉染料时,季戊四醇还显示出优于对照物的染料吸收率。此外,在用中试规模熔融-纺丝机纺织期间,当添加剂浓度高达5%时,观测不到问题或断裂。这种材料的工艺条件与未改性尼龙的工艺条件相同,并且模仿典型用于生产环境的工艺条件。使用载有40%dpe的新颖母料重制5%浓度,并且同样观测不到工艺问题。本文所引用的所有专利、专利申请、测试程序、优先权文献、文章、公开案、手册和其它文献都以引用的方式完全并入,其程度为这类揭示内容不会与本发明不一致并且用于准许这类并入的所有权限中。以下部分提供本发明的热塑性聚合物组合物、制品和工艺的进一步说明。在这些非限制性实例中所检验的组合物包含尼龙6,6和mpe、dpe或tpe的任一者。然而,本领域的普通技术人员所熟知的是其它热塑性聚合物和添加剂,预计其所显示的行为与本文所述的根据本文中教示的尼龙6,6和mpe、dpe或tpe的那些行为相类似。因此,这些工作实例仅仅是说明性的并且并不打算以任何方式限制本发明的范围。实例当使用astmd789的改型测试时,使用具有45.3rv的尼龙6,6来制造用于以下实例的样品,并且当通过电位滴定技术测试时,使用具有20.95胺末端基团(aeg)的尼龙6,6来制造。所用mpe可购自perstop,商标名是charmoretmpm15。所用dpe可购自perstop,商标名是charmoretmdp40和dp15。所用tpe可购自西格玛奥德里奇公司(sigmaaldrich),产品号是107646。实例1:制造纤维使用包含二季戊四醇添加剂和尼龙6,6的母料。在初始实验中,母料含有30%dpe。在后续实验中,使用含有40%dpe的母料。以各种浓度将母料与尼龙6,6聚合物混合,所述浓度如下文表1中显示在0wt%到5wt%活性剂范围内。使用具有920旦尼尔目标的三叶形纺丝头纺织混合物。如图1中所见,对照物和样品4的sem显示,当添加dpe时,表面是如何变粗糙的。表1样品dpe活性剂%对照物0%样品10.3%样品20.6%样品30.9%样品41.5%纺织后,通过fitr分析纺织管的表面部分。结果指示,1037cm-1峰随着dpe浓度的提高而提高。此外,用反应性染料处理纤维。使用实验室规模微混合机加工mpe和tpe。纯添加剂和dpe聚合物母料都以粉末形式添加。母料仅提供易处理性,但没有额外工艺优势(不能实现活性剂的较高浓度)。仅使用粉末形式的mpe和tpe。为了改良混合,首先将1/2颗粒馈入到仪器中,随后馈入所要量的粉末状活性剂,并且最后添加颗粒的剩余部分。在265℃下以15rpm熔化并再循环混合物达5分钟。将纺丝头温度设为260℃,同时挤压纤维。使用这种方法,可加工5%活性剂mpe并使其悬挂在纺织管上,但5%tpe具有与dpe相同的问题。不测定最大tpe浓度。实例2:多元醇种类的纺织通过将多元醇粉末直接添加到尼龙6,6中来产生反应性纤维;由此避开母料加工并且移除任何酸性染料载体聚合物。将包括单季戊四醇(mpe)、二季戊四醇(dpe)和三季戊四醇(tpe)的多元醇粉末放置在铝工资中,并且在50℃下于烘箱中干燥最少24小时以移除任何过量水分。随后使用便携式水泥搅拌机将多元醇粉末涂布到尼龙6,6颗粒和颜料颗粒上。以表2中所描绘的比率添加粉末。涂布后,将掺合物放置到料斗中并使用108丝三叶形纺丝头伴以920旦尼尔目标(或4.25dpf)进行熔融纺织。纺织后,获得纤维的横截面和改性比(mr)并显示于图2中。随后将纤维加工成纱线并编束成地毯以用于随后的实验。图2显示根据表2所纺织纤维的横截面和改性比(mr)。表2样品多元醇粉末尺寸(μm)活性剂wt%对照物无n/a0%样品5mpe150.50%样品6mpe151.00%样品7dpe150.50%样品8dpe151.00%样品9dpe151.50%样品10tpe100*0.50%样品11tpe100*1.00%样品12tpe100*1.50%样品13dpe400.50%样品14dpe401.00%样品15dpe401.50%*表示粗略估测。未测量实际尺寸,但尺寸可与食盐相关。实例3:并入dpe的纤维的反应性染色因为反应性染料通常用于棉并且已知其与物品上的羟基反应,所以其可以指示纤维表面上存在dpe。将来自实例2的对照物和1.5%dpe地毯(样品15)切割成6英寸×6英寸方块并使用红色mx-5b反应性染料染色。使用以下技术进行染色程序:将166g去离子水放置到烧杯中并升温到(110°f)。将18gnacl添加到水中并混合直到完全溶解。随后添加833g去离子水。历时10分钟,将本身具有防染污性的尼龙6,6地毯添加到盐水浴中。10分钟后,简单移出地毯并添加0.75g红色mx-5b。溶解染料,之后将拭子放回到浴液中。1小时后,添加2g碳酸氢钠并搅拌至溶解。静置样品4小时,随后移出地毯并用去离子水彻底冲洗直到水流清澈。随后在烘箱中干燥地毯直到去除所有水分。为了测试染料的耐久性,使用sandia加热观测机(3加仑,型号#50-4000)对地毯进行热水提取(hwe)。针对hwe,将清洁剂以每加仑水4盎司产品的比率添加到提取器中。hwe通过用清洁剂喷涂样品随后进行单遍抽吸来完成;使用三次喷涂和三次抽吸来表示一个hwe周期。因此,5次hwe相当于15次单遍清洁剂和抽吸。在每次hwe后,在烘箱中干燥地毯(在60℃下持续30分钟到90分钟)。对地毯进行拍照并且在每个步骤中在干燥地毯上收集lab值。表示红色/绿色色彩空间的a*值作为3次测量结果的平均值报告在图3b中。图3a显示刚染色和冲洗后的潮湿地毯(对照地毯,左;1.5%dpe地毯,右)。图3a显示使用红色mx-5b染料的具有和不具有dpe的地毯的a*值(三次测量结果的平均值)。实例4:并入dpe的纤维在室温下的反应性染色为了确保加热影响上染率,通过将样品添加到来自实例3的保留染色浴中以在室温下对来自实例2的对照物和1.5%dpe地毯(样品15)进行染色。再次将地毯切割成6英寸×6英寸方块,随后将其直接浸没在预制备的红色mx-5b染色浴中。在室温下使地毯静置于浴液中持续4小时。染色后,彻底冲洗地毯直到水流清澈。随后在烘箱中干燥地毯直到去除所有水分。为了测试染料的耐久性,以与实例3相同的方式完成hwe。三次测量结果的a*值经过平均化并报告于图4中。图4显示在室温下使用红色mx-5b染料染色的具有和不具有dpe的地毯的a*值(3次测量结果的平均值)。实例5:并入dpe的纤维的反应性染色将来自实例2的对照物和1.5%dpe地毯(样品15)切割成6英寸×6英寸方块,并且使用反应性橙色染料(亮橙色3r)染色。染色浴通过在2000ml去离子水中搅拌70gnacl直到溶解来制备。将地毯放置在盐浴中持续10分钟,随后移出并拧干。将1.0g染料添加到盐水中,随后添加5.3g碳酸氢钠。将地毯样品放回烧杯中持续额外10分钟,随后添加额外16g碳酸氢钠。将浴液温度提高到50℃±5℃并静置4小时。染色后,彻底冲洗地毯直到水流清澈。随后在烘箱中干燥地毯直到去除所有水分。为了测试染料的耐久性,以与实例3相同的方式完成hwe。三次测量结果的a*值经过平均化并报告于图5b中。对照物的未染色地毯的a*值是1.80±0.17并且1.5%dpe地毯的未染色地毯的a*值是1.58±0.07。图5a显示刚染色和冲洗后的干燥地毯(对照地毯,左;1.5%dpe地毯,右)。图5b显示使用亮橙色染料的具有和不具有dpe的地毯的a*值(3次测量结果的平均值)。对照物的未染色地毯的a*值是1.80±0.17并且1.5%dpe地毯的未染色地毯的a*值是1.58±0.07。实例6:并入dpe的纤维在室温下的反应性染色为了确保加热不对染料吸收率负责,通过将样品添加到来自实例5的保留染色浴中以在室温下对来自实例2的对照物和1.5%dpe地毯(样品15)进行染色。再次将地毯切割成6英寸×6英寸方块,随后将其直接浸没在预制备的反应性橙色染色(亮橙色3r)染色浴中。在室温下使地毯静置于浴液中持续4小时。染色后,彻底冲洗地毯直到水流清澈。随后在烘箱中干燥地毯直到去除所有水分。为了测试染料的耐久性,以与实例3相同的方式完成hwe。三次测量结果的a*值经过平均化并报告于图6中。图6显示在室温下使用亮橙色染料染色的具有和不具有dpe的地毯的a*值(3次测量结果的平均值)。实例7:抗污染特性将内含dpe的尼龙6,6的浓缩聚合物母料添加到熔融挤压机中,同时以能够在所得尼龙6,6纤维中载入2wt%dpe活性剂的比率对尼龙6,6薄片和熔融物进行纺织。纤维以标准方式进行加工,所述标准方式对于bcf纺织和地毯制造领域中的普通技术人员来说是可识别的。随后割绒地毯经过编束并且完成以用于染色。用于产生纤维的95wt%尼龙具有抗酸性染色和阴离子染色的防染污性尼龙。在聚合物添加剂浓缩物中用作载体的尼龙6,6不是将3wt%潜在地能够接纳酸性染料的材料保留于最终形式中的防染污性调配物。正如预期的,发现地毯对标准酸性染料不具有可染性,不会着色,并且因此在测试中为白色。滚筒污染数据记录为δe并根据astmd6540测量,其中较低δe指示在受到污染与真空清洁之前和之后地毯颜色中的差异较小。在这种测试的重复性局限性之内,可以测定经过不同处理的样品的相对污染性能。测试模拟住宅或商业环境中的地毯污染,所述环境之交通量水平为约100,000到300,000。根据astmd6540,污染测试可以同时在至多六块地毯样品上使用滚筒进行。样品的基本颜色(使用l、a、b色彩空间)使用由minolta公司(位于卡姆登(camden))以cr-310“色度仪”型号出售的手持式颜色测量仪来测量。这种测量结果以l*、a*和b*值的形式呈现并且描述色彩空间中的色值。这是原始色值。将地毯样品安放在薄塑胶薄片上并放置在滚筒中。将两百五十克(250g)脏zytel101尼龙珠粒(dupontcanada公司,米西索加,安大略)放置到样品上。脏珠粒通过将十克(10g)aatcctm-122合成地毯污垢(manufacturertextileinnovators公司,温莎,n.c.)与一千克(1000g)新颖nylonzytel101珠粒混合而制备。将一千克(1000g)直径为3/8英寸的钢珠轴承添加到滚筒中。以反方向操作滚筒持续30分钟并移出样品。移出后,用真空吸尘器清洁地毯,并且再次使用色度仪测量清洁后地毯的颜色。每块地毯的颜色测量结果之间的差异(在污染与清洁之前和之后)是总色差δe*,并且是基于本领域中的普通技术人员已知的色彩空间中的l*、a*和b*色差,其中如当相比于具有0%dpe的适当对照物时,由测试物品中4到5个单元的δe降低所例示,针对图7、9和10中2wt%dpe-pa66地毯所显示的数据表明污染抵抗性得到改良。在受到污染前,所述影响甚至在进行热水提取(hwe)后还存在。这些地毯没有任何类别的表面处理剂。因为hwe未改变两种地毯的性能,图9中的图显示相同数据,但未对在污染前是否尝试预提取表面成分加以分类。在分别来自0wt%和2wt%dpe掺合物平均值的仅1和1.2δe处,95%置信区间仍非常狭小。实例8:羟基的表面存在和不相容表面处理剂的降低的结合力将内含dpe的尼龙6,6的浓缩聚合物母料添加到熔融挤压机中,同时以能够在所得尼龙6,6纤维中载入2wt%dpe的比率对尼龙6,6薄片和熔融物进行纺织。纤维以标准方式进行加工,所述标准方式对于bcf纺织和地毯制造领域中的普通技术人员来说是可识别的。随后割绒地毯经过编束并且完成以用于染色。用于产生纤维的95wt%尼龙具有抗酸性染色和阴离子染色的防染污性尼龙。在聚合物添加剂浓缩物中用作载体的尼龙6,6不是将3wt%潜在地能够接纳酸性染料的材料保留于最终形式中的防染污性调配物。正如预期的,发现地毯对标准酸性染料不具有可染性,不会着色,并且因此在测试中为白色。最后,地毯用具有氟化学组分作为少数成分的表面抗污染处理剂处理。在尝试和不尝试通过热水提取来预提取未结合表面成分的情况下地毯的污染显示,氟化学抗污染处理剂结合到2%dpe纤维表面的良好程度比不上其结合到标准尼龙纤维的程度(参见图11)。表面羟基的存在可能有利于存在于前述抗污染处理剂中的高度负电性氟偶极与纤维表面的孔隙结合力,其进一步支持本发明关于存在表面羟基的主张,所述表面羟基的存在改良纤维或模制部件的表面特性和定向反应的那些基团的可用性。实例9:多元醇熔融掺合到尼龙7中为了展示根据本发明添加剂可以纺织到其它聚酰胺纤维中,纺织尼龙7纤维样品。使用实验室规模双螺杆挤压机将2wt%dpe熔融掺合到尼龙7中,并且使用标准工艺条件纺织单丝,且将纺织到纺织管上。能够纺织纤维并且所述纤维未显示出任何将防碍有效工业实用性的缺陷。实例10:防染污性纤维中的抗污垢特性将内含dpe(40%)的尼龙6,6的浓缩聚合物母料添加到熔融挤压机中,同时以能够在所得尼龙6,6纤维中载入0.53wt%和0.77wt%dpe的不同比率对尼龙6,6薄片和熔融物进行纺织。纤维以标准方式进行加工,所述标准方式对于bcf纺织和地毯制造领域中的普通技术人员来说是可识别的。毛圈地毯随后经过编束并完成。用于产生纤维的95wt%尼龙具有抗酸性染色和阴离子染色的防染污性尼龙。纤维具有圆角方形截面,其沿纤维长度具有4种连续空隙。在这个实例中,由空隙所占据的截面的部分为总物品的12%。后续纤维随后经过加工并编束成毛圈地毯。这些地毯随后使用astmd6540进行污染测试,并与对照地毯样品和用具有氟化学组分作为少数成分(200ppmf)的表面抗污染处理剂处理的地毯样品进行比较。相比于标准尼龙6,6对照物,其它最终用途测试揭示对地毯性能没有负面影响。结果可见于图12和13中。两个图式都显示,相较于用表面抗污染处理剂处理的地毯,本发明的地毯具有相同或更佳污染性能。当前第1页12
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1