可光降解塑料及其用途的制作方法

文档序号:13175238阅读:502来源:国知局
本申请是申请日为2009年8月13日、申请号为200980128631.9、发明名称为“可光降解塑料及其用途”的发明专利申请的分案申请。本发明涉及包含纤维素酯和任选添加剂的可光降解塑料及其用途,特别是用于生产过滤嘴香烟的滤嘴的过滤丝束。在其寿命周期末到达环境或可能到达环境的塑料,应当在一般的条件下在短时间内可降解,以保持它们的影响尽可能小。然而,即使就原则上生物可降解的塑料来说,其分解持续时间还强烈地取决于外部条件。例如,在堆肥条件下比在同样包含微生物的土壤中降解更加迅速。当对此所必须的微生物条件不足时,生物降解明显更缓慢。如果相应的塑料完全或部分位于表面上例如石板、沥青、沙、泥土或草地上,就是这样的情况。在这些情况下,尤其适合的是,在光作用下的光催化分解。这可能是对于材料降解而言唯一的机制,但也可能是其它降解机制的辅助作用。长期以来,已知二氧化钛特别是锐钛矿改性可以通过有机材料的光催化作用来分解。锐钛矿吸收在紫外范围的光谱的光,由以下电子传输产生自由基,其引发由链机制引起的降解。材料的降解通常破坏其功能。因此,首先进行基本的加工以稳定化包含二氧化钛的材料。关于该加工参考US2,206,278、GB780,749和US3,961,975。DE2436260C1描述了在天气和/或光线影响下,使用具有小粒径的二氧化钛颜料用于塑料组合物的目标降解。CA1073581公开了使用二氧化钛颗粒用于聚烯烃的光催化降解。由于九十年代对于在完成使用目的后持续存在的塑料提高的公众关注,更多的工作投入到纤维素酯及由此生产的过滤丝束在环境中的降解。将用于消光的二氧化钛颜料加入到纤维素酯中很久以前就公开在现有技术中,US-A-2,206,278阐述了该内容。WO-A-93/24685涉及在加入光催化有效的二氧化钛颜料的情况下,纤维素酯降解加速。在比较通常使用的具备降低光催化影响的涂层的二氧化钛颜料与未经涂层的锐钛矿的情况下,在具有未覆盖锐钛矿的醋酸纤维素组合物制得的单丝的老化测试机-测试中,显示适度加速的拉伸强度降低。同样,使用表面已经用Ba/Ca硫酸盐或磷酸盐处理的锐钛矿颜料,以进一步提高光催化作用。用该颜料,发现在醋酸纤维素的丙酮溶液中乙酸的释放增加。EP716117A1描述了具有锐钛矿的纤维素酯组合物。将二氧化钛的表面用磷酸盐、其它磷化合物、多元醇、氨基酸或其盐部分地处理。在褪色计-测试中测得,与未处理的锐钛矿颜料相比,来自相应的醋酸纤维素组合物的长丝促进拉伸强度的降低,但明显低于两倍。实例中使用的醋酸纤维素具有2.14的取代度DS以及因此显著地低于按照标准使用的纤维素酯的DS。US-A-5,491,024和US-A-5,647,383描述了超细二氧化钛颗粒加到纤维素酯。在此,在老化测试机-试验中,单纤维与常规的二氧化钛颜料相比,在拉伸强度的降低方面,显示适度加速作用。关于纤维素酯组合物的降解速率的显著加速,通过二氧化钛的各种改性达到的迄今为止描述的结果并不令人满意。没有发现决定性的改善。由于在分解期间材料的重量损失通常比机械强度的损失进行地显著更慢,这更加适用,这出现在N.-S.Hon,J.Polym.Sci.15,1977,725-744。Sakthivel和Kisch,Angew.Chem.,Ind.Ed.42(2003),4908描述了用碳体积-掺杂的二氧化钛。除在UV范围之外,其在可见光区也显示出明显吸收。WO2005/108505描述了TiO2,其用碳在表面上掺杂且也吸收在可见光范围的光。通过提高光催化活性,材料表面上的有机污染物和杂质被降解。因此,碳-改性或碳-掺杂是本领域熟练技术人员从现有技术中已知的。在下文中概述的现有技术也没有产生合乎需要的改进:根据WO-A-95/29209,例如用二氧化硅、氧化铝和/或有机化合物如三羟甲基来进行二氧化钛颗粒的表面处理。这将防止二氧化钛颗粒结块。根据US-A-4,022,632,将二氧化钛颗粒用特殊的盐处理。WO2007/141342A建议提供具有一个或多个有机物质层的二氧化钛颗粒,其中可以使用例如聚二醇、羧酸、羧酸的碱金属盐、多元醇、三羟甲基乙烷、季戊四醇或者新戊二醇。从以上描述的现有技术出发,本发明基于的目的为,包含纤维素酯和任选添加剂的可光降解塑料,其特征在于,在环境条件下显著增加的光降解作用。此外,本发明还致力于将该可光降解塑料应当有利地用作成型体,特别是在生产香烟过滤嘴的滤嘴的过滤丝束中。根据本发明,该目的由开篇描述的类型的可光降解塑料如此实现,即该可光降解塑料包含分散在其中的光催化活性的碳改性的二氧化钛,其特别是以细分散体的形式。根据本发明的教导,有利的组合形式由从属权利要求2到18提供。在纤维素酯的选择上,本发明无任何重要的限制。特别优选的是醋酸纤维素、丙酸纤维素、丁酸纤维素、醋酸丙酸纤维素和/或醋酸丁酸纤维素。本发明不相应地限制为根据本发明制备的纤维素酯的平均取代度(DS)。平均取代度(DS)优选在1.5和3.0之间,特别是在2.2和2.7之间,这特别是醋酸纤维素的情况。适合的的是,鉴于实现提出的目的,将纤维素酯特别是醋酸纤维素基于其平均聚合度进行优化。纤维素酯的最佳平均聚合度在150和500之间,特别是180和280之间。令人惊讶地表明,通过在纤维素酯组合物中加入碳改性二氧化钛,特别是碳掺杂二氧化钛,纤维素酯组合物可在环境中以迄今未知的速度光催化降解。作为量度,选择如以下实施例所示的可光降解塑料的质量随时间的减少。因此本发明的核心是选择碳改性二氧化钛,其在表面上或者整个体积中碳改性。优选表面碳掺杂的碳改性的二氧化钛。通过掺杂缩小半导体二氧化钛的能带间隙,且与未掺杂的二氧化钛相比,可将长波光用于激发价电子带电子,因此活化光催化性质。将碳掺杂的二氧化钛的晶粒尺寸适合的地优化,其中晶粒尺寸优选在5和150nm之间,特别是在7和25nm之间。在单独的情况中,研磨商业上惯用的粗粒碳-改性二氧化钛以调节其最佳粒度是有利的,或者甚至是必需的。适合的的是,碳改性的二氧化钛具有3.0至5.0g/cm3,特别是3.5至4.2g/cm3的密度(ISO787,第10部分)。碳改性二氧化钛的比表面的优化对含纤维素酯的塑料的降解有着有利的影响。优选的是,碳-掺杂二氧化钛的比表面积BET大于100m2/g,特别是大于250m2/g。当碳改性二氧化钛的特征为,与纯二氧化钛相比显著的在λ≥400nm范围内的光吸收时,在根据本发明的可光降解塑料中结合碳改性二氧化钛具有特别有利的影响。为了进一步改善根据本发明的塑料的可光降解性,适合的的是将碳改性钛的含量调整至0.1到5重量%,特别是0.3到1.5重量%。碳-改性二氧化钛的碳含量没有显著限制。碳-改性二氧化钛优选包含0.05到5重量%,特别是从0.3到1.5重量%量的碳。根据本发明可能的是,可光降解塑料总体而言并非仅基于纤维素酯。其可以包含常规的添加剂如增塑剂,例如用于香烟的滤嘴材料的纤维中的情况。另一方面,此外,非碳-改性二氧化钛可以细分散体被纳入,特别是在涉及香烟工业的应用情况中。为了尽可能遵照本发明的想法以及在塑料中利用碳-改性二氧化钛的特别的光催化效用,优选可光降解塑料的纤维素酯含量占至少60重量%,特别是至少90重量%。显示了根据本发明的塑料特别优良的可光降解性,如以下实施例所示,特别是当把可光降解塑料转化为成型体,特别是纤维、膜,特别是深拉膜,主要用作注塑制品、厚壁成型体、颗粒、微球、珠和容器的包装材料。特别有利的是,将这些纤维进一步加工为滤嘴丝束,用其制备过滤棒和由此制备过滤嘴香烟的滤嘴。相比非根据本发明设计的那些,在环境中,这类滤嘴借助于光效应降解明显更快。本发明的特别的优势在于,根据本发明的产品,如以下实施例所示,与比较样品相比,显示出在光催化降解中意料不到的优越性。例如,在滤嘴中,在36周的时期内的降解速率(在扣除~6重量%的水溶性的部分之后的重量减少),例如与最好的实施例5(对比实施例3)(未涂覆的锐钛矿)相比,高3倍多。当与不包含任何二氧化钛的对比产品相比,本发明的产品的优越性还更明显。当把SiO2/A2O3-涂覆的锐钛矿用于比较时,同样测得显著的优越性。根据本发明达到的优越的光降解作用也从附图1和2的良好一致表现出来。图1显示出,在16周露天试验之后,根据实施例2的试样1的长丝的REM图像(1,000倍放大),而图2显示出在露天试验16周之后根据实施例4(对比实施例2)的长丝的REM图像(也是1000倍放大)。根据本发明的可光降解塑料显示出粗糙的裂缝和断裂的长丝并因此良好的降解结果,这不适用于用来比较的实施例4。在此反而可测到长丝的光滑表面。最后要注意,用于生产本发明的可光降解塑料的方法不受任何特别的限制。一种可能是混合各种组分,其中将塑料熔融并将有关组分混合。纤维有利地通过干纺法生产,即使也可考虑湿纺法。在干纺法中,优选将纤维素酯以常规的方式溶解在例如丙酮中。然后将相关的其它组分如特别是碳-改性二氧化钛加入,以便在干燥的槽中进行常规纺丝过程。本发明将借助于以下实施例来详细描述:实施例1(通常的制备方式)二氧化钛悬浮液的制备:将在丙酮中用3%醋酸纤维素稳定化的15%的二氧化钛悬浮液通过珠磨机(WABDynomillMultilab,1.4l碾磨体积)以8.5kg/h的产量碾磨至粒径D50=1.2μm。使用了三种不同的二氧化钛类型,如下表1所示。表1纺丝溶液的生产:将26重量份具有2.45的DS的醋酸纤维素溶于74份丙酮/水96:4的溶剂混合物。就二氧化钛添加来说,将1.73重量%的二氧化钛悬浮液加入该溶液。将由此产生的纺丝溶液均化,随后过滤。纤维的生产:3.0旦的长丝由纺丝溶液通过干纺法制得。过滤棒的生产:将形成的醋酸纤维素纤维结合入传动带,用填塞箱折边机折边并干燥。由此生产的过滤丝束的规范是3Y35000。该规范中的定义含义为:长丝纤度:3.3dtex总纤度:38,500dtex长丝的横截面形状:Y将过滤丝束在过滤棒机上加工,以形成长度126mm和直径7.8mm的过滤棒。这里提供的甘油三乙酸酯的量为全部重量的6%。实施例2(发明)将二氧化钛类型A通过实施例1所述的方法以基于醋酸纤维素1:99的量添加纺丝溶液。实施例3(对比实施例1)如实施例1,但不加入二氧化钛。实施例4(对比实施例2)如实施例2,但加入二氧化钛类型B。实施例5(对比实施例3)如实施例2,但加入二氧化钛类型C。实施例6(露天试验的试验方法和实施)试样1:制备试样,其中这样编织每个具有840股长丝的纤维,使得每个样品具有大约0.3g的重量,每个具有大约3.5x1.3cm的面积的样品。与单长丝或如所述常规制得的<200长丝(参照引用的专利说明书)纤维相比,由此生产的试样具有更高的材料厚度,此外,材料层叠,这样光透过更加困难,此外,在露天试验中也不会那么容易地分解。试样2:制备试样,其中移去过滤棒(根据实施例1制备)的纸,将剩下的过滤棒切成具有21mm长度的滤嘴。测试实施:将试样露天置于笼中。该笼由具有85%开放面积的金属织物和混凝土基板构成。该笼安设在露天,使得不考虑金属线织物的影响,阳光能不受阻碍地照射并且其它天气影响也可具有作用。为了区分样品,将笼分为单独的室。将一种材料的试样分别分配在不同的笼中,以便可以排除可能的局部影响。每隔4周取出试样,除去粗糙的粘附物质,在20℃和60%空气湿度下调制24h,随后称重。露天试验在Freiburgi.Br.(德国)进行。表2显示了试样1的结果,主要在夏天条件下进行;表3是试样2的结果,主要在冬天条件下。表2(在露天试验中,在混凝土上,试样1重量减少(%wt)与时间的关系)4周8周12周16周实施例23.78.014.521.5实施例30.60.5-0.2-0.4实施例41.51.51.10.9实施例52.53.95.37.1表3(在露天试验中,在混凝土上,试样2重量减少(%wt)与时间的关系)12周20周28周36周实施例28.710.614.524.2实施例46.26.06.77.2实施例57.27.99.411.3注:在测试开始时,由于水溶性组分的溶出,样品(滤嘴)已经损失6至7重量%。本发明还包括以下实施方式:1.一种含有纤维素酯和任选地添加剂的可光降解塑料,其特征在于,可光降解塑料包含分散于其中的光催化活性的碳改性的二氧化钛。2.根据项目1的可光降解塑料,其特征在于,该纤维素酯是醋酸纤维素、丙酸纤维素、丁酸纤维素、醋酸丙酸纤维素和/或醋酸丁酸纤维素。3.根据项目1或2的可光降解塑料,其特征在于,纤维素酯特别是醋酸纤维素具有1.5到3.0,特别是2.2到2.7的平均取代度(DS)。4.根据项目1到3的任一项的可光降解塑料,其特征在于,纤维素酯特别是醋酸纤维素具有150到500,特别是180到280的平均聚合度。5.根据前述项目至少一项的可光降解塑料,其特征在于,其另外包含细分散的非碳改性二氧化钛,特别是锐钛矿。6.根据前述项目至少任一项的可光降解塑料,其特征在于,碳改性二氧化钛是在其表面碳掺杂的。7.根据前述项目至少一项的可光降解塑料,其特征在于,碳改性二氧化钛具有5到150nm,特别是7到25nm的晶粒尺寸。8.根据前述项目至少一项的可光降解塑料,其特征在于,碳-改性二氧化钛具有3.0到5.0g/cm3,特别是3.5到4.2g/cm3的密度(ISO787,第10部分)。9.根据前述项目至少一项的可光降解塑料,其特征在于,碳改性二氧化钛的比表面积(BET)大于100m2/g,特别是大于250m2/g。10.根据前述项目至少一项的可光降解塑料,其特征在于,碳改性二氧化钛特征为,与纯二氧化钛相比显著的在λ≥400nm范围内的光吸收。11.根据前述项目至少一项的可光降解塑料,其特征在于,该可光降解塑料包含0.1到5重量%,特别是0.3到1.5重量%的碳掺杂二氧化钛。12.根据前述项目至少一项的可光降解塑料,其特征在于,碳改性二氧化钛具有0.05到5重量%,特别是0.3到1.5重量%的碳含量。13.根据前述项目至少一项的可光降解塑料,其特征在于,纤维素酯含量占至少60重量%,特别是90重量%。14.根据前述项目至少一项的可光降解塑料,其作为成型体,特别是以纤维、膜,特别是深拉膜的形式,特别是用作注塑制品、厚壁成型体、颗粒、微球、珠和容器的包装材料。15.根据项目14的可光降解塑料,其特征在于,该纤维是过滤丝束的成分。16.根据项目15的可光降解塑料的用途,其特征在于,将过滤丝束用于生产过滤嘴香烟的滤嘴。
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1